JP2010099697A - Continuous casting method for molten steel - Google Patents

Continuous casting method for molten steel Download PDF

Info

Publication number
JP2010099697A
JP2010099697A JP2008273302A JP2008273302A JP2010099697A JP 2010099697 A JP2010099697 A JP 2010099697A JP 2008273302 A JP2008273302 A JP 2008273302A JP 2008273302 A JP2008273302 A JP 2008273302A JP 2010099697 A JP2010099697 A JP 2010099697A
Authority
JP
Japan
Prior art keywords
steel
mold
powder
molten
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008273302A
Other languages
Japanese (ja)
Inventor
Tomomichi Terabatake
知道 寺畠
Junichi Yotsutsuji
淳一 四辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008273302A priority Critical patent/JP2010099697A/en
Publication of JP2010099697A publication Critical patent/JP2010099697A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method for a molten steel which provides a product steel of high quality. <P>SOLUTION: A molten steel is continuously poured into a water-cooled die, the molten steel is covered with separately charged mold powder, the molten steel is stirred with electromagnetic force, and while pulling out a produced solidified shell to the lower part from the die, cooling is continued so as to produce a perfectly solidified long-length steel slab. In such a case, the thickness of the molten layer in the mold powder is always measured, the measured value is compared with the relationship between the predetermined thickness of the molten layer in the mold powder and the rate of occurrence of defect in the steel slab or a product steel obtained by rolling the steel slab, the casting conditions of the molten steel in the water-cooled die are changed in such a manner that the rate of occurrence of the defect in the steel slab or the product steel becomes a desired value or below, and the thickness of the molten layer in the mold powder is adjusted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶鋼の連続鋳造方法に係わり、詳しくは、溶鋼を連続鋳造するに際し、鋳型(モールド)に注入された溶鋼の上部に添加したモールド・パウダと称する粉末が形成する溶融層の厚み(以下、パウダ溶融層厚という)をオンラインで常時連続的に測定すると共に、該パウダ溶融層厚及び/又は未溶融層厚を当該鋼鋳片もしくは該鋼鋳片の圧延で得た製品鋼材の欠陥発生率が所望範囲内に収まるような値に調整して,高品質の製品鋼材を得る技術に関する。   The present invention relates to a method for continuously casting molten steel. Specifically, when continuously casting molten steel, the thickness of a molten layer formed by a powder called mold powder added to the upper part of the molten steel injected into a mold (mold) ( (Hereinafter referred to as “powder melt layer thickness”) is continuously measured online, and the powder melt layer thickness and / or the unmelted layer thickness is obtained by rolling the steel slab or the steel slab. The present invention relates to a technique for obtaining a high-quality product steel by adjusting the occurrence rate to a value that falls within a desired range.

溶鋼の連続鋳造を行うには、図4に示すように、溶鋼を上下に振動させた水冷構造の鋳型1(モールドという)に注入して冷却し、該溶鋼2の鋳型1との接触面に凝固殻3(シェルという)を生成させ、この凝固殻3を鋳型1の下方に連続的に一定速度で引き抜きながら、さらなる冷却を行って最終的に完全に凝固した長尺の鋼鋳片(図示せず)としている。この水冷鋳型1の材料は、銅を母材とし、必要に応じてその表面にクロム又はニッケル若しくはこれら金属の合金がメッキされたものであるが、生成される凝固殻3を下方へ円滑に引き抜くには、該凝固殻3と鋳型1の内表面との間の摩擦抵抗をできるだけ小さくする必要がある。そのため、モールド・パウダ5と称する粉末を一定の供給量で溶鋼2の上面に連続的に添加して、溶鋼2の全体を覆うと共に、凝固殻3と鋳型1の内表面との間隙に浸入させる。   In order to perform continuous casting of molten steel, as shown in FIG. 4, the molten steel is cooled by pouring into a mold 1 (called a mold) having a water-cooled structure in which the molten steel is vibrated up and down. A solid steel shell 3 (referred to as a shell) is produced, and the solid steel shell 3 is drawn continuously below the mold 1 at a constant speed, and further cooled, and finally a long steel slab that has been completely solidified (see FIG. Not shown). The material of the water-cooled mold 1 is made of copper as a base material, and the surface thereof is plated with chromium, nickel, or an alloy of these metals, if necessary, and the generated solidified shell 3 is smoothly drawn downward. For this, it is necessary to make the frictional resistance between the solidified shell 3 and the inner surface of the mold 1 as small as possible. Therefore, a powder called mold / powder 5 is continuously added to the upper surface of the molten steel 2 at a constant supply amount so as to cover the entire molten steel 2 and enter the gap between the solidified shell 3 and the inner surface of the mold 1. .

このモールド・パウダ5は、CaO、SiO、Al、MgO、MnO等の酸化物を基材に、NaO、KO、CaF、MgF、LiCO、氷晶石等のアルカリ金属又はアルカリ土類金属の酸化物、弗化物又は炭酸化物と、基材の主成分であるCaO、SiOの成分調整材としての炭酸カルシウムや珪藻土、溶融速度を調整するカーボン・ブラック、人造黒鉛で構成されており、図4に示したように、溶鋼2上で1部が溶融して鋳型1と凝固殻3との間隙(図示せず)に流入し、潤滑剤としての機能を発揮するのである。なお、添加したモールド・パウダ5の層は、潤滑剤としての他、溶鋼の保温剤や酸化防止剤、溶鋼の内部に存在する非金属介在物を除去する吸収剤、メニスカス部(凝固殻と溶鋼の境界部分)付近での溶鋼の冷却剤等の様々な機能も発揮する。特に、前記した潤滑剤としての機能やメニスカス部付近での鋳片の冷却効果には、該モールド・パウダ5が溶融して形成するパウダ溶融層4が重要な役割を果たしている。 This mold powder 5 is based on an oxide such as CaO, SiO 2 , Al 2 O 3 , MgO, MnO, Na 2 O, K 2 O, CaF 2 , MgF 2 , Li 2 CO 3 , ice crystals. Alkali metal or alkaline earth metal oxides such as stone, fluorides or carbonates, CaO as the main component of the base material, calcium carbonate or diatomaceous earth as a component adjusting material for SiO 2 , carbon to adjust the melting rate As shown in FIG. 4, a part of the molten steel 2 is melted and flows into a gap (not shown) between the mold 1 and the solidified shell 3 as shown in FIG. It demonstrates its function. The layer of the added mold / powder 5 is a lubricant, a heat insulating agent and an antioxidant for molten steel, an absorbent for removing non-metallic inclusions existing in the molten steel, and a meniscus portion (solidified shell and molten steel). Various functions such as a coolant for molten steel in the vicinity of the boundary part) are also exhibited. In particular, the powder melt layer 4 formed by melting the mold powder 5 plays an important role in the function as the lubricant and the cooling effect of the slab near the meniscus portion.

従って、実際の操業では、該パウダ溶融層4の厚さをいかに適正に制御するかが重要となるが、その前提として、まずパウダ溶融層厚を正確に測定する必要がある。特に、該パウダ溶融層厚が薄い場合には、未溶融のモールド・パウダ5が溶鋼2内に巻き込まれて非金属介在物となり、製造した鋼鋳片の品質低下につながる可能性もあり、この点からも、パウダ溶融層厚の管理が必要とされるのである。   Accordingly, in an actual operation, it is important how to properly control the thickness of the powder melt layer 4, but as a premise, it is necessary to first accurately measure the powder melt layer thickness. In particular, when the powder melt layer thickness is thin, the unmelted mold powder 5 is caught in the molten steel 2 to become non-metallic inclusions, which may lead to a deterioration in the quality of the manufactured steel slab. In view of this, it is necessary to control the powder melt layer thickness.

パウダ溶融層厚を測定する手段としては、従来より、接触式及び非接触式の装置を利用するものがある。接触式としては、鉄棒に銅メッキやアルミメッキを施した検尺棒をパウダ溶融層内に溶鋼へ到達するまで浸漬し、該検尺棒の溶損状態の違いからパウダ溶融層厚を測定する方法がある(例えば、特許文献1参照)。また、非接触式としては、モールドの対向する壁の一方側に上下方向に沿い棒状のγ線源と、他方側に上下動可能な検出器を配置し、投射したγ線の透過率が溶鋼、パウダ溶融層、パウダ粉粒層及び空気層にて異なることを利用した方法(特許文献2参照)、γ線と渦流式レベル計とを組み合わせた方法(特許文献3参照)、共振型渦流レベル計(特許文献4参照)を2周波にて使用して、溶鋼面、パウダ溶融層上面の高さからパウダ溶融層厚を求める方法(非特許文献1)等がある。   As a means for measuring the powder melt layer thickness, there has been conventionally used a contact type or non-contact type apparatus. As the contact type, a measuring rod with copper plating or aluminum plating on an iron rod is immersed in the molten powder layer until it reaches the molten steel, and the powder molten layer thickness is measured from the difference in the melted state of the measuring rod. There exists a method (for example, refer patent document 1). Also, as a non-contact type, a rod-like γ-ray source along the vertical direction is arranged on one side of the opposing wall of the mold, and a detector that can move up and down on the other side, and the transmittance of the projected γ-ray is molten steel , A method using the difference between the powder melt layer, the powder particle layer and the air layer (see Patent Document 2), a method combining a γ-ray and an eddy current level meter (see Patent Document 3), a resonant eddy current level There is a method (Non-patent Document 1) for obtaining a powder melt layer thickness from the height of the molten steel surface and the upper surface of the powder melt layer using a meter (see Patent Document 4) at two frequencies.

ところが、前記接触式測定方法では、センサがパウダ溶融層、溶鋼等に接触するが故に、その接触部からパウダを溶鋼中に巻き込んでしまう。実際の操業では今後、鋳造速度が以前より増加する傾向にあるが、その場合、溶鋼表面の流れ速度が速くなって、パウダの巻き込みが増えることも考えられ、また、センサの浸漬部分に付着した異物が溶鋼内にて剥がれ、非金属介在物になる等、品質上の問題がある。また測定が連続的に行えず、時間的に間隔があく所謂「バッチ」測定となるので、その測定結果に基づいて行う操業アクションが遅滞気味となり、鋼鋳片の品質安定化にとって好ましくない。   However, in the contact-type measuring method, the sensor comes into contact with the powder molten layer, the molten steel, and the like, so that the powder is caught in the molten steel from the contact portion. In actual operation, the casting speed will tend to increase in the future, but in that case, the flow speed of the molten steel surface will increase, and it may be possible to increase the entrainment of the powder, and also adhere to the immersion part of the sensor There is a problem in quality such as foreign matter peeling off in the molten steel and becoming non-metallic inclusions. In addition, since the measurement cannot be performed continuously and the so-called “batch” measurement is performed with a time interval, the operation action performed based on the measurement result is delayed, which is not preferable for stabilizing the quality of the steel slab.

一方、前記非接触式のγ線を利用した方法では、装置が大型化するため、モールド側面に設置することが困難であり、パウダ溶融層厚を精度良く測定することは難しい。また2周波の渦流法においては、未溶融のパウダ粉粒層の厚みの影響を受け、十分な精度が得られず、周囲温度の変化にも影響を受け易いという問題もあった。   On the other hand, in the method using the non-contact type γ-ray, since the apparatus is enlarged, it is difficult to install on the side surface of the mold, and it is difficult to accurately measure the powder melt layer thickness. In addition, the two-frequency vortex method has a problem in that it is affected by the thickness of the unmelted powder particle layer, and sufficient accuracy cannot be obtained, and it is easily affected by changes in the ambient temperature.

そこで、本出願人は、上記共振型渦流レベル計(特許文献4参照)を2周波にて使用して、溶鋼面、パウダ溶融層上面の高さからパウダ溶融層厚を求める方法をさらに改良し、1又は複数の異なる電気伝導度の層の厚さを測定する層厚測定方法において、励磁用コイルに1又は複数の周波数の電圧を印加する工程と、前記励磁用コイルにより前記各層に発生する渦電流に起因する電圧を、前記励磁用コイルと同一又は異なる検出用コイルで検出する工程と、前記励磁用コイルで印加した電圧に対する前記検出用コイルで検出した電圧の位相差及び前記検出用コイルで検出した電圧の振幅の絶対値を出力する工程とを有することを特徴とする層厚測定方法を提案した(特許文献5参照)。この測定方法によれば、極めて容易に且つ連続してモールド・パウダの溶融層厚を計測することが可能になった。但し、この多周波渦流モールド・パウダ溶融厚み測定方法は、溶鋼湯面位置の実測値やモールド・パウダ溶融厚みの実測値に基づいて計測器の出力を校正しないと、溶融厚みの絶対値が確認できないという問題もあった。そのため、本出願人は、溶鋼と電気的に性質が近く固体である溶鋼模擬材と、モールド・パウダの溶融層と電気的に性質が近く固体である溶融モールド・パウダ模擬材とを用いて校正を行う技術をも提供した(特許文献6参照)。   Therefore, the present applicant has further improved the method for obtaining the powder melt layer thickness from the height of the molten steel surface and the upper surface of the powder melt layer by using the resonance type eddy current level meter (see Patent Document 4) at two frequencies. In a layer thickness measurement method for measuring the thickness of one or a plurality of layers having different electrical conductivities, a step of applying a voltage having one or a plurality of frequencies to the excitation coil, and the generation of each of the layers by the excitation coil A step of detecting a voltage caused by an eddy current with a detection coil that is the same as or different from the excitation coil, a phase difference of the voltage detected by the detection coil with respect to a voltage applied by the excitation coil, and the detection coil And a step of outputting an absolute value of the amplitude of the voltage detected in (2), which has been proposed (see Patent Document 5). According to this measuring method, the melt layer thickness of the mold / powder can be measured very easily and continuously. However, this multi-frequency eddy current mold / powder melt thickness measurement method will confirm the absolute value of the melt thickness unless the output of the measuring instrument is calibrated based on the actual measurement value of the molten steel surface and the actual measurement value of the mold / powder melt thickness. There was also a problem that it was not possible. Therefore, the applicant calibrated using a molten steel simulated material that is electrically close to the molten steel and a solid, and a molten mold / powder simulated material that is electrically close to the molten layer of the mold and powder and is a solid. Also provided is a technique for performing (see Patent Document 6).

しかしながら、上記特許文献5及び6の技術を利用する際に、条件によっては測定精度が悪くなる場合があった。例えば、モールド・パウダの種類、溶鋼面温度によって溶融パウダ厚の測定誤差が大きくなったり、製造する鋼鋳片の厚みが狭くなると、溶鋼レベルの測定精度が悪くなる、オシレーション(鋳型を上下に振動させる)の振動パターンによっては、測定データがばらつくなどである。   However, when using the techniques of Patent Documents 5 and 6, the measurement accuracy may deteriorate depending on conditions. For example, if the measurement error of the molten powder thickness increases due to the type of mold / powder and the surface temperature of the molten steel, or the thickness of the steel slab to be manufactured decreases, the measurement accuracy of the molten steel deteriorates. The measurement data varies depending on the vibration pattern.

このうち、後者の2つの問題、「つまり製造する鋼鋳片の厚みが狭くなると、溶鋼レベルの測定精度が悪くなる、オシレーション(鋳型を上下に振動させる)の振動パターンによっては、測定データがばらつく」は、比較的容易に解決できたが、モールド・パウダの種類、溶鋼面温度が変わった場合の問題は、その測定誤差の大きさがモールド・パウダ種類、温度によって変わり、単純でなかった。そこで、最近、本出願人は、モールド・パウダの種類と溶鋼温度の影響による誤差を補正して、高精度に測定が可能な多周波渦流モールド・パウダ溶融層厚の計測方法をも提案した(特許文献7参照)。   Among these, the latter two problems, “In other words, when the thickness of the steel slab to be manufactured becomes narrower, the measurement accuracy of the molten steel deteriorates. Depending on the oscillation pattern of oscillation (move the mold up and down), the measurement data may be `` Variation '' could be solved relatively easily, but the problem when the mold / powder type and molten steel surface temperature changed was not simple, as the magnitude of the measurement error varied depending on the mold / powder type and temperature. . Therefore, recently, the present applicant has also proposed a measurement method of a multi-frequency eddy current mold / powder melt layer thickness that can be measured with high accuracy by correcting the error due to the effect of the mold / powder type and molten steel temperature ( (See Patent Document 7).

このように、溶鋼の連続鋳造を行うに際してモールド・パウダ溶融層の厚みを測定する技術は改良が重ねられ、パウダ溶融層厚の測定精度がかなり高まってきている。ところが、これらの計測技術を操業に利用することについては、非接触式でモールド・パウダ層の表面の温度を測り、その厚み分布を推定すると共に、その推定値に基づきモールド・パウダが一定厚みの層を形成するように自動供給するモールド・パウダ供給装置が開発されているに過ぎず、今だ十分とは言えない(特許文献8参照)。   As described above, techniques for measuring the thickness of the mold / powder melt layer during continuous casting of molten steel have been improved, and the measurement accuracy of the powder melt layer thickness has been considerably increased. However, to use these measurement techniques for operation, the surface temperature of the mold / powder layer is measured in a non-contact manner, the thickness distribution is estimated, and the mold / powder has a constant thickness based on the estimated value. A mold / powder supply apparatus that automatically supplies a layer to form a layer has only been developed, and it cannot be said that it is sufficient (see Patent Document 8).

ところが、このようなモールド・パウダ粉末の表面温度分布から溶融層厚みを推定し、モールド・パウダを供給する方法は、あくまで推定に基づいたモールド・パウダの投入であり、それが実測とどのように乖離しているのか、またそれが品質にどのような影響を及ぼしているのか不明であった。実際にも、得られた鋼鋳片の品質や該鋼鋳片を圧延して得た製品鋼材の品質のばらつきは大きく、連続鋳造の技術としては、まだまだ改良の余地が残っていると考えられている。
特開平9−79805号公報 特開昭61−46361号公報 特開昭62−166065号公報 特開昭59−180402号公報 特開2005−221282号公報 特開2006−205227号公報 特開2007−021529号公報 中森幸雄他 「パウダフィルム厚み計、溶融パウダプール厚計の開発」 製鉄研究、第324号、1987、p51〜58 特開昭60−49846号公報
However, the method of estimating the molten layer thickness from the surface temperature distribution of such mold powder powder and supplying the mold powder is to insert the mold powder based on the estimation, and how it is measured and how. It was unclear whether there was a divergence and how it affected quality. In fact, the quality of the steel slabs obtained and the quality of the product steel obtained by rolling the steel slabs vary widely, and there is still room for improvement as a continuous casting technology. ing.
Japanese Patent Laid-Open No. 9-79805 JP-A-61-46361 JP-A-62-166065 JP 59-180402 A JP 2005-221282 A JP 2006-205227 A JP 2007-021529 A Yukio Nakamori et al. “Development of Powder Film Thickness Gauge and Molten Powder Pool Thickness Gauge” Steel Research, No. 324, 1987, p. JP 60-49846 A

本発明は、かかる事情に鑑み、モールド・パウダの溶融層厚を常時測定し、その測定情報からオンラインで鋼鋳片の品質状況を判断し、該パウダ溶融層厚及び/又は未溶融層厚を当該鋼鋳片及び該鋼鋳片の圧延で得た製品鋼材の欠陥発生率が所望範囲内に収まるような値に調整して,高品質の製品鋼材を得ることの可能な溶鋼の連続鋳造方法を提供することを目的としている。 In view of such circumstances, the present invention constantly measures the melt layer thickness of the mold and powder, judges the quality status of the steel slab online from the measurement information, and determines the powder melt layer thickness and / or the unmelted layer thickness. Method for continuous casting of molten steel capable of obtaining a high-quality product steel by adjusting the value so that the defect occurrence rate of the steel slab and the product steel obtained by rolling the steel slab falls within a desired range The purpose is to provide.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。すなわち、本発明は、上下振動させた水冷鋳型に溶鋼を連続的に注入し、別途投入したモールド・パウダで該溶鋼を覆うと共に、該溶鋼を電磁力で攪拌し、生成した凝固殻を前記鋳型から下方に引き抜きながら冷却を続け、完全に凝固した長尺の鋼鋳片とするに際して、前記モールド・パウダの溶融層の厚みを常時測定し、該測定値を予じめ定めたモールド・パウダの溶融層の厚みと該鋼鋳片もしくは該鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係に照らし、該鋼鋳片もしくは製品鋼材の欠陥発生率が所望値以下になるように、前記水冷鋳型での溶鋼の鋳造条件を変更してモールド・パウダの溶融層の厚みを調整することを特徴とする溶鋼の連続鋳造方法である。     The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention. That is, the present invention continuously injects molten steel into a water-cooled mold that is vibrated up and down, covers the molten steel with a separately supplied mold and powder, agitates the molten steel with electromagnetic force, and generates the solidified shell as the mold. When cooling down and drawing into a fully solidified long steel slab, the thickness of the molten layer of the mold / powder is constantly measured, and the measured value of the mold / powder determined in advance is measured. In light of the relationship between the thickness of the molten layer and the defect occurrence rate of the steel slab or product steel obtained by rolling the steel slab, the defect occurrence rate of the steel slab or product steel is less than the desired value. Further, the molten steel continuous casting method is characterized in that the thickness of the molten layer of the mold / powder is adjusted by changing the casting condition of the molten steel in the water-cooled mold.

この場合、さらに、モールド・パウダの未溶融層の厚みを求め、予じめ定めたモールド・パウダの未溶融層の厚み及び前記溶融層の厚みと該鋼鋳片もしくは該鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係に照らし、該鋼鋳片もしくは製品鋼材の欠陥発生率が所望範囲内に収まるように、前記水冷鋳型での溶鋼の鋳造条件を変更してモールド・パウダの溶融層の厚み及び未溶融層の厚みを調整するのが好ましい。また、前記変更する水冷鋳型での溶鋼の鋳造条件を、モールド・パウダの投入量及び又は電磁攪拌力の大きさとするのが良く、さらに前記モールド・パウダ溶融層の測定を多周波渦流式厚み計で行うのが一層良い。   In this case, the thickness of the unmelted layer of the mold / powder is further determined, and the thickness of the unmelted layer of the mold / powder and the thickness of the molten layer and the steel slab or the steel slab are rolled. In light of the relationship with the defect occurrence rate of the product steel obtained in this way, the casting condition of the molten steel in the water-cooled mold is changed so that the defect occurrence rate of the steel slab or product steel falls within the desired range. It is preferable to adjust the thickness of the molten layer of the powder and the thickness of the unmelted layer. The casting condition of the molten steel in the water-cooled mold to be changed is preferably the amount of mold / powder input and / or the magnitude of electromagnetic stirring force, and the measurement of the mold / powder molten layer is a multi-frequency eddy current thickness meter. It is even better to do it.

本発明では、溶鋼を連続鋳造するに際し、鋳型(モールド)に注入された溶鋼の上部に添加したモールド・パウダと称する粉末が形成する溶融層の厚み(以下、パウダ溶融層厚という)をオンラインで常時連続的に測定すると共に、該パウダ溶融層厚及び/又は未溶融層厚を、当該鋼鋳片及び該鋼鋳片の圧延で得た製品鋼材の欠陥発生率が所望範囲内に収まるような値に、鋳造条件を変更して調整するようにしたので,高品質の製品鋼材が安定して得られるようになった。   In the present invention, when the molten steel is continuously cast, the thickness of the molten layer (hereinafter referred to as the powder molten layer thickness) formed by the powder called mold powder added to the upper part of the molten steel injected into the mold (mold) is online. While continuously measuring continuously, the powder melt layer thickness and / or the unmelted layer thickness is such that the defect occurrence rate of the steel slab and the product steel obtained by rolling the steel slab falls within a desired range. The value was adjusted by changing the casting conditions, so that high-quality product steel could be obtained stably.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention.

まず、本発明では、上下振動させた水冷鋳型に溶鋼を連続的に注入し、別途投入した前記潤滑剤としての機能を発揮させるモールド・パウダで該溶鋼を覆うが、該モールド・パウダの組成及び性状(例えば、粒度分布)は特に限定しない。採用するモールド・パウダの種類に応じて連続鋳造時の必要な事前情報(データ)を採取すれば良いからである。   First, in the present invention, molten steel is continuously poured into a water-cooled mold that is vibrated up and down, and the molten steel is covered with a mold powder that exhibits the function of the lubricant that has been separately added. The property (for example, particle size distribution) is not particularly limited. This is because the necessary prior information (data) at the time of continuous casting may be collected according to the type of mold and powder to be employed.

また、本発明では、このモールド・パウダの溶融層の厚みを常時測定するが、その測定方法も特に限定しない。前記した従来の接触方式、非接触方式の測定方法がすべて利用できるからである。ただし、本発明では、それらの測定値を利用するために、予じめモールド・パウダの溶融層の厚みと該鋼鋳片もしくは該鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係を定めておくことが必要になる。   In the present invention, the thickness of the molten layer of the mold / powder is always measured, but the measuring method is not particularly limited. This is because all of the conventional contact and non-contact measurement methods described above can be used. However, in the present invention, in order to utilize these measured values, the thickness of the molten layer of the pre-molded powder and the defect occurrence rate of the steel slab or product steel obtained by rolling the steel slab, It is necessary to establish the relationship.

そこで、本発明者は、垂直曲型連続鋳造機を用い、平断面積が260mm×1200mmの水冷鋳型に鋼種を極低炭素溶鋼とした溶鋼を注入し、鋳型振動及び溶鋼の電磁攪拌を通常の一定条件下で行いながら連続鋳造する試験操業を多数チャージ(1チャージは、溶鋼鍋に受鋼した280トンの溶鋼を、タンディッシュの上方に設置し、ノズルを介して鋳型へ溶鋼の全量がなくなるまで連続注入する)行い、モールド・パウダの溶融層の厚みと該鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係を求めた。なお、ここで用いたモールド・パウダは、(組成が、CaO:36.1mass%、SiO:35.6mass%、Al:6.4mass%、MgO:1.8mass%、F:2.9mass%、T.C:3.3mass%、凝固点温度:1100℃、1300℃での粘度:0.4Pa・s)であり、その溶融層の厚みは、特許文献7記載の従来の測定方法にて測定した。その際、連続鋳造により得られた鋳片(スラブ)を無手入れのまま、ホットチャージ圧延し、熱延鋼帯とした。ホットチャージ圧延の条件は、加熱炉温度:1100〜1150℃、在炉時間:30〜60minとした。ついで、得られた熱延鋼帯に冷間圧延を施し、板厚0.8mmの冷延コイル(鋼帯)とした。得られた冷延コイルについて、表面欠陥の発生個数を目視で調査し、表面欠陥発生率(%)(=(欠陥個数/測定したコイル長さ)×100)を求めた。なお、測定した表面欠陥は、気泡、介在物、パウダ起因のヘゲ、スリバー、フクレ(ブリスター)であり、割れ起因の欠陥は除外した。得られた関係の一例を図1に示す。 Therefore, the present inventor used a vertical bending type continuous casting machine to inject molten steel with a steel type of ultra-low carbon molten steel into a water-cooled mold having a flat cross-sectional area of 260 mm × 1200 mm, and perform normal vibration and electromagnetic stirring of the molten steel. Charged many test operations for continuous casting while performing under certain conditions (1 charge is 280 tons of molten steel received in a molten steel pan, placed above the tundish, and the entire amount of molten steel is lost to the mold via the nozzle. The relationship between the thickness of the molten layer of the mold / powder and the defect occurrence rate of the product steel obtained by rolling the steel slab was determined. Here, mold powder used was the (composition, CaO: 36.1mass%, SiO 2 : 35.6mass%, Al 2 O 3: 6.4mass%, MgO: 1.8mass%, F: 2 0.9 mass%, TC: 3.3 mass%, freezing point temperature: 1100 ° C., viscosity at 1300 ° C .: 0.4 Pa · s), and the thickness of the molten layer is a conventional measuring method described in Patent Document 7 Measured with At that time, the slab (slab) obtained by continuous casting was hot-charged and rolled into a hot-rolled steel strip without taking care. The hot charge rolling conditions were a heating furnace temperature: 1100 to 1150 ° C. and a furnace time: 30 to 60 min. Subsequently, the obtained hot-rolled steel strip was cold-rolled to obtain a cold-rolled coil (steel strip) having a thickness of 0.8 mm. About the obtained cold-rolled coil, the number of surface defects generated was visually examined to determine the surface defect generation rate (%) (= (number of defects / measured coil length) × 100). The surface defects measured were bubbles, inclusions, powdered bulges, slivers, and blisters (blisters), and cracked defects were excluded. An example of the obtained relationship is shown in FIG.

本発明は、連続鋳造の操業中に常時測定して得られたモールド・パウダの溶融層の厚みを、一定時間の間隔でこの図1の関係に照らし、上記該鋼鋳片を圧延して得た製品鋼材の欠陥発生率が所望範囲内(0.1%以下)に収まる値になるように、溶鋼の鋳造条件の値を変更して調整するのである。欠陥発生率が0.1%以下ならば、自動車用鋼板素材として満足できるからである。   In the present invention, the thickness of the molten layer of the mold / powder obtained by constant measurement during the continuous casting operation is obtained by rolling the steel slab at a predetermined time interval in light of the relationship shown in FIG. The value of the casting conditions of the molten steel is changed and adjusted so that the defect occurrence rate of the product steel material falls within a desired range (0.1% or less). This is because if the defect occurrence rate is 0.1% or less, it is satisfactory as a steel plate material for automobiles.

この鋳造条件としては、本発明では、主に、モールド・パウダの投入量(kg/min)及び溶鋼の電磁攪拌力(電流値で評価)とする。モールド・パウダの溶融層は、連続鋳造中に鋳型と凝固殻との間隙に入り込むので、消費されるモールド・パウダの量に大きく影響するが、1チャージ分の操業中のモールド・パウダの溶融層厚は、これらモールド・パウダの投入量及び溶鋼の電磁攪拌力を操作することでほぼ満足した調整ができるからである。   In the present invention, the casting conditions are mainly the input amount of mold / powder (kg / min) and the electromagnetic stirring force of molten steel (evaluated by current value). Since the molten layer of the mold powder enters the gap between the mold and the solidified shell during continuous casting, it greatly affects the amount of mold powder consumed, but the molten layer of the mold powder during operation for one charge. This is because the thickness can be adjusted almost satisfactorily by manipulating the amount of mold and powder introduced and the electromagnetic stirring force of the molten steel.

このように、本発明は、操業中にオンラインでモールド・パウダの溶融層の厚みを測定し、その値を図1のモールド・パウダの溶融層の厚みと該鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係を利用して、溶鋼の鋳造条件を変更して調整すれば良いのである。また、鋳造条件としては上記の他、(1)溶融速度の速いモールド・パウダ(種類)への切替、また溶融層厚が厚いと判断される場合は、(2)電磁攪拌装置などを用いて鋳型内の溶鋼流動を低下させパウダへの熱供給量を下げる、(3)溶融速度の遅いパウダへの切替などの方法もあるが、これらの操作は1チャージ内での操業中でなく、主にチャージの変更時とか溶鋼の鋼種を変更する際の対策として利用される。   Thus, the present invention measured the thickness of the molten layer of the mold powder online during operation, and obtained the value by rolling the thickness of the molten layer of the mold powder in FIG. 1 and the steel slab. By using the relationship with the defect occurrence rate of the product steel material, the casting conditions of the molten steel may be changed and adjusted. As casting conditions, in addition to the above, (1) switching to a mold / powder (kind) with a high melting rate, or if it is determined that the molten layer thickness is thick, (2) using an electromagnetic stirrer or the like There are methods such as lowering the flow of molten steel in the mold and lowering the heat supply to the powder, and (3) switching to a powder with a lower melting rate. However, these operations are not in operation within one charge. It is used as a countermeasure when changing the charge or changing the steel type of molten steel.

ここで、モールド・パウダ溶融層厚の測定は、鋼鋳片巾方向の全巾で測定することが望ましいが、モールド・パウダ溶融層厚の情報と圧延した鋼材の品質情報とを結びつけた品質情報のデータベースが構築され、巾方向で製品欠陥が出易い箇所を特定できる場合には、その巾方向の位置に固定して測定しても良い。   Here, it is desirable to measure the mold / powder melt layer thickness over the entire width in the steel slab width direction, but the quality information that combines the mold / powder melt layer thickness information with the quality information of the rolled steel. If a database where the product defect is likely to occur in the width direction can be specified, measurement may be performed with the position fixed in the width direction.

次に、発明者は、本発明のさらなる改良について検討した。その理由は、図1の関係が過去の操業又は試験操業からのデータに基づいており、多分に誤差を含む可能性があり、まだ精度を高める余地があると考えたからである。そして、発明者は、モールド・パウダの未溶融層の影響も配慮した方がより良く目的が達成されると着想し、モールド・パウダの未溶融層の厚みを求めることも行った。パウダ溶融層の上端は、上記パウダ溶融層厚みの測定から知られるので、パウダ未溶融層の位置を知れば、容易にパウダ未溶融層の厚みが演算で求まる。具体的には、超音波距離計等を鋳型1の上方に配置し、モールド・パウダ5の表面までの距離を測定すれば良い(図4参照)。   Next, the inventor examined further improvements of the present invention. The reason for this is that the relationship of FIG. 1 is based on data from past operations or test operations, which may possibly contain errors, and that there is still room for improving accuracy. Then, the inventor has conceived that the purpose is better achieved by considering the influence of the unmelted layer of the mold powder, and has also obtained the thickness of the unmelted layer of the mold powder. Since the upper end of the powder melt layer is known from the measurement of the powder melt layer thickness, if the position of the powder unmelt layer is known, the thickness of the powder melt layer can be easily obtained by calculation. Specifically, an ultrasonic distance meter or the like may be disposed above the mold 1 and the distance to the surface of the mold / powder 5 may be measured (see FIG. 4).

そのようにして得たパウダ未溶融層の厚みを、図1のパウダ溶融層の厚みと鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係に同時に合わせて配慮すると、図2に示すような関係になった。ここで、丸印は欠陥発生率が所望値(0.05%以下)を満足し、×印は所望値に至らない(0.05%超え)のデータを示している。つまり、図1だけの利用時よりも、パウダ未溶融層の厚みを考慮すると、欠陥発生が0.05%以下とさらに小さくできることが図2より判明したので、この図2の関係を利用することにした。すなわち「モールド・パウダの未溶融層の厚みを求め、その演算値を予じめ定めたモールド・パウダの未溶融層の厚み及び溶融層の厚みと製品鋼材の欠陥発生率との関係(図2参照)に照らし、前記鋳造条件を変更してモウールド・パウダ5の未溶融層及び溶融層の厚みを調整することも本発明に加えたのである。   When the thickness of the powder unmelted layer thus obtained is considered in accordance with the relationship between the thickness of the powder melted layer in FIG. 1 and the defect occurrence rate of the product steel obtained by rolling the steel slab, FIG. The relationship is as shown in. Here, the circles indicate data in which the defect occurrence rate satisfies a desired value (0.05% or less), and the x marks indicate data that does not reach the desired value (over 0.05%). In other words, it has been found from FIG. 2 that the occurrence of defects can be further reduced to 0.05% or less in consideration of the thickness of the powder unmelted layer as compared with the case of using FIG. 1 alone. I made it. That is, “the thickness of the unmelted layer of the mold / powder is obtained and the calculated value is determined in advance, and the relationship between the thickness of the unmelted layer / the melted layer of the mold / powder and the defect occurrence rate of the product steel (FIG. 2) In light of the above, it is also added to the present invention to adjust the thickness of the unmelted layer and the molten layer of the mowed powder 5 by changing the casting conditions.

なお、上記した2つの本発明を実施するに際しては、モールド・パウダ溶融層の測定が必須であるが、その測定を特許文献7記載の多周波渦流式厚み計で行うのが一層好ましい。それによれば、製造する鋼鋳片の厚みが狭くなると、溶鋼レベルの測定精度が悪くなる、オシレーション(鋳型を上下に振動させる)の振動パターンによっては、測定データがばらつくなどの問題が解決でき、且つモールド・パウダの種類や溶鋼の温度分布の影響が補正できるし、モールド・パウダの未溶融厚みも同時に得られるからである。   In carrying out the above two present inventions, measurement of the mold / powder melt layer is essential, but it is more preferable to perform the measurement with the multi-frequency eddy current thickness meter described in Patent Document 7. According to it, when the thickness of the steel slab to be manufactured is reduced, the measurement accuracy of the molten steel level becomes worse, and depending on the vibration pattern of oscillation (the mold is vibrated up and down), problems such as variation in measurement data can be solved. In addition, the influence of the type of mold and powder and the temperature distribution of the molten steel can be corrected, and the unmelted thickness of the mold and powder can be obtained at the same time.

なお、図1及び図2の該鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係は、製品鋼材がCGLを施された鋼板であったが、本発明では、そのような鋼板に限るものではなく、あらゆる鋼製品の表面欠陥や内部介在物欠陥も利用できる。推定された品質結果から品質悪化位置が特定できるので、必要に応じて表面検査、表面研削、内部欠陥の場合は低級グレードヘの格落ちやコイルシートでの切断除去などを行い、品質劣化製品の発生を抑止できるからである。   In addition, although the relationship with the defect incidence rate of the product steel obtained by rolling this steel slab of FIG.1 and FIG.2 was the steel plate to which the product steel was given CGL, in the present invention, It is not limited to steel plates, and surface defects and internal inclusion defects of all steel products can be used. Since the quality degradation position can be identified from the estimated quality results, surface degradation, surface grinding, and internal defects, if necessary, are degraded to lower grades and cut and removed with a coil sheet to generate quality degraded products. This is because it can be suppressed.

垂直曲型連続鋳造機(以下、連鋳機という)を用い、用途が自動車用鋼板とする極低炭素溶鋼の鋳造を行った。水冷鋳型1の上端における平断面積は、260mm×1200mmであり、水冷鋳型1は所謂「オシレーション」と称する一定周期で上下振動させ、鋳型内の溶鋼は電磁攪拌を施すようになっている。   Using a vertical bend type continuous casting machine (hereinafter referred to as a continuous casting machine), ultra low carbon molten steel for use as a steel sheet for automobiles was cast. The plane cross-sectional area at the upper end of the water-cooled mold 1 is 260 mm × 1200 mm. The water-cooled mold 1 is vibrated up and down at a constant period called “oscillation”, and the molten steel in the mold is subjected to electromagnetic stirring.

まず、転炉出鋼後に真空脱ガス装置(図示せず)を利用した二次精錬で極低炭素領域にまで脱炭された溶鋼(主な組成がC:0.001質量%、Si:0.01質量%、Mn:0.15質量%、P:0.010質量%、S:0.010質量%)を、収容能力280トンの取鍋(図示せず)に受け、連鋳機のタンディッシュ(図示せず)の上にセットした後、浸漬ノズル等を介して鋳型1に連続的に注入し、1チャージ分の操業を開始した。その際、別途鋳型1の上方に配置したバンカ(図示せず)に貯えてあるモールド・パウダをスクリュウ・フィーダを介して鋳型1内の溶鋼上に連続的に投入し、該溶鋼を覆った。なお、開始当初の電磁攪拌装置の電流値は300アンペアにセットしてある。また、使用したモールド・パウダは、組成がCaO:36.1mass%、SiO:35.6mass%、Al:6.4mass%、MgO:1.8mass%、F:2.9mass%、T.C:3.3mass%で、凝固点温度:1100℃、1300℃での粘度:0.4Pa・sのものである。 First, molten steel decarburized to a very low carbon region by secondary refining using a vacuum degassing apparatus (not shown) after the steel from the converter (main composition is C: 0.001 mass%, Si: 0 .01 mass%, Mn: 0.15 mass%, P: 0.010 mass%, S: 0.010 mass%) in a ladle (not shown) having a capacity of 280 tons, After setting on a tundish (not shown), it was continuously injected into the mold 1 via an immersion nozzle or the like, and operation for one charge was started. At that time, a mold and powder stored in a bunker (not shown) separately provided above the mold 1 was continuously put on the molten steel in the mold 1 through a screw feeder to cover the molten steel. The current value of the electromagnetic stirring device at the beginning is set to 300 amperes. Moreover, mold powder used was composition CaO: 36.1mass%, SiO 2: 35.6mass%, Al 2 O 3: 6.4mass%, MgO: 1.8mass%, F: 2.9mass%, T.A. C: 3.3 mass%, viscosity at freezing point: 1100 ° C., 1300 ° C .: 0.4 Pa · s.

そして、操業中は、これも鋳型1の上方に配置したモールド・パウダ溶融層厚み計(図示せず)でモールド・パウダの溶融層厚みを常時測定した。モールド・パウダ溶融層厚み計は、従来技術として引用文献7に記載した多周波渦流式厚み計を採用したので、溶融層の厚みが測定されるばかりでなく、未溶融層の厚みも算出できるようにした。これらの測定値等は、プロセス・コンピュータを用いて1分毎に図2に示した製品鋼材の欠陥発生率との関係に照合され、欠陥発生率が所望値の0.05%から外れる場合には、所望値の0.05%以下に戻るように、前記した電磁攪拌装置の攪拌電流を増減させたり、モールド・パウダの供給量を変更することで、モールド・パウダの未溶融層及び溶融層の厚みを調整した。その操業の様子を図3に示しておく。   During operation, the melt layer thickness of the mold / powder was constantly measured by a mold / powder melt layer thickness meter (not shown) also disposed above the mold 1. Since the mold / powder melt layer thickness meter employs the multi-frequency eddy current thickness meter described in the cited document 7 as the prior art, not only can the melt layer thickness be measured, but the unmelted layer thickness can also be calculated. I made it. These measured values are collated with the defect occurrence rate of the product steel shown in FIG. 2 every minute using a process computer, and the defect occurrence rate deviates from 0.05% of the desired value. Can increase or decrease the stirring current of the electromagnetic stirrer or change the supply amount of the mold / powder so as to return to 0.05% or less of the desired value, so that the unmelted layer and the molten layer of the mold / powder are changed. The thickness of was adjusted. The state of the operation is shown in FIG.

その結果、モールド・パウダの溶融層の厚みは10〜15mmの範囲に、モールド・パウダの未溶融層の厚みは5〜10mmの範囲に調整できた。そして、連続鋳造により得られた鋳片(スラブ)を無手入れのまま、ホットチャージ圧延し、熱延鋼帯とした。ホットチャージ圧延の条件は、加熱炉温度:1100〜1150℃、在炉時間:30〜60minとした。ついで、得られた熱延鋼帯に冷間圧延を施し、板厚0.8mmの冷延コイル(鋼帯)とした。得られた冷延コイルについて、表面欠陥の発生個数を目視で調査し、表面欠陥発生率(%)(=(欠陥個数/測定したコイル長さ)×100)を求めた。なお、測定した表面欠陥は、気泡、介在物、パウダ起因のヘゲ、スリバー、フクレ(ブリスター)であり、割れ起因の欠陥は除外した。本発明例における欠陥発生率は、製造した全チャージ数の平均で0.05%以下と非常に低い値であった。   As a result, it was possible to adjust the thickness of the molten layer of the mold / powder to a range of 10 to 15 mm and the thickness of the unmelted layer of the mold / powder to a range of 5 to 10 mm. And the slab (slab) obtained by continuous casting was hot-charge-rolled without maintenance, and it was set as the hot-rolled steel strip. The hot charge rolling conditions were a heating furnace temperature: 1100 to 1150 ° C. and a furnace time: 30 to 60 min. Subsequently, the obtained hot-rolled steel strip was cold-rolled to obtain a cold-rolled coil (steel strip) having a thickness of 0.8 mm. About the obtained cold-rolled coil, the number of surface defects generated was visually examined to determine the surface defect generation rate (%) (= (number of defects / measured coil length) × 100). The surface defects measured were bubbles, inclusions, powdered bulges, slivers, and blisters (blisters), and cracked defects were excluded. The defect occurrence rate in the examples of the present invention was a very low value of 0.05% or less on the average of the total number of charges produced.

一方、同一鋼種の連続鋳造において、モールド・パウダ溶融層厚み等に対し特別なアクションをとらず、鋳型内のモールド・パウダが赤熱しない程度、すなわち未溶解のモールド・パウダが無くならないように追加供給するだけの操作をしながら操業する従来の鋳造方法も実施した。   On the other hand, in the continuous casting of the same steel grade, no special action is taken with respect to the mold / powder melt layer thickness etc. A conventional casting method was also carried out, in which the operation was carried out while doing as much as possible.

その結果、モールド・パウダの溶融層の厚みは0〜25mm、モールド・パウダの未非溶融層の厚みは10〜30mmで大きく変動し、上記と同様にして製品鋼材の欠陥を調査したところ、その欠陥発生率は、平均で製品全体の0.25%と大きい値であった。つまり、本発明の実施により、従来より高品質の製品鋼材を得ることが可能になったのである。   As a result, the thickness of the molten layer of the mold powder varied from 0 to 25 mm, and the thickness of the non-molten layer of the mold powder varied greatly from 10 to 30 mm. The average defect rate was as large as 0.25% of the entire product. In other words, by implementing the present invention, it has become possible to obtain a product steel material of higher quality than before.

モールド・パウダの溶融層厚みと製品鋼板の欠陥発生率との関係を示す図である。It is a figure which shows the relationship between the molten layer thickness of a mold powder and the defect incidence rate of a product steel plate. モールド・パウダの溶融層及び未溶融層の厚みと製品鋼板の欠陥発生率との関係を示す図である。It is a figure which shows the relationship between the thickness of the molten layer and unmelted layer of a mold powder, and the defect incidence rate of a product steel plate. 本発明を実施している際のモールド・パウダの溶融層及び未溶融層の変化状況とアクションの付与状況を示す図である。It is a figure which shows the change condition of the molten layer and unmelted layer of a mold / powder at the time of implementing this invention, and the provision condition of action. 溶鋼の連続鋳造における鋳型内の状況を説明する概略図である。It is the schematic explaining the condition in the casting_mold | template in the continuous casting of molten steel.

符号の説明Explanation of symbols

1 水冷鋳型
2 溶鋼
3 凝固殻
4 モールド・パウダの溶融層
5 モールド・パウダ(又は、その未溶融層)
1 Water-cooled mold 2 Molten steel 3 Solidified shell 4 Molten layer of mold / powder 5 Mold / powder (or its unmelted layer)

Claims (4)

上下振動させた水冷鋳型に溶鋼を連続的に注入し、別途投入したモールド・パウダで該溶鋼を覆うと共に、該溶鋼を電磁力で攪拌し、生成した凝固殻を前記鋳型から下方に引き抜きながら冷却を続け、完全に凝固した長尺の鋼鋳片とするに際して、
前記モールド・パウダの溶融層の厚みを常時測定し、該測定値を予じめ定めたモールド・パウダの溶融層の厚みと該鋼鋳片もしくは該鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係に照らし、該鋼鋳片もしくは製品鋼材の欠陥発生率が所望値以下になるように、前記水冷鋳型での溶鋼の鋳造条件を変更してモールド・パウダの溶融層の厚みを調整することを特徴とする溶鋼の連続鋳造方法。
The molten steel is continuously poured into a water-cooled mold that is vibrated up and down, and the molten steel is covered with a separately supplied mold and powder, and the molten steel is stirred by electromagnetic force, and the generated solidified shell is cooled while being drawn downward from the mold. To make a fully solidified long steel slab,
The thickness of the molten layer of the mold / powder is constantly measured, the thickness of the molten layer of the mold / powder in which the measured value is predetermined, and the steel slab or the product steel obtained by rolling the steel slab In light of the relationship with the defect rate, the thickness of the molten layer of the mold / powder is changed by changing the casting conditions of the molten steel in the water-cooled mold so that the defect rate of the steel slab or product steel is less than the desired value. A method for continuously casting molten steel, characterized by adjusting the temperature.
さらに、モールド・パウダの未溶融層の厚みを求め、予じめ定めたモールド・パウダの未溶融層の厚み及び前記溶融層の厚みと該鋼鋳片もしくは該鋼鋳片を圧延して得た製品鋼材の欠陥発生率との関係に照らし、該鋼鋳片もしくは製品鋼材の欠陥発生率が所望範囲内に収まるように、前記水冷鋳型での溶鋼の鋳造条件を変更してモールド・パウダの溶融層の厚み及び未溶融層の厚みを調整する請求項1記載の溶鋼の連続鋳造方法。   Further, the thickness of the unmelted layer of the mold / powder was obtained and obtained by rolling the thickness of the unmelted layer of the mold / powder and the thickness of the molten layer and the steel slab or the steel slab. In light of the relationship with the defect occurrence rate of the product steel material, the casting conditions of the molten steel in the water-cooled mold are changed so that the defect occurrence rate of the steel slab or the product steel material falls within the desired range. The method for continuously casting molten steel according to claim 1, wherein the thickness of the layer and the thickness of the unmelted layer are adjusted. 前記変更する水冷鋳型での溶鋼の鋳造条件を、モールド・パウダの投入量及び又は電磁攪拌力の大きさとすることを特徴とする請求項1又は2記載の溶鋼の連続鋳造方法。   3. The molten steel continuous casting method according to claim 1, wherein the casting condition of the molten steel in the water-cooled mold to be changed is the amount of mold and powder and / or the magnitude of electromagnetic stirring force. 前記モールド・パウダ溶融層の測定を多周波渦流式厚み計で行うことを特徴とする請求項1〜3のいずれかに記載の溶鋼の連続鋳造方法。   The method for continuously casting molten steel according to any one of claims 1 to 3, wherein the measurement of the molten mold / powder layer is performed with a multi-frequency eddy current thickness meter.
JP2008273302A 2008-10-23 2008-10-23 Continuous casting method for molten steel Pending JP2010099697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273302A JP2010099697A (en) 2008-10-23 2008-10-23 Continuous casting method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273302A JP2010099697A (en) 2008-10-23 2008-10-23 Continuous casting method for molten steel

Publications (1)

Publication Number Publication Date
JP2010099697A true JP2010099697A (en) 2010-05-06

Family

ID=42290806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273302A Pending JP2010099697A (en) 2008-10-23 2008-10-23 Continuous casting method for molten steel

Country Status (1)

Country Link
JP (1) JP2010099697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083575A (en) * 2012-10-25 2014-05-12 Kobe Steel Ltd Addition method of mold flux into continuous casting casting mold

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333160A (en) * 1986-07-28 1988-02-12 Nippon Kokan Kk <Nkk> Continuous casting method
JPS63242451A (en) * 1987-03-30 1988-10-07 Sumitomo Metal Ind Ltd Method and apparatus for measuring power layer thickness in mold
JPH02274352A (en) * 1989-03-09 1990-11-08 Nkk Corp Method for continuously casting steel
JPH0318462A (en) * 1989-06-16 1991-01-28 Kawasaki Steel Corp Method and instrument for measuring molten layer thickness of mold powder on molten steel surface in mold for continuous casting
JPH04197565A (en) * 1990-11-27 1992-07-17 Nkk Corp Method for continuously casting steel
JPH0976050A (en) * 1995-09-13 1997-03-25 Sumitomo Metal Ind Ltd Method and device for controlling molding powder thickness
JPH09277001A (en) * 1996-04-19 1997-10-28 Nippon Steel Corp Method for continuously casting stainless steel cast slab
JPH1133689A (en) * 1997-07-16 1999-02-09 Kawasaki Steel Corp Continuous casting method of steel
JPH11226709A (en) * 1998-02-12 1999-08-24 Nippon Steel Corp Electromagnetic stirring method in mold
JP2003334636A (en) * 2002-05-21 2003-11-25 Jfe Steel Kk High speed continuous casting method for medium carbon steel
JP2007090357A (en) * 2005-09-27 2007-04-12 Jfe Steel Kk Mold powder automatic supply apparatus for continuous casting

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333160A (en) * 1986-07-28 1988-02-12 Nippon Kokan Kk <Nkk> Continuous casting method
JPS63242451A (en) * 1987-03-30 1988-10-07 Sumitomo Metal Ind Ltd Method and apparatus for measuring power layer thickness in mold
JPH02274352A (en) * 1989-03-09 1990-11-08 Nkk Corp Method for continuously casting steel
JPH0318462A (en) * 1989-06-16 1991-01-28 Kawasaki Steel Corp Method and instrument for measuring molten layer thickness of mold powder on molten steel surface in mold for continuous casting
JPH04197565A (en) * 1990-11-27 1992-07-17 Nkk Corp Method for continuously casting steel
JPH0976050A (en) * 1995-09-13 1997-03-25 Sumitomo Metal Ind Ltd Method and device for controlling molding powder thickness
JPH09277001A (en) * 1996-04-19 1997-10-28 Nippon Steel Corp Method for continuously casting stainless steel cast slab
JPH1133689A (en) * 1997-07-16 1999-02-09 Kawasaki Steel Corp Continuous casting method of steel
JPH11226709A (en) * 1998-02-12 1999-08-24 Nippon Steel Corp Electromagnetic stirring method in mold
JP2003334636A (en) * 2002-05-21 2003-11-25 Jfe Steel Kk High speed continuous casting method for medium carbon steel
JP2007090357A (en) * 2005-09-27 2007-04-12 Jfe Steel Kk Mold powder automatic supply apparatus for continuous casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013011067; 中野武人、藤雅雄、永野恭一、溝口庄三、山本利樹、浅野敬輔: '連鋳鋳片の縦割れの発生におよぼす鋳型内溶融パウダープールの影響' 鉄と鋼 第67巻、第8号, 19810601, 1210-1219頁, 社団法人日本鉄鋼協会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083575A (en) * 2012-10-25 2014-05-12 Kobe Steel Ltd Addition method of mold flux into continuous casting casting mold

Similar Documents

Publication Publication Date Title
JP4765517B2 (en) Automatic mold powder feeder for continuous casting
KR102239946B1 (en) Manufacturing method of austenitic stainless steel slab
JP2009090309A (en) Continuous casting method for medium carbon steel preventing crack of slab by monitoring heat flux of mold copper plate
TWI630961B (en) Continuous casting method of steel
JP5690230B2 (en) Method for measuring molten layer thickness of mold powder for continuous casting
JP4802718B2 (en) Method for predicting surface defect occurrence risk region in continuous cast slab and method for producing continuous cast slab
JP2010099697A (en) Continuous casting method for molten steel
JP2017024079A (en) Continuous casting method for steel
JP4752366B2 (en) Multi-frequency eddy current mold powder melt thickness measurement method
JP5299259B2 (en) Method for measuring and controlling molten steel temperature during secondary refining
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP2007098400A (en) Continuous casting apparatus and method for measuring flowing rate
KR101277701B1 (en) Device for controlling level of molten steel in mold and method therefor
KR101344897B1 (en) Device for predicting quality of plate in continuous casting and method therefor
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JP4972776B2 (en) Flow control method for molten steel in mold and surface quality judgment method for continuous cast slab
JP5413054B2 (en) Method and apparatus for determining surface maintenance of slab during continuous casting
JP5020687B2 (en) Continuous casting method of slab steel with little center segregation
JP3402286B2 (en) Continuous casting method
JP2008290136A (en) Continuous casting method for low carbon high sulfur steel
JP4325451B2 (en) Method for detecting surface defect of continuous cast slab and removing method thereof
Bhattacharya et al. Root cause analysis of surface defects in coils produced through thin slab route
JP2011036894A (en) Method and device for determination of surface care of cast slab in continuous casting
JP5283881B2 (en) Method for continuous casting of steel characterized by raising and lowering the surface level
JP5004626B2 (en) Appearance of solidified shell thickness in S-print

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225