JPH02274352A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH02274352A
JPH02274352A JP5717789A JP5717789A JPH02274352A JP H02274352 A JPH02274352 A JP H02274352A JP 5717789 A JP5717789 A JP 5717789A JP 5717789 A JP5717789 A JP 5717789A JP H02274352 A JPH02274352 A JP H02274352A
Authority
JP
Japan
Prior art keywords
gas
molten steel
mold
nozzle
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5717789A
Other languages
Japanese (ja)
Other versions
JP2841429B2 (en
Inventor
Atsushi Kubota
淳 久保田
Takashi Mori
孝志 森
Kaoru Uchino
内野 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5717789A priority Critical patent/JP2841429B2/en
Publication of JPH02274352A publication Critical patent/JPH02274352A/en
Application granted granted Critical
Publication of JP2841429B2 publication Critical patent/JP2841429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable adequate stirring of molten steel in a mold corresponding to discharging rate of the molten steel by arranging plural refractory bricks having different porosities and porous diameters for independent gas blowing to inner wall of a nozzle hole penetrated in an upper nozzle, sliding gate and submerged nozzle. CONSTITUTION:The refractory brick 25 having high porosity and small porous diameter and the refractory brick 26 having low porosity and large porous diameter for gas blowing, are arranged to the inner wall 24a of the nozzle hole in the upper nozzle 21. These refractory bricks 25, 26 for gas blowing arrange a gas supplying device and are made so as to be possible to independently control gas blowing flow rate with each gas flow rate control devices 31, 32. In the case of varying the discharging rate of the molten steel by adjusting the sliding gate 22, gas flow controlled with each gas flow rate control devices 31, 32 arranged to the supplying device, is blown into the molten steel flow in the nozzle hole through the refractory brick for gas blowing. The gas blown into the molten steel flow is mixed with the molten steel flow and discharged into the mold and dispersing of gas bubbles to the whole surface in the mold can be executed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は鋼の連続鋳造方法に関するものである。[Detailed description of the invention] [Industrial application fields] The present invention relates to a continuous casting method for steel.

[従来の技術] 鋼の連続鋳造方法は一般に第4図に示すような連続鋳造
方法によって行なわれる。
[Prior Art] A continuous casting method for steel is generally carried out by a continuous casting method as shown in FIG.

タンディツシュ2からスライディングゲート3、浸漬ノ
ズル4を介して鋳型5に溶鋼1を注入し、開示していな
いピンチロールにより鋳片6を連続的に引き抜く、鋳型
5には溶鋼1の酸化を防止し、且つ鋳型5から鋳片6が
容易に引き抜き出来るように鋳型パウダー7が散布され
ている。ここにおいて浸漬ノズル4のノズル孔の溶鋼の
凝固による詰まりを防止するための対策として、浸漬ノ
ズルのノズル孔内にガス吹き込みを行なう提案が多くさ
れている。その一つとして特公昭642467号公報に
は第5図に示すようなガス吹き込みによる浸漬ノズルの
閉塞防止方法が記載されている0図においてタンディツ
シュ2のストッパーとしてガスバージ型ストッパー8を
用いるとともに、内面にポーラス部91及びスリット9
2を有する浸漬ノズル9を用い、ストッパーの先端81
、浸漬ノズル9のポーラス部91及びスリット92のす
べてから不活性ガスを吹き出しつつ溶鋼lを鋳型5に供
給し、そのときの不活性ガスの吹き出し藍を下記の条件
を充たすように選んで実施する連続鋳造方法である。
The molten steel 1 is injected from the tundish 2 into the mold 5 through the sliding gate 3 and the immersion nozzle 4, and the slab 6 is continuously pulled out by pinch rolls (not disclosed). In addition, mold powder 7 is sprinkled so that the slab 6 can be easily pulled out from the mold 5. As a measure to prevent the nozzle hole of the immersed nozzle 4 from being clogged due to solidification of molten steel, many proposals have been made to blow gas into the nozzle hole of the immersed nozzle. As one example, Japanese Patent Publication No. 642467 describes a method for preventing blockage of a submerged nozzle by blowing gas as shown in Fig. 5. In Fig. 0, a gas barge type stopper 8 is used as a stopper for the tundish 2, and Porous part 91 and slit 9
2, the tip 81 of the stopper is
, Supply the molten steel 1 to the mold 5 while blowing out inert gas from all of the porous part 91 and slit 92 of the immersion nozzle 9, and carry out the blowing of the inert gas at that time by selecting the indigo to satisfy the following conditions. This is a continuous casting method.

0、l≦A/(、B+C)≦5 及び 0.1≦B/C≦5 ここにおいて A:ストッパーの先端からのガス吹出量B:浸漬ノズル
のポーラス部からのガス吹出量C:浸漬ノズルのスリッ
トからのガス吹出量以上のような条件を充して鋼特にア
ルミニウムを含有する鋼の連続鋳造方法を行なった場合
、浸漬ノズルの閉塞がなく長時間連続鋳造が出来る。
0, l≦A/(,B+C)≦5 and 0.1≦B/C≦5 where A: Amount of gas blown from the tip of the stopper B: Amount of gas blown from the porous part of the immersion nozzle C: immersion nozzle When continuous casting of steel, especially steel containing aluminum, is carried out under conditions such as the amount of gas blown out from the slit or higher, continuous casting can be performed for a long time without clogging the immersion nozzle.

又、鋳型内の溶鋼の流れが不均一の場合は鋳型パウダー
への熱供給が不十分になり、鋳型パウダーの滓化不良に
よって、メニスカス部の凝固殻に鋳型パウダーが介入し
鋳片での介在物欠陥となるために、鋳型内で電磁攪拌す
る方法が種々提案されている。特開昭63−33157
号公報には第6図、第7図に示すように鋳造初期に浸漬
ノズル4から鋳型5内に矢印に示す方向に注入された溶
鋼1に対し、電磁石10a〜10dの電磁力を太矢印に
示す方向に作用させて溶鋼1を細矢印に示す方向にほぼ
水平に循環させることにより、溶鋼1を攪拌して、溶鋼
上部に供給される鋳型パウダー11への熱供給量を多く
している。これによって鋳型パウダー11の滓化を促進
して鋳片の表面品質の向上を図る。特開昭63−331
58号公報には鋳型内に注入された溶鋼に対し、電磁力
を作用させて溶鋼の上昇流を生起せしめることにより、
溶鋼を攪拌することが記載されており、特開昭63−3
3159号公報には鋳型内に注入された溶鋼に対し、電
磁力を作用させて浸漬ノズルからの吐出流と反対方向の
溶鋼の流れを生起せしめることにより、溶鋼を攪拌する
ことが記載されており、いずれも鋳型パウダーの滓化を
促進して鋳片の表面品質の向上を図っている。
In addition, if the flow of molten steel in the mold is uneven, the heat supply to the mold powder will be insufficient, and due to insufficient slag formation of the mold powder, the mold powder will intervene in the solidified shell of the meniscus area and become interposed in the slab. Various methods of electromagnetic stirring within the mold have been proposed to prevent material defects. Japanese Patent Publication No. 63-33157
As shown in FIGS. 6 and 7, the publication describes that the electromagnetic force of electromagnets 10a to 10d is applied to the molten steel 1 injected from the immersion nozzle 4 into the mold 5 in the direction shown by the arrow in the direction of the arrow in the early stage of casting. By acting in the direction shown and circulating the molten steel 1 almost horizontally in the direction shown by the thin arrow, the molten steel 1 is stirred and the amount of heat supplied to the mold powder 11 supplied to the upper part of the molten steel is increased. This promotes slag formation of the mold powder 11 and improves the surface quality of the slab. Japanese Patent Publication No. 63-331
No. 58 discloses that by applying electromagnetic force to the molten steel injected into the mold and causing an upward flow of the molten steel,
It is described that molten steel is stirred, and JP-A-63-3
Publication No. 3159 describes that the molten steel injected into the mold is stirred by applying electromagnetic force to cause the molten steel to flow in the opposite direction to the discharge flow from the immersion nozzle. Both of these methods aim to improve the surface quality of slabs by promoting the formation of mold powder into slag.

[発明が解決しようとする課!fl] 近年鋼の連続鋳造方法では生産性をあげるために、いわ
ゆる高速による連連鋳が多く行なわれており、更には異
鋼種による連続鋳造方法も採用されてきており、鋳造初
期、異鋼種切替え時、鋳造終期等と浸漬ノズルから鋳型
内に注入される溶鋼吐出量を調節しなければならない場
合が多く生じている。この場合特にスラブ連続鋳造方法
においては、溶鋼吐出量の調節による変動よって鋳型内
の溶鋼の攪拌が不均一になり易く、脱酸生成物や、巻込
まれた鋳型パウダーの浮上効果が悪く、鋳片の介在物混
入による表面欠陥が増加するという問題がある。特公昭
64−2467号公報に記載された技術は浸漬ノズルの
閉塞をなくし長時間連続鋳造が出来る利点があるが、鋳
型内での溶鋼の攪拌を意図したものでないために、ノズ
ル孔内の溶鋼流にガスを吹き込み、鋳型自溶鋼をガス攪
拌したとしても溶鋼吐出量の調節による変動に対応した
適当なガス攪拌になっていない場合が多い、一方特開昭
63−33157号公報等に記載された電磁力を作用し
て鋳型内での溶鋼を攪拌する技術は溶鋼の攪拌について
のそれなりの効果が期待出来るが、鋳型周辺の狭い場所
に電磁攪拌装置の付設を必要とし、またガス吹き込みの
場合と異なり、ガス気泡による脱酸生成物や、巻込まれ
た鋳型パウダーの浮上効果が期待出来ない。
[The problem that the invention tries to solve! [fl] In recent years, in order to increase productivity in continuous steel casting methods, so-called high-speed continuous casting has been increasingly used.Furthermore, continuous casting methods using different steel types have also been adopted. There are many cases where it is necessary to adjust the amount of molten steel injected into the mold from the immersion nozzle at the end of casting. In this case, especially in the continuous slab casting method, the stirring of the molten steel in the mold tends to be uneven due to fluctuations due to the adjustment of the molten steel discharge rate, the floating effect of deoxidized products and the mold powder involved is poor, and the slab There is a problem that surface defects due to the inclusion of inclusions increase. The technology described in Japanese Patent Publication No. 64-2467 has the advantage of eliminating clogging of the immersion nozzle and allowing continuous casting for a long time, but since it is not intended to stir the molten steel in the mold, the molten steel in the nozzle hole Even if gas is blown into the flow and the self-molten steel in the mold is agitated, the gas agitation is often not adequate to accommodate fluctuations due to adjustment of the molten steel discharge rate. The technique of stirring molten steel in a mold by applying electromagnetic force can be expected to have a certain effect on stirring molten steel, but it requires the installation of an electromagnetic stirring device in a narrow space around the mold, and it is difficult to use when blowing gas. Unlike the above, the deoxidation products caused by gas bubbles and the floating effect of the entrapped mold powder cannot be expected.

本発明は以上のような問題点の解決を図ったものであり
、鋳型内に注入される溶鋼吐出量の変動に対応した適切
な鋳型内の溶鋼の攪拌を行ない鋳片9品質を向上させる
ことの出来る鋼の連続鋳造方法を提供することを目的と
する。
The present invention aims to solve the above-mentioned problems, and aims to improve the quality of the slab by appropriately stirring the molten steel in the mold in response to fluctuations in the amount of molten steel injected into the mold. The purpose of this invention is to provide a method for continuous casting of steel.

[課題を解決するための手段及び作用]上記目的を達成
するために、タンディツシュ底面開口部に接続した上部
ノズル、スライディングゲート、浸漬ノズルを介して鋳
型に溶鋼を注入する鋼の連続鋳造方法において、前記上
部ノズル、スライディングゲート、浸漬ノズルの貫通す
るノズル孔内壁に独立したガス吹き込み用の気孔率・気
孔径の異なる複数の耐火性煉瓦を設けて、スライディン
グゲートの調節による浸漬ノズルの溶鋼量吐出蓋の変化
に対応して、前記ガス吹き込み用耐火性煉瓦のガス吹き
込み量をそれぞれ調節してノズル孔内の溶鋼流にガスを
吹き込み、鋳型自溶鋼をガス攪拌する鋼の連続鋳造方法
とする。
[Means and effects for solving the problem] In order to achieve the above object, in a continuous steel casting method in which molten steel is injected into a mold through an upper nozzle connected to the bottom opening of a tundish, a sliding gate, and an immersion nozzle, A plurality of refractory bricks with different porosity and pore diameter for independent gas injection are provided on the inner wall of the nozzle hole through which the upper nozzle, the sliding gate, and the immersion nozzle pass, and the molten steel volume discharge lid of the immersion nozzle is adjusted by adjusting the sliding gate. In accordance with the change in the amount of gas blown into the refractory brick for gas blowing, the gas is blown into the molten steel flow in the nozzle hole, and the self-molten steel in the mold is agitated with the gas.

本発明者等は発明に至るまでに、実験等の積み重ねから
浸漬ノズルの溶鋼吐出量の変化と鋳型内の溶鋼流に混合
したガスの気泡径の分布が鋳型自溶鋼の攪拌とそれによ
る介在物の浮上に影響を与えることの知見を得た。そこ
で上部ノズルのノズル孔内壁に独立したガス吹き込み用
の気孔率・気孔径の異なる複数の耐火性煉瓦を設けて種
々検討を行ない、第3図に示すような浸漬ノズルの溶鋼
吐出量の変化と気孔率・気孔径の異なる複数の耐火性煉
瓦のガス吹き込み量とそれに対応する鋳型内溶鋼流に混
合したガスの気泡径の分布との関係を見出し、発明に到
達したものである。ここでは点線で示した高気孔率・低
気孔径の耐火性煉瓦からのMl量のガスを吹き出し、溶
#1流に混合したガスが小径の気泡M2を形成し、実線
で示した低気孔率・高気孔径の耐火性煉瓦からのN、量
のガスを吹き出し、溶鋼流に混合したガスが大径の気泡
N2を形成する。これらの耐火性煉瓦から吹き出したガ
スは溶鋼流と衝突して、そのまま小径の気泡、大径の気
泡として分散するものと考えられる0本発明では上記構
成により、各々のガス吹き込み量を調節して、適切な気
泡径を適宜形成することが出来るので、浸漬ノズルの溶
鋼吐出量の変化に対応して鋳型的全面にガスの気泡の飛
散を行なうことが出来る。そのため溶鋼のガス攪拌が充
分に出来る。この場合浸漬ノズルのノズル孔内壁の上部
に、独立したガス吹き込み用の高気孔率低気孔径の耐火
性煉瓦、その下部に、独立したガス吹き込み用の低気孔
率・高気孔径の耐火性煉瓦を設けてノズル孔内の溶鋼流
にガス吹き込むことが好ましい、この場合は大径の気泡
を形成することが容易であり、鋳型的全面にガスの気泡
の飛散を行なうことが出来る。
Prior to the invention, the present inventors discovered through repeated experiments that changes in the amount of molten steel discharged from the immersion nozzle and the distribution of the bubble diameter of the gas mixed into the molten steel flow in the mold caused the agitation of the self-molten steel in the mold and the resulting inclusions. We obtained knowledge that this affects the surfacing of Therefore, we installed multiple refractory bricks with different porosity and pore diameter for independent gas injection on the inner wall of the nozzle hole of the upper nozzle, and conducted various studies, and as shown in Fig. 3, changes in the molten steel discharge rate of the immersion nozzle and The invention was achieved by discovering the relationship between the amount of gas blown into a plurality of refractory bricks with different porosity and pore diameter and the corresponding distribution of bubble diameter of gas mixed into the molten steel flow in the mold. Here, gas of Ml amount is blown out from the refractory brick with high porosity and low pore diameter shown by the dotted line, and the gas mixed with the melt #1 flow forms small-diameter bubbles M2, and the low porosity shown by the solid line・N amount of gas is blown out from the refractory brick with high pore diameter, and the gas mixed with the molten steel flow forms large diameter bubbles N2. It is thought that the gas blown out from these refractory bricks collides with the molten steel flow and disperses as small and large bubbles. In the present invention, with the above configuration, the amount of each gas blown is adjusted. Since an appropriate bubble diameter can be formed as appropriate, gas bubbles can be scattered over the entire surface of the mold in response to changes in the amount of molten steel discharged from the immersion nozzle. Therefore, sufficient gas agitation of molten steel is possible. In this case, the upper part of the inner wall of the nozzle hole of the immersion nozzle is a refractory brick with high porosity and low pore size for independent gas injection, and the lower part is a refractory brick with low porosity and high pore size for independent gas injection. It is preferable to blow gas into the molten steel flow in the nozzle hole by providing a gas bubble.In this case, it is easy to form large diameter bubbles, and the gas bubbles can be scattered over the entire surface of the mold.

[実施例] 以下に1本発明の実施例を図を参照して説明する。第1
図は本発明において上部ノズル、スライディングゲート
、7+fiノズルの貫通するノズル孔内壁に独立したガ
ス吹き込み用の気孔率の異なる複数の耐火性煉瓦を設け
、それらの貫通するノズル孔内の溶鋼流にガスを吹き込
み、鋳型自溶鋼をガス攪拌する場合の説明図である。図
において21は上部ノズル、22はスライディングゲト
、23は浸漬ノズル、24はそれらの貫通するノズル孔
内壁、25.26は独立したガス吹き込み用の気孔率・
気孔径の異なる複数の耐火性煉瓦である。タンディツシ
ュ2の底部2aに設けられた開口部2bに底部2aの外
側から挿入した上部ノズル21にスライディングゲート
22が連結されている。スライディングゲート22はタ
ンディツシュ2の底部の外側に取り付けた支持板27、
固定板28、摺動板29そして摺動板29を駆動する駆
動装置30で構成されている。ここでは上部ノズル21
のノズル孔内壁24aにガス吹き込み用の高気孔率・低
気孔径の耐火性煉瓦25と低気孔率・高気孔径の耐火性
煉瓦26を設けている。これらのガス吹き込み用の耐火
性煉瓦25.26はガス供給装置を設けて各々のガス流
量調節装置31.32によってガス吹き込み流量を独立
して行なうことが出来るようにしている。
[Example] An example of the present invention will be described below with reference to the drawings. 1st
The figure shows that in the present invention, a plurality of refractory bricks with different porosity for blowing gas are provided on the inner walls of the nozzle holes that the upper nozzle, sliding gate, and 7+fi nozzle pass through, and gas is supplied to the molten steel flow in the nozzle holes that pass through them. FIG. 2 is an explanatory diagram of a case where the mold self-melting steel is gas-stirred by being blown into the mold. In the figure, 21 is the upper nozzle, 22 is the sliding gate, 23 is the immersion nozzle, 24 is the inner wall of the nozzle hole that penetrates these nozzles, and 25 and 26 are the independent porosity for gas blowing.
These are multiple refractory bricks with different pore sizes. A sliding gate 22 is connected to an upper nozzle 21 inserted into an opening 2b provided in the bottom 2a of the tundish 2 from the outside of the bottom 2a. The sliding gate 22 includes a support plate 27 attached to the outside of the bottom of the tundish 2;
It is composed of a fixed plate 28, a sliding plate 29, and a drive device 30 that drives the sliding plate 29. Here, the upper nozzle 21
A refractory brick 25 with high porosity and low pore diameter and a refractory brick 26 with low porosity and high pore diameter for blowing gas are provided on the inner wall 24a of the nozzle hole. These refractory bricks 25, 26 for blowing gas are provided with a gas supply device so that the gas blowing flow rate can be controlled independently by each gas flow rate adjusting device 31, 32.

スライディングゲートの調節によって浸漬ノズルの溶鋼
吐出量を変化した場合には、それの変化量を演算部33
に伝え、それに対応した各々のガス供給量が算出されて
指令部34から供給装置に指令され、供給装置に設けら
れている各々のガス流j11g節装置31.32よって
調節されたガス量がガス吹き込み用耐火性煉瓦を介して
ノズル孔内の溶鋼流に吹き込まれる。溶鋼流に吹き込ま
れたガスは溶鋼流に混合して鋳型内に吐出され鋳型的全
面にガスの気泡の飛散を生じることが出来る9本発明に
用いる独立した複数のガス吹き込み用の耐火性煉瓦では
、それらの気孔率・気孔径は相対的なものであるが、気
孔率の差は3〜20%、気孔径の差は10〜30μmの
範囲にあることが適当である。気孔率の差が3%未満で
は、溶鋼吐出量の変化に対応することが困難である。気
孔率の差が20%を超えた場合、高気孔率側では低流量
のガス流蓋を調節するのが困難である。気孔径の差が1
0μm未満では溶鋼吐出量の変化に対応する気泡を形成
することが困難である。気孔径の差が30μmを超えた
場合、鋳型自溶鋼中に均一な気泡を形成することが困難
である。
When the amount of molten steel discharged from the immersion nozzle is changed by adjusting the sliding gate, the amount of change is calculated by the calculation unit 33.
The corresponding gas supply amounts are calculated and commanded from the command unit 34 to the supply device, and the gas amounts adjusted by the respective gas flow adjustment devices 31 and 32 provided in the supply device are It is blown into the molten steel stream in the nozzle hole through the blowing refractory brick. The gas blown into the molten steel flow mixes with the molten steel flow and is discharged into the mold, causing gas bubbles to scatter over the entire surface of the mold. Although their porosity and pore diameter are relative, it is appropriate that the difference in porosity is in the range of 3 to 20% and the difference in pore diameter is in the range of 10 to 30 μm. If the difference in porosity is less than 3%, it is difficult to respond to changes in the amount of molten steel discharged. When the porosity difference exceeds 20%, it is difficult to adjust the gas flow lid with low flow rate on the high porosity side. The difference in pore diameter is 1
If it is less than 0 μm, it is difficult to form bubbles that correspond to changes in the amount of molten steel discharged. When the difference in pore diameter exceeds 30 μm, it is difficult to form uniform bubbles in the mold self-melting steel.

次ぎに本発明による実験例を詳述する。Next, experimental examples according to the present invention will be explained in detail.

縦250醜■×横1000■■×高さ700膳麿0水冷
式鋳型を用いて異鋼種の連続鋳造方法を行なった。ここ
では第1図に示すような装を用いて上部ノズルのガス吹
き込み用耐火性煉瓦25.26としてそれぞれ25%気
孔率、20μmの気孔径の耐火性煉瓦と、20%気孔率
、40μmの気孔径の耐火性煉瓦を用いた。25%気孔
率、20μmの気孔径の耐火性煉瓦としては高アルミナ
系のポーラス煉瓦 (AlI30x  :  90%、5i02:10%)
を用い、20%気孔率、40μmの耐火性煉瓦にはアル
ミナ・シリカ系のポーラス煉瓦 (Af20s : 80%、5i02:20%)を用い
た。従来例として25%気孔率、35μrnの耐火性煉
瓦 (Aβ20s:80%、SiO,:2Q%)を比較とし
て用いた。異鋼種の連続鋳造として下記の鋼種■から1
1の切替えを行ない、後の鋼種■について高速鋳造を行
なった。
A continuous casting method of different steel types was carried out using a water-cooled mold of 250 cm in length x 1000 cm in width x 700 cm in height. Here, using a device as shown in Fig. 1, the refractory bricks 25 and 26 for blowing gas into the upper nozzle are refractory bricks with a porosity of 25% and a pore size of 20 μm, and a refractory brick with a porosity of 20% and a pore size of 40 μm, respectively. Fireproof bricks with pore size were used. A high alumina porous brick (AlI30x: 90%, 5i02: 10%) is a fire-resistant brick with a porosity of 25% and a pore diameter of 20 μm.
An alumina-silica porous brick (Af20s: 80%, 5i02: 20%) was used as the refractory brick with a 20% porosity and 40 μm. As a conventional example, a refractory brick (Aβ20s: 80%, SiO: 2Q%) with a porosity of 25% and 35 μrn was used for comparison. Continuous casting of different steel types: 1 from the following steel types ■
1 was made, and high-speed casting was performed for the subsequent steel type (2).

(備考) 他成分はほぼ同じ それにともない浸漬ノズルの吐出量を調節して変化させ
たが、後の鋼種の高速鋳造の場合の浸漬ノズルの吐出量
を100%として、高気孔率・低気孔径の耐火性煉瓦と
低気孔率・高気孔径の耐火性煉瓦とのガス量の割合を6
0%と40%にして、ノズル孔内の溶鋼流にArガスを
吹き込んだ。
(Note) The other components were almost the same, and the discharge rate of the immersion nozzle was changed accordingly, but the discharge rate of the immersion nozzle for high-speed casting of the later steel types was assumed to be 100%, and the high porosity and low pore diameter were used. The ratio of the gas amount between the refractory brick and the refractory brick with low porosity and high pore size is 6.
Ar gas was blown into the molten steel flow in the nozzle hole at 0% and 40%.

従来例の気孔率の耐火性煉瓦の場合には上記と同じく浸
漬ノズルの吐出量を100%とした。これらの場合の鋳
型湯面へのArガスによる気泡の状態を鋳型パウダーを
通常よりも薄くして目視による観察を行ない、Arガス
の気泡の飛散軌跡の推定した。その結果を第2図(A)
、(B)に示す。
In the case of the refractory brick having the porosity of the conventional example, the discharge amount of the immersion nozzle was set to 100% as above. In these cases, the state of bubbles caused by Ar gas on the mold surface was visually observed by making the mold powder thinner than usual, and the scattering locus of the Ar gas bubbles was estimated. The results are shown in Figure 2 (A).
, shown in (B).

(A)図は本発明による実験例の場合であり、(B)図
は従来例の場合である。(A)図では浸漬ノズル23の
吐出孔から鋳型54内に吐出された溶鋼流に混合したA
rガスの気泡は鋳型内ln #1湯面全面に均一に飛散
していることが推定出来た。35は鋳型パウダーを示し
、36はArガスの気泡の軌跡を示す。(B)図ではA
rガスの気泡は鋳型内の浸漬ノズル23の近傍に空白領
域を形成していることが観察出来、そのため溶鋼湯面に
均一に飛散していないことが推定出来た。それらに対応
した鋳片の介在物を全酸素量として測定した結果を第1
表に示す。
The figure (A) shows the case of an experimental example according to the present invention, and the figure (B) shows the case of the conventional example. (A) In the figure, A mixed into the molten steel flow discharged from the discharge hole of the immersion nozzle 23 into the mold 54
It was estimated that the r gas bubbles were scattered uniformly over the entire surface of the ln #1 molten metal in the mold. 35 indicates the mold powder, and 36 indicates the trajectory of Ar gas bubbles. (B) In the diagram, A
It was observed that the r gas bubbles formed a blank area in the vicinity of the immersion nozzle 23 in the mold, and therefore it was presumed that they were not uniformly scattered on the surface of the molten steel. The results of measuring the total oxygen content of the inclusions in the slab corresponding to these are the first
Shown in the table.

第1表 第1表から明かなように、本発明の実験例の場合は従来
例の場合に比べて鋳片の全酸素量が低く、介在物が減少
していることがわかる。
As is clear from Table 1, in the case of the experimental example of the present invention, the total oxygen content of the slab was lower than in the case of the conventional example, and the number of inclusions was reduced.

[発明の効果] 本発明方法によれば、スライディングゲートの調節によ
る浸漬ノズルの溶am吐出量の変化に対応して、前記ガ
ス吹き込み用耐火性煉瓦のガス吹き込み量をそれぞれ調
節してノズル孔内の溶w4流にガス吹き込みし、鋳型自
溶鋼に適切なガス気泡分布を形成できるので、溶鋼の充
分なガス攪拌による介在物の浮上除去が可能であり、そ
の結果として鋳片の品質の向上が図れる。
[Effects of the Invention] According to the method of the present invention, the amount of gas blown into the refractory brick for gas blowing is adjusted in response to the change in the amount of melt discharged from the submerged nozzle due to the adjustment of the sliding gate. Gas is injected into the molten W4 flow to form an appropriate gas bubble distribution in the mold self-molten steel, so inclusions can be floated and removed by sufficient gas agitation of the molten steel, and as a result, the quality of the slab can be improved. I can figure it out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は本発明の
実験例の鋳型内ガス気泡の飛散軌跡の推定を示す図、第
3図は溶鋼吐出量の変化と気孔率・気孔径の異なる耐火
性煉瓦のガス吹き込み量と鋳型内溶鋼流に混合したガス
の気泡径の分布との関係を示す図、第4図は連続鋳造装
置の説明図、第5図は従来の浸漬ノズル内溶鋼流へのガ
ス吹き込み方法を示す図、第6図、第7図は従来の鋳型
内溶鋼を電磁攪拌する方法を示す図である。 21・・・上部ノズル、 22・・・スライディングゲート、23・・浸漬ノズル
、24・・貫通するノズル孔内壁、 25.26・・・独立したガス吹き込み用耐火性煉瓦、
27・・・支持板、28・・・固定板、29・・・摺動
板、30・・・駆動装置、31.32・・・ガス流量調
節装置、33・・・演算部、34・・・指令部、35・
・・鋳型パウダー 36・・Arガスの気泡の軌跡。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is a diagram showing estimation of the scattering locus of gas bubbles in the mold in an experimental example of the present invention, and Fig. 3 is a diagram showing changes in molten steel discharge rate and porosity. A diagram showing the relationship between the amount of gas blown into refractory bricks with different pore diameters and the bubble diameter distribution of the gas mixed into the molten steel flow in the mold. Figure 4 is an explanatory diagram of a continuous casting device, and Figure 5 is a diagram of a conventional immersion casting system. A diagram showing a method of blowing gas into a flow of molten steel in a nozzle, and FIGS. 6 and 7 are diagrams showing a conventional method of electromagnetically stirring molten steel in a mold. 21... Upper nozzle, 22... Sliding gate, 23... Immersed nozzle, 24... Penetrating nozzle hole inner wall, 25. 26... Independent refractory brick for gas injection,
27...Support plate, 28...Fixing plate, 29...Sliding plate, 30...Drive device, 31.32...Gas flow rate adjustment device, 33...Calculating unit, 34...・Command Department, 35・
...Mold powder 36...Trajectory of Ar gas bubbles.

Claims (2)

【特許請求の範囲】[Claims] (1)タンディッシュ底面開口部に接続した上部ノズル
、スライディングゲート、浸漬ノズルを介して鋳型に溶
鋼を注入する鋼の連続鋳造方法において、前記上部ノズ
ル、スライディングゲート、浸漬ノズルの貫通するノズ
ル孔内壁に独立したガス吹き込み用の気孔率・気孔径の
異なる複数の耐火性煉瓦を設けて、スライディングゲー
トの調節による浸漬ノズルの溶鋼吐出量の変化に対応し
て、前記ガス吹き込み用耐火性煉瓦のガス吹き込み量を
それぞれ調節してノズル孔内の溶鋼流にガスを吹き込み
、鋳型内溶鋼をガス攪拌することを特徴とする鋼の連続
鋳造方法。
(1) In a continuous steel casting method in which molten steel is injected into a mold through an upper nozzle, a sliding gate, and an immersion nozzle connected to the bottom opening of the tundish, the inner wall of the nozzle hole penetrated by the upper nozzle, sliding gate, and immersion nozzle. A plurality of independent refractory bricks with different porosity and pore diameter are provided for gas injection, and the gas of the refractory bricks for gas injection is adjusted in response to changes in the amount of molten steel discharged from the immersion nozzle by adjusting the sliding gate. A continuous steel casting method characterized by blowing gas into the molten steel flow in a nozzle hole while adjusting the blowing amount and stirring the molten steel in the mold with gas.
(2)上部ノズルのノズル孔内壁の上部に、独立したガ
ス吹き込み用の高気孔率・低気孔径の耐火性煉瓦、その
下部に、独立したガス吹き込み用の低気孔率・高気孔径
の耐火性煉瓦を設けたことを特徴とする請求項1の鋼の
連続鋳造方法。
(2) At the top of the inner wall of the nozzle hole of the upper nozzle, there is a refractory brick with high porosity and low pore diameter for independent gas injection, and at the bottom, a fireproof brick with low porosity and high pore diameter for independent gas injection. 2. The method for continuous casting of steel according to claim 1, further comprising a steel brick.
JP5717789A 1989-03-09 1989-03-09 Steel continuous casting method Expired - Lifetime JP2841429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5717789A JP2841429B2 (en) 1989-03-09 1989-03-09 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5717789A JP2841429B2 (en) 1989-03-09 1989-03-09 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JPH02274352A true JPH02274352A (en) 1990-11-08
JP2841429B2 JP2841429B2 (en) 1998-12-24

Family

ID=13048246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5717789A Expired - Lifetime JP2841429B2 (en) 1989-03-09 1989-03-09 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP2841429B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066603A (en) * 2007-09-10 2009-04-02 Jfe Steel Kk Continuous casting method for steel, and upper nozzle of continuous casting tundish
JP2010099697A (en) * 2008-10-23 2010-05-06 Jfe Steel Corp Continuous casting method for molten steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066603A (en) * 2007-09-10 2009-04-02 Jfe Steel Kk Continuous casting method for steel, and upper nozzle of continuous casting tundish
JP2010099697A (en) * 2008-10-23 2010-05-06 Jfe Steel Corp Continuous casting method for molten steel

Also Published As

Publication number Publication date
JP2841429B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
KR890002116B1 (en) Molten metal discharging device
US5063990A (en) Method and apparatus for improved melt flow during continuous strip casting
US6557623B2 (en) Production method for continuous casting cast billet
JPH02274352A (en) Method for continuously casting steel
US5265665A (en) Continuous casting method of steel slab
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP5510047B2 (en) Continuous casting method and continuous casting apparatus
JP4912945B2 (en) Manufacturing method of continuous cast slab
GB2149699A (en) Method and apparatus for avoiding vortexing in a bottom pour vessel
JP3583955B2 (en) Continuous casting method
CA1180532A (en) Tundish plate for stream shaped control
KR102312119B1 (en) Apparatus for controlling the molten metal flows in continuous casting process and method of controlling the molten metal flows in continuous casting process using the same
KR19990012672U (en) Immersion nozzle for continuous casting with upward discharge port
JP2002346707A (en) Continuous casting method of steel
JP4474948B2 (en) Steel continuous casting method
JPH04238658A (en) Immersion nozzle for continuous casting
JP2901983B2 (en) Immersion nozzle for continuous casting
JPH0987729A (en) Ferro-alloy wire for adjusting molten steel component and tundish for small lot suitable to use it
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JPS5914035Y2 (en) Tundish for continuous casting
KR100470661B1 (en) A Device For Supplying Molten Steel Uniformly And A Continuous Caster
JPH05329591A (en) Method for preventing drift of molten steel poured in continuous casting mold
JPH06126409A (en) Method for supplying molten steel into slab continuous casting mold
JPS6360070A (en) Molten metal vessel having weir
KR100807681B1 (en) Molten steel feeding apparatus and thereof method for the continuous casting