JP3402286B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JP3402286B2
JP3402286B2 JP32742899A JP32742899A JP3402286B2 JP 3402286 B2 JP3402286 B2 JP 3402286B2 JP 32742899 A JP32742899 A JP 32742899A JP 32742899 A JP32742899 A JP 32742899A JP 3402286 B2 JP3402286 B2 JP 3402286B2
Authority
JP
Japan
Prior art keywords
mold
cooling plate
cooling water
slab
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32742899A
Other languages
Japanese (ja)
Other versions
JP2001138015A (en
Inventor
祐久 菊地
正幸 川本
方史 花尾
敏彦 村上
正彦 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32742899A priority Critical patent/JP3402286B2/en
Publication of JP2001138015A publication Critical patent/JP2001138015A/en
Application granted granted Critical
Publication of JP3402286B2 publication Critical patent/JP3402286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、拘束性ブレークア
ウトを発生させることなく、良好な表面品質の鋳片を得
ることができるC含有率が0.05〜0.18質量%の
鋼の連続鋳造方法に関する。 【0002】 【従来の技術】熱間圧延鋼帯を巻き取ったホットコイル
の製造用の素材であるスラブ鋳片の連続鋳造において
は、鋳片品質の向上および生産性の確保の観点から、従
来、200mm程度の厚さの鋳片が、1〜2m/分の速
度で鋳造されている。 【0003】一方、近年、関連する設備の建設費および
要員の削減の観点から、製品の厚さや形状により近い鋳
片を得る試みも進められ、厚さが50〜100mmの薄
鋳片の連続鋳造方法と、これに続く鋳造ライン上に配置
した簡易な熱間圧延設備による圧延方法とを組み合わせ
た方法が実用化されている。このような薄鋳片を鋳造す
るとき、熱間圧延設備の生産性に近づけるため、3〜5
m/分の高速で鋳造することが行われている。 【0004】3〜5m/分の高速鋳造になると、割れ感
受性の低い低炭素鋼でも、鋳型内において不均一凝固が
発生しやすくなるため、鋳片表面に縦割れが発生しやす
い。とくに、もともと割れ感受性が高く、不均一凝固を
起こしやすい亜包晶鋼を、このような高速で鋳造する
と、鋳片表面に著しい縦割れがしばしば発生する。 【0005】さらに、3〜5m/分の高速鋳造時には、
鋳型の冷却板と凝固殻との隙間に流入する溶融スラグ
(モールドパウダが溶融したもの)の量が減少するた
め、潤滑不良となり、凝固殻が鋳型内壁に焼き付きやす
くなる。そのため、拘束性ブレークアウトが発生しやす
い。 【0006】鋳片表面の縦割れの発生および拘束性ブレ
ークアウトの発生に対する対策として、次の対策が提案
されている。 【0007】特開平8−141713号公報では、C含
有率が0.08〜0.16質量%の鋼を鋳造するに際
し、塩基度(質量%の比CaO/SiO2 )を1.2〜
1.6と高くし、凝固温度を1130℃以上と高くした
モールドパウダを用い、鋳片表面の縦割れの発生を防止
する方法が提案されている。高塩基度および高凝固温度
のモールドパウダを用いることにより、鋳型内の凝固殻
を緩冷却化する方法である。 【0008】また、特開平7−214266号公報で
は、C含有率が0.08〜0.18質量%の鋼を鋳造す
るに際し、1300℃における粘度が2poise以
下、凝固温度が1000〜1300℃のモールドパウダ
を用い、かつ、鋳型の振動条件のネガティブ時間を調整
することにより、鋳片表面の縦割れおよびオシレーショ
ン割れを防止するとともに、拘束性ブレークアウトの発
生を防止する方法が提案されている。 【0009】しかし、これら特開平8−141713号
公報および特開平7−214266号公報で提案された
方法でも、鋳型の冷却板内に設けられた冷却水通流路を
通過する冷却水の条件が適正でない場合には、鋳片表面
に縦割れが発生したり、拘束性ブレークアウトが発生し
やすくなる。 【0010】 【発明が解決しようとする課題】本発明は、もともと鋳
片表面に縦割れが発生しやすい亜包晶鋼を含む低炭素鋼
から中炭素鋼までの鋼を3〜5m/分の高速で鋳造する
場合に、拘束性ブレークアウトを発生させることなく、
表面に縦割れの発生のない、表面品質の良好な鋳片を得
ることができる鋼の連続鋳造方法を提供することを目的
とする。 【0011】 【課題を解決するための手段】本発明の要旨は、凝固温
度αが1000〜1300℃のモールドパウダを用い
て、C含有率が0.05〜0.18質量%の溶鋼を鋳造
する連続鋳造方法であって、厚さδが20〜45mm
で、熱伝導率がγ(W/m2 ・k)である銅または銅合
金からなる鋳型の冷却板を用い、鋳型の冷却板内でバッ
クフレーム側に設けられた冷却水通流路を通過する冷却
水の線流速βを5〜10m/秒とし、かつ、上記α、
β、γおよびδから求められるQ値が、下記(A)式を
満足する条件で鋳造する鋼の連続鋳造法にある。 【0012】4.6≦Q≦14 ・・・(A) ここで、Q=(α×β×γ)/(δ×104 ) 鋳型の冷却板内でバックフレーム側に設けられた冷却水
通流路を通過する冷却水の線流速β(m/秒)は、下記
(B)式で定義する。 【0013】 冷却水の線流速β=a/(b×c) ・・・(B) ここで、a:冷却板を通過する合計の水量(Nm3
秒) b:冷却板内に配置する冷却水通流路の個数(個) c:冷却水通流路の横断面積(m2 ) 冷却水通流路の横断面積は、通常は一定であるが、冷却
板の鋳型幅方向の位置によって、この横断面積を変えて
いる場合には、上記(B)式中の(b×c)は、下記
(C)式で求めればよい。 【0014】 ここで、bn:同一の横断面積の冷却水通流路の個数
(個) cm:冷却水通流路の横断面積の種類数 鋳型の冷却板の厚さδは20〜45mmとし、また、後
述するように、バックフレーム側で冷却板内に配置する
冷却水通流路の大きさを、矩形の場合に、好ましくは縦
10〜20mm、横5〜10mm程度とする。冷却水通
流路のサイズにおける縦とは、冷却板の厚さの方向のこ
とである。本発明の方法に用いる鋳型の冷却板は、上述
のサイズの冷却板である。 【0015】本発明者らは、前述する本発明の課題を、
下記およびに示す知見と対策により解決した。 【0016】鋳型の冷却板内で反溶鋼側に備えた冷却
水通流路を通過する冷却水の線流速を5〜10m/秒と
する。これによって、鋳型の冷却板による鋳型内の溶鋼
および凝固殻の冷却が適正となり、鋳型の冷却板と凝固
殻との隙間に流入する溶融スラグの量が適正化される。 【0017】鋳型の冷却板と凝固殻との隙間の潤滑性が
確保されるため、拘束性ブレークアウトの発生を防止で
き、また、鋳型内の凝固殻の冷却が幅方向で均一になる
ので、鋳片表面の縦割れの発生を防止できる。 【0018】さらに、溶鋼および凝固殻の熱によって冷
却板が反るなどの変形を起こすこともないため、安定し
た操業が可能で、ブレークアウトが発生しにくい。 【0019】モールドパウダの凝固温度α、冷却水通
流路内を通過する冷却水の線流速β、冷却板の熱伝導率
γおよび冷却板の厚さδから求まる前述の(A)式で定
義するQ値を4.6〜14とする。 【0020】図2は、鋳型の冷却板と凝固殻との隙間の
溶融スラグが固化した固相の平均の厚さとQ値との関係
を示す図である。また、図3は、鋳型の冷却板と凝固殻
との隙間の溶融スラグの液相の平均の厚さとQ値との関
係を示す図である。いずれも、後述する実施例の試験に
用いた鋳型の冷却板を用いた試験結果を示す。 【0021】鋳造速度1.0〜5.0m/分の範囲で鋳
造し、モールドパウダの使用量から求まる平均の固相お
よび液相の合計の厚さを計算し、さらに、鋳造中に鋳型
下部から固化したスラグフィルムを採取して、溶融スラ
グが固化した固相の平均の厚さを測定した。計算で求ま
る平均の固相と液相の合計の厚さから、実測した平均の
固相の厚さを引いて、平均の液相の厚さとして求めた結
果を示している。 【0022】図2および図3からわかるように、Q値を
4.6〜14とすることにより、鋳造速度1.0〜5.
0m/分の範囲において、平均の液相の厚さを0.1m
m以上に確保できる。したがって、凝固殻が鋳型の冷却
板に焼き付くのを防止できるので、拘束性ブレークアウ
トの発生を防止できる。また、平均の固相の厚さを0.
2mm以上とすることができる。したがって、モールド
パウダによる凝固殻の緩冷却化の効果が得られるので、
鋳型内の凝固殻の冷却が幅方向で均一となり、そのた
め、鋳片表面の縦割れの発生を防止できる。なお、平均
の液相または固相の厚さとは、鋳型内における平均の厚
さを意味する。 【0023】 【発明の実施の形態】図1は、本発明の方法で用いる鋳
型および鋳型内の凝固殻の状況を模式的に示す図であ
る。図1(a)は鋳型の片側の長辺側の縦断面図で、図
1(b)のB1−B2線の断面図であり、図1(b)は
図1(a)のA1−A2線の断面図である。本発明の方
法で用いる鋳型1には、バックフレーム3と接する側
で、鋳型の長辺1a側の冷却板2内でバックフレーム側
に設けられた冷却水通流路4を配置する。冷却水通流路
は、通常の鋳型と同じく、鋳造方向に沿って配置する。
図1(b)では、図を見やすくするため、冷却水通流路
4を10個配置した状態を示しているが、実際には後述
するように、鋳型の幅が1200mmの場合で、30〜
60個程度の冷却水通流路を配置するのがよい。 【0024】タンディッシュ(図示していない)から浸
漬ノズル5を経由して、鋳型内に溶鋼6が注入される。
注入された溶鋼表面には、モールドパウダ8を添加す
る。添加されたモールドパウダは、溶鋼の熱で溶融し、
溶融スラグ9が形成される。溶融スラグは鋳型の冷却板
と凝固殻7との隙間に流れ込み、鋳型の冷却板と接する
部分の溶融スラグは固化してガラス状態の固相10とな
る。凝固殻と接する溶融スラグは、液相11のままで存
在する。溶鋼および凝固殻の熱は、溶融スラグの液相お
よびガラス状態の固相を経由して、鋳型の冷却板に備え
た冷却水通流路内を通過する冷却水によって抜熱され
る。 【0025】本発明の方法が対象とする鋼は、C含有率
が0.05質量%以上0.10質量%未満の低炭素鋼お
よびC含有率が0.10〜0.18質量%の亜包晶鋼を
含めた中炭素鋼である。前述のとおり、低炭素鋼でも3
〜5m/分の高速で鋳造する場合や亜包晶鋼を鋳造する
場合には、鋳片表面に縦割れが発生しやすく、また、拘
束性ブレークアウトが発生しやすいからである。 【0026】本発明の方法では、凝固温度が1000〜
1300℃のモールドパウダを用いる。 【0027】凝固温度が1000℃未満では、鋳型の冷
却板内に備えた冷却水通流路内を通過する冷却水の線流
速を速くしても、鋳型の冷却板と凝固殻との隙間に流入
する溶融スラグの量が過多となる。流入する溶融スラグ
が多すぎると、鋳型内の凝固殻の冷却が幅方向で不均一
になり、そのため、鋳片表面に縦割れが発生しやすくな
る。 【0028】また、凝固温度が1300℃を超えると、
鋳型内の溶鋼表面に添加したモールドパウダが溶融しに
くくなり、完全に溶融していないモールドパウダの焼結
体(スラグベア)が多く発生して、溶鋼のメニスカス近
傍に滞留する。スラグベアが多く滞留すると、鋳型の冷
却板と凝固殻との隙間に溶融スラグが流入しにくくな
る。そのため、鋳型内の凝固殻の冷却が幅方向で不均一
になり、鋳片表面に縦割れが発生しやすくなる。さら
に、凝固殻が鋳型の冷却板に焼き付きやすくなるため、
拘束性ブレークアウトが発生しやすくなる。 【0029】モールドパウダの1300℃における粘度
は、0.4〜2.0poiseが望ましい。 【0030】0.4poise未満では、鋳型の冷却板
と凝固殻との隙間への溶融スラグの流入量が過剰とな
り、また、2.0poiseを超えると、溶融スラグが
流入しにくくなる。いずれの場合も、鋳型内の凝固殻の
冷却が幅方向で不均一になり、鋳片表面に縦割れが発生
しやすくなる。 【0031】また、モールドパウダのSiO2 に対する
CaOの質量%比CaO/SiO2は0.8〜2.0が
望ましい。 【0032】比CaO/SiO2 を0.8〜2.0とす
ることにより、溶融スラグが鋳型の冷却板で冷却されて
固化する過程で、結晶が析出しやすくなり、溶融スラグ
が固化した固相中に析出した結晶が多いと、溶鋼および
凝固殻の熱が冷却板に伝わりにくくなる。そのため、同
じスラグフィルム厚さでも、凝固殻が緩冷却されやすく
なる。したがって、鋳型内の凝固殻の冷却が幅方向で均
一になり、鋳片表面に縦割れが発生しにくくなる。 【0033】鋳型の冷却板には、銅または銅合金を用い
る。銅または銅合金は、通常の連続鋳造鋳型用のもので
よく、たとえば、一般的に用いられているAg添加の脱
酸銅では、その熱伝導率γは355W/m2 ・k程度、
また、析出硬化型銅合金であるCr・Zr銅では209
W/m2 ・k程度の値となる。 【0034】鋳型の冷却板の厚さδは20〜45mmと
する。鋳型の冷却板の厚さが20mm未満の場合には、
冷却板内に配置した冷却水通流路を通過する冷却水量を
増加させても、溶鋼および凝固殻の熱によって冷却板が
反るなどの変形を起こしやすい。そのため、ブレークア
ウトが発生しやすくなる。45mmを超える場合には、
鋳型が大型化し、鋳型の振動装置などが大型化するの
で、実用的でない。 【0035】冷却水通流路の横断面形状は、矩形でも円
形でも構わない。鋳型の冷却板の厚さが30mmで、幅
が1200mmの場合で、矩形の冷却水通流路を設ける
場合、たとえば、縦10〜20mm、横5〜10mm程
度の横断面サイズがよい。また配置個数は、冷却板の全
幅に30〜60個程度を均等に配置すればよい。冷却水
通流路を配置する高さは、冷却板のほぼ全高さとすれば
よい。冷却水通流路は、図1(b)に示すように、鋳型
の長辺1a側の冷却板2内でバックフレーム側に冷却水
通流路4を配置する。 【0036】鋳型の冷却板内でバックフレーム側に設け
られた冷却水通流路を通過する冷却水の線流速を5〜1
0m/秒とする。 【0037】冷却水の線流速が5m/秒未満では、鋳型
の冷却板と凝固殻との隙間に流入する溶融スラグの量が
多くなりすぎるため、鋳型内の凝固殻の冷却が幅方向で
不均一になり、そのため、鋳片表面に縦割れが発生しや
すくなる。また、極端な場合には、溶鋼および凝固殻の
熱によって冷却板が反るなどの変形を起こすため、ブレ
ークアウトが発生しやすくなる。また、冷却水の線流速
が10m/秒を超えると、鋳型内の凝固殻の冷却が強く
なりすぎ、縦割れが発生しやすくなる。 【0038】モールドパウダの凝固温度α、冷却水通流
路内を通過する冷却水の線流速β、冷却板の熱伝導率γ
および冷却板の厚さδからなる前述の(A)式で定義す
るQ値を4.6〜14とする。 【0039】Q値が4.6未満では、平均の固相の厚さ
が、鋳造速度1.0m/分時で0.35mm以下、鋳造
速度5.0m/分時で0.2mm以下となる。平均の固
相の厚さが0.2mm以下では、モールドパウダによる
凝固殻を緩冷却化する効果が小さくなり、鋳型内の凝固
殻の冷却が幅方向で不均一になるため、鋳片表面に縦割
れが発生しやすくなる。また、Q値が14を超えると、
鋳造速度1.0〜5.0m/分の範囲において、平均の
液相の厚さが0.1mm以下となる。平均の液相の厚さ
が0.1mm以下では、凝固殻が鋳型の冷却板に焼き付
きやすくなるため、拘束性ブレークアウトが発生しやす
くなる。 【0040】 【実施例】垂直部の長さ1m、湾曲半径3.5m、機長
15mの垂直曲げ型連続鋳造機を用い、C含有率が0.
11質量%の亜包晶鋼である中炭素鋼を、鋳造速度3m
/分で鋳造した。鋳型出側の厚さが120mm、幅が1
500mmである矩形の鋳型を用いた。 【0041】鋳型の冷却板には、熱伝導率が355W/
2 ・kであるAg添加の脱酸銅または209W/m2
・kである析出硬化型銅合金のCr・Zr銅を用いた。
鋳型の冷却板の厚さは30mmとした。 【0042】冷却水通流路の横断面サイズは、縦20m
m、横5mmとし、高さは冷却板の全高さとした。冷却
水通流路は、鋳型の長辺側の冷却板内で、横5mmの部
分が、反溶鋼側のバックフレームと接する側になるよう
に配置した。片側の冷却板に75個の冷却水通流路を配
置した。 【0043】鋳型内の冷却板の冷却水通流路を通過する
冷却水の線流速を4〜12m/秒の範囲内で変化させて
試験した。また、凝固温度を1000〜1300℃の範
囲内で変化させた4種類のモールドパウダを用いた。表
1にモールドパウダの化学組成と凝固温度を示す。各試
験では、1ヒートの単鋳を行った。1ヒートは約100
tonである。 【0044】 【表1】【0045】鋳型の冷却板内に熱電対を取り付けること
により、鋳造中の拘束性ブレークアウトの発生の予知を
行った。具体的には次のとおりである。鋳型の両側の長
辺側の冷却板内に取り付けた熱電対により冷却板の温度
を測定した。片側の冷却板内で冷却板の厚さ中心部の位
置の、幅方向6カ所、鋳造方向3カ所の合計18カ所に
熱電対を配置した。片側の冷却板内の熱電対による測温
結果の最大値と最小値が10℃以上の差が生じた場合に
は、鋳型の冷却板に凝固殻が焼き付き始めているとして
ブレークアウト予知警報を鳴らし、予知を行った。各試
験での予知警報回数を測定し、拘束性ブレークアウトの
発生のしやすさを評価した。 【0046】また、各試験から代表的な長さ10mの鋳
片サンプルを採取し、目視により鋳片表面の拘束痕(焼
き付き痕)の発生個数を調査するとともに、縦割れの発
生有無とその長さを調査した。測定した拘束痕の発生個
数から、鋳片長さ1m当たりの拘束痕の発生個数を求め
た。また、測定した縦割れの発生長さから、鋳片長さ1
m当たりの縦割れの長さを求めた。 【0047】さらに、各試験から、代表的な長さ10m
の鋳片を素材として、熱間圧延してホットコイルに巻き
取った。ホットコイルを酸洗後、目視で表面を観察し、
鋳片の縦割れや拘束痕に起因する表面疵の発生状況を調
査した。表面疵の発生している部分の重量をホットコイ
ルの全重量で除した値をホットコイル品質不良発生率と
した。各試験条件および各試験結果を表2および表3に
示す。 【0048】 【表2】 【0049】 【表3】【0050】本発明例の試験No.1〜No.8では、
本発明の方法で規定するモールドパウダの凝固温度、鋳
型の冷却板の厚さ、冷却板内に設けた冷却水通流路を通
過する冷却水の線流速、およびQ値のそれぞれの条件の
範囲内で試験した。また、鋳型の冷却板については、熱
伝導率が355W/m2 ・kであるAg添加の脱酸銅を
用いた。 【0051】これら試験No.1〜No.8では、拘束
性ブレークアウトの予知警報回数は零であり、鋳片拘束
痕発生個数も零であった。また、鋳片表面に縦割れは発
生しなかった。さらに、ホットコイル品質不良発生率が
1〜2%である試験もあったが、ほとんどの試験では、
ホットコイルに表面疵は発生しなかった。このように、
拘束性ブレークアウトの発生を防止でき、良好な表面品
質の鋳片およびホットコイルが得られた。 【0052】比較例の試験No.9およびNo.10で
は、冷却水通流路を通過する冷却水の線流速を本発明の
方法で規定する範囲外で速くし、Q値も本発明の方法で
規定する条件の上限外として試験した。 【0053】比較例の試験No.11およびNo.12
では、冷却水通流路を通過する冷却水の線流速を本発明
の方法で規定する範囲内とし、また、凝固温度の高いモ
ールドパウダを用いることにより、Q値を本発明の方法
で規定する条件の上限外として試験した。 【0054】比較例の試験No.13では、冷却水通流
路を通過する冷却水の線流速を本発明の方法で規定する
範囲外で遅くしたが、Q値は本発明の方法で規定する条
件の範囲内で試験した。比較例の試験No.14では、
冷却水通流路を通過する冷却水の線流速を本発明の方法
で規定する範囲外で速くしたが、Q値は本発明の方法で
規定する条件の範囲内で試験した。 【0055】これら試験No.9〜No.12では、拘
束性ブレークアウトは発生しなかったが、拘束性ブレー
クアウトの予知警報回数は3〜6回/ヒートであった。
また、鋳片拘束痕発生個数は0.02〜0.10個/m
であった。Q値が大きいために、溶融スラグの平均の液
相の厚さが薄くなり、凝固殻が鋳型の冷却板に焼き付き
やすくなったためである。鋳片表面に縦割れは発生しな
かった。しかし、ホットコイル品質不良発生率は5〜1
5%で、やや多い発生状況であった。鋳片表面の拘束痕
がホットコイルの表面疵になったためである。 【0056】冷却水の線流速を遅くした試験No.13
および線流速を速くした試験No.14では、ともに鋳
片表面に縦割れが発生し、ホットコイルにも品質不良が
発生した。 【0057】本発明例の試験No.15〜No.26で
は、熱伝導率が209W/m2 ・kである析出硬化型銅
合金のCr・Zr銅を用いた。その他の条件は、試験N
o.1〜No.8と同じとした。 【0058】試験No.15〜No.26では、試験N
o.1〜No.8の試験結果とほぼ同じで、拘束性ブレ
ークアウトの発生を防止でき、良好な表面品質の鋳片お
よびホットコイルが得られた。 【0059】比較例の試験No.27およびNo.28
では、冷却板内に設けた冷却水通流路を通過する冷却水
の線流速を本発明の方法で規定する範囲内でやや遅くす
るか、または、本発明の方法で規定する範囲の下限外
で、遅くすることにより、Q値を本発明の方法で規定す
る条件の下限外として試験した。その他の条件は、試験
No.15〜No.26と同じ条件で試験した。 【0060】Q値の小さい試験No.27およびNo.
28では、鋳片表面に縦割れが発生し、ホットコイルに
も品質不良が発生した。 【0061】比較例の試験No.29では、冷却水通流
路を通過する冷却水の線流速を本発明の方法で規定する
範囲外で速くしたが、Q値は本発明の方法で規定する条
件の範囲内で試験した。 【0062】冷却水の線流速を速くした試験No.29
では、鋳片表面に縦割れが発生し、ホットコイルにも品
質不良が発生した。 【0063】 【発明の効果】本発明の方法の適用により、鋳片表面に
縦割れの発生しやすい亜包晶鋼を含め、低炭素鋼から中
炭素鋼を3〜5m/分程度以上の高速で鋳造する場合に
も、拘束性ブレークアウトを発生させることなく、表面
に縦割れの発生のない、表面品質の良好な鋳片を得るこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a C content of 0.05, which can obtain a slab of good surface quality without causing a constraining breakout. The present invention relates to a continuous casting method of steel of 0.18% by mass. [0002] In continuous casting of slab slabs, which are materials for manufacturing hot coils wound with hot-rolled steel strip, from the viewpoint of improving slab quality and ensuring productivity, A slab having a thickness of about 200 mm is cast at a speed of 1 to 2 m / min. On the other hand, in recent years, attempts have been made to obtain a cast slab closer to the thickness and shape of a product from the viewpoint of the construction cost and personnel reduction of related equipment, and continuous casting of a thin slab having a thickness of 50 to 100 mm. A method combining a method and a subsequent rolling method using a simple hot rolling facility disposed on a casting line has been put into practical use. When casting such a thin slab, 3-5 in order to approach the productivity of hot rolling equipment
Casting is performed at a high speed of m / min. When high-speed casting is performed at 3 to 5 m / min, even in a low carbon steel having low cracking susceptibility, non-uniform solidification tends to occur in the mold, so that vertical cracks are likely to occur on the surface of the slab. In particular, when hypoperitectic steel, which is originally susceptible to cracking and easily causes non-uniform solidification, is cast at such a high speed, significant vertical cracks often occur on the surface of the slab. Furthermore, during high speed casting at 3-5 m / min,
Since the amount of molten slag flowing into the gap between the mold cooling plate and the solidified shell (the melted mold powder) is reduced, lubrication is poor and the solidified shell tends to be seized on the inner wall of the mold. Therefore, a restrictive breakout is likely to occur. The following countermeasures have been proposed as countermeasures against the occurrence of vertical cracks on the slab surface and the occurrence of restrictive breakout. In JP-A-8-141713, when casting a steel having a C content of 0.08 to 0.16% by mass, the basicity (ratio CaO / SiO 2 by mass%) is set to 1.2 to
There has been proposed a method for preventing the occurrence of vertical cracks on the surface of a slab by using a mold powder having a high solidification temperature of 1130 ° C. or higher with a high 1.6. In this method, the solidified shell in the mold is slowly cooled by using a mold powder having a high basicity and a high solidification temperature. In JP-A-7-214266, when casting a steel having a C content of 0.08 to 0.18 mass%, the viscosity at 1300 ° C. is 2 poise or less and the solidification temperature is 1000 to 1300 ° C. A method has been proposed that uses a mold powder and adjusts the negative time of the vibration conditions of the mold to prevent vertical cracks and oscillation cracks on the surface of the slab and to prevent the occurrence of constraining breakouts. . However, even in the methods proposed in Japanese Patent Laid-Open Nos. 8-141713 and 7-214266, the conditions for the cooling water passing through the cooling water flow path provided in the cooling plate of the mold are limited. If it is not appropriate, vertical cracks are generated on the surface of the slab, or constraining breakout is likely to occur. SUMMARY OF THE INVENTION [0010] The present invention is originally intended for 3-5 m / min of steel from low carbon steel to medium carbon steel including hypoperitectic steel, which tends to cause vertical cracks on the slab surface. When casting at high speed, without generating a restrictive breakout,
It is an object of the present invention to provide a continuous casting method of steel capable of obtaining a cast slab having good surface quality with no occurrence of vertical cracks on the surface. The gist of the present invention is to cast a molten steel having a C content of 0.05 to 0.18% by mass using a mold powder having a solidification temperature α of 1000 to 1300 ° C. A continuous casting method with a thickness δ of 20 to 45 mm
Then, a mold cooling plate made of copper or a copper alloy having a thermal conductivity of γ (W / m 2 · k) is used and passes through a cooling water flow path provided on the back frame side in the mold cooling plate. The linear flow velocity β of the cooling water is 5 to 10 m / second, and α
The Q value obtained from β, γ, and δ is in the continuous casting method of steel that is cast under conditions that satisfy the following expression (A). 4.6 ≦ Q ≦ 14 (A) where Q = (α × β × γ) / (δ × 10 4 ) Cooling water provided on the back frame side in the cooling plate of the mold The linear flow rate β (m / sec) of the cooling water passing through the flow path is defined by the following equation (B). Cooling water linear flow velocity β = a / (b × c) (B) where a: total amount of water passing through the cooling plate (Nm 3 /
B) Number of cooling water passages arranged in the cooling plate (pieces) c: Cross-sectional area of the cooling water passage (m 2 ) Although the transverse area of the cooling water passage is normally constant, When this cross-sectional area is changed depending on the position of the cooling plate in the mold width direction, (b × c) in the above equation (B) may be obtained by the following equation (C). [0014] Where bn: number of cooling water passages having the same cross-sectional area
(Pieces) cm: the number of cross-sectional areas of the cooling water flow path The thickness δ of the cooling plate of the mold is 20 to 45 mm, and the cooling water flow arranged in the cooling plate on the back frame side as will be described later In the case of a rectangular shape, the size of the flow path is preferably about 10 to 20 mm in length and about 5 to 10 mm in width. The length in the size of the cooling water passage is the direction of the thickness of the cooling plate. The mold cooling plate used in the method of the present invention is the above-described size cooling plate. The inventors have solved the above-mentioned problems of the present invention.
The problem was solved by the knowledge and measures shown below. The linear flow rate of the cooling water passing through the cooling water passage provided on the anti-melting steel side in the cooling plate of the mold is set to 5 to 10 m / sec. As a result, the molten steel and the solidified shell in the mold are properly cooled by the mold cooling plate, and the amount of molten slag flowing into the gap between the mold cooling plate and the solidified shell is optimized. Since the lubricity of the gap between the cooling plate of the mold and the solidified shell is ensured, the occurrence of a restrictive breakout can be prevented, and the cooling of the solidified shell in the mold is uniform in the width direction. Generation of vertical cracks on the slab surface can be prevented. Further, since the cooling plate does not warp due to the heat of the molten steel and the solidified shell, stable operation is possible and breakout hardly occurs. Defined by the above equation (A) obtained from the solidification temperature α of the mold powder, the linear flow rate β of the cooling water passing through the cooling water passage, the thermal conductivity γ of the cooling plate, and the thickness δ of the cooling plate. The Q value to be set is 4.6-14. FIG. 2 is a graph showing the relationship between the average thickness of the solid phase solidified by the molten slag in the gap between the mold cooling plate and the solidified shell and the Q value. FIG. 3 is a graph showing the relationship between the average thickness of the liquid phase of the molten slag in the gap between the cooling plate of the mold and the solidified shell and the Q value. All show the test results using the cooling plate of the mold used in the test of Examples described later. Casting is performed at a casting speed in the range of 1.0 to 5.0 m / min, and the total thickness of the average solid phase and the liquid phase obtained from the amount of mold powder used is calculated. The solidified slag film was collected from the sample, and the average thickness of the solid phase where the molten slag solidified was measured. The result obtained by subtracting the measured average solid phase thickness from the total thickness of the average solid phase and liquid phase obtained by calculation to obtain the average liquid phase thickness is shown. As can be seen from FIGS. 2 and 3, by setting the Q value to 4.6-14, the casting speed is 1.0-5.
In the range of 0 m / min, the average liquid phase thickness is 0.1 m.
m or more can be secured. Therefore, it is possible to prevent the solidified shell from being baked on the cooling plate of the mold, and thus it is possible to prevent the occurrence of a restrictive breakout. In addition, the average solid phase thickness is set to 0.
It can be 2 mm or more. Therefore, the effect of slow cooling of the solidified shell by mold powder is obtained,
Cooling of the solidified shell in the mold becomes uniform in the width direction, and therefore vertical cracks on the surface of the slab can be prevented. The average liquid phase or solid phase thickness means the average thickness in the mold. DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram schematically showing the state of a mold used in the method of the present invention and a solidified shell in the mold. 1A is a longitudinal sectional view of the long side of one side of the mold, and is a sectional view taken along line B1-B2 of FIG. 1B. FIG. 1B is A1-A2 of FIG. It is sectional drawing of a line. In the mold 1 used in the method of the present invention, a cooling water passage 4 provided on the back frame side in the cooling plate 2 on the long side 1a side of the mold is arranged on the side in contact with the back frame 3. The cooling water passage is arranged along the casting direction as in a normal mold.
FIG. 1B shows a state in which ten cooling water passages 4 are arranged to make the drawing easier to see. Actually, as will be described later, in the case where the width of the mold is 1200 mm,
About 60 cooling water passages are preferably arranged. Molten steel 6 is injected into the mold from a tundish (not shown) via the immersion nozzle 5.
Mold powder 8 is added to the injected molten steel surface. The added mold powder is melted by the heat of the molten steel,
A molten slag 9 is formed. The molten slag flows into the gap between the cooling plate of the mold and the solidified shell 7, and the molten slag in the portion in contact with the cooling plate of the mold is solidified to become a solid phase 10 in a glass state. The molten slag in contact with the solidified shell exists as the liquid phase 11. The heat of the molten steel and the solidified shell is removed by the cooling water passing through the cooling water passage provided in the cooling plate of the mold via the liquid phase of the molten slag and the solid phase in the glass state. The steel targeted by the method of the present invention is a low carbon steel having a C content of 0.05% by mass or more and less than 0.10% by mass and a sub-carbon having a C content of 0.10 to 0.18% by mass. Medium carbon steel including peritectic steel. As mentioned above, even low-carbon steel 3
This is because when the casting is performed at a high speed of ˜5 m / min or when hypoperitectic steel is cast, vertical cracks are likely to occur on the surface of the slab, and constraining breakout is likely to occur. In the method of the present invention, the solidification temperature is 1000 to 1000.
A mold powder of 1300 ° C. is used. When the solidification temperature is less than 1000 ° C., the gap between the mold cooling plate and the solidified shell is not increased even if the linear flow rate of the cooling water passing through the cooling water passage provided in the mold cooling plate is increased. An excessive amount of molten slag flows in. If too much molten slag flows in, the cooling of the solidified shell in the mold becomes uneven in the width direction, so that vertical cracks are likely to occur on the surface of the slab. When the solidification temperature exceeds 1300 ° C.,
The mold powder added to the surface of the molten steel in the mold becomes difficult to melt, and a sintered body (slag bear) of the mold powder which is not completely melted is generated and stays in the vicinity of the meniscus of the molten steel. When a large amount of slag bear is retained, it becomes difficult for molten slag to flow into the gap between the cooling plate of the mold and the solidified shell. Therefore, the cooling of the solidified shell in the mold becomes uneven in the width direction, and vertical cracks are likely to occur on the surface of the slab. In addition, since the solidified shell is easy to seize on the cooling plate of the mold,
Restraint breakout is likely to occur. The viscosity of the mold powder at 1300 ° C. is preferably 0.4 to 2.0 poise. If it is less than 0.4 poise, the amount of molten slag flowing into the gap between the mold cooling plate and the solidified shell becomes excessive, and if it exceeds 2.0 poise, it becomes difficult for the molten slag to flow. In either case, the cooling of the solidified shell in the mold becomes uneven in the width direction, and vertical cracks are likely to occur on the surface of the slab. Further, the mass% ratio CaO / SiO 2 of CaO to SiO 2 of the mold powder is preferably 0.8 to 2.0. By setting the ratio CaO / SiO 2 to 0.8 to 2.0, crystals are likely to precipitate in the process of melting and solidifying the molten slag by the cooling plate of the mold, and the solidified solidified molten slag. When there are many crystals precipitated in the phase, the heat of the molten steel and the solidified shell is difficult to be transmitted to the cooling plate. Therefore, the solidified shell is easily cooled slowly even with the same slag film thickness. Therefore, the cooling of the solidified shell in the mold becomes uniform in the width direction, and vertical cracks are less likely to occur on the surface of the slab. Copper or a copper alloy is used for the cooling plate of the mold. Copper or copper alloy may be used for a normal continuous casting mold. For example, in the case of commonly used Ag-added deoxidized copper, its thermal conductivity γ is about 355 W / m 2 · k,
Further, in the case of Cr · Zr copper which is a precipitation hardening type copper alloy, 209
The value is about W / m 2 · k. The thickness δ of the mold cooling plate is set to 20 to 45 mm. If the thickness of the mold cooling plate is less than 20mm,
Even if the amount of cooling water passing through the cooling water flow path disposed in the cooling plate is increased, deformation such as warpage of the cooling plate due to the heat of the molten steel and the solidified shell tends to occur. Therefore, breakout is likely to occur. If it exceeds 45mm,
This is not practical because the mold becomes larger and the vibration device of the mold becomes larger. The cross-sectional shape of the cooling water passage may be rectangular or circular. When the thickness of the cooling plate of the mold is 30 mm, the width is 1200 mm, and a rectangular cooling water passage is provided, for example, a cross-sectional size of about 10 to 20 mm in length and about 5 to 10 mm in width is preferable. Further, the number of arrangements may be approximately 30-60 in the entire width of the cooling plate. The height at which the cooling water passage is disposed may be almost the entire height of the cooling plate. As shown in FIG. 1 (b), the cooling water passage is arranged on the back frame side in the cooling plate 2 on the long side 1a side of the mold. The linear flow velocity of the cooling water passing through the cooling water passage provided on the back frame side in the cooling plate of the mold is set to 5 to 1.
0 m / sec. If the linear flow velocity of the cooling water is less than 5 m / sec, the amount of molten slag flowing into the gap between the mold cooling plate and the solidified shell becomes too large, so that the solidified shell in the mold is not cooled in the width direction. Therefore, vertical cracks are likely to occur on the slab surface. In extreme cases, breakout is likely to occur because the cooling plate warps due to the heat of the molten steel and the solidified shell. On the other hand, when the linear flow rate of the cooling water exceeds 10 m / sec, the solidified shell in the mold is cooled too much and vertical cracks are likely to occur. The solidification temperature α of the mold powder, the linear flow rate β of the cooling water passing through the cooling water passage, the thermal conductivity γ of the cooling plate
The Q value defined by the above-described equation (A) consisting of the thickness δ of the cooling plate is set to 4.6-14. When the Q value is less than 4.6, the average solid phase thickness is 0.35 mm or less at a casting speed of 1.0 m / min and 0.2 mm or less at a casting speed of 5.0 m / min. . When the average solid phase thickness is 0.2 mm or less, the effect of slow cooling the solidified shell by the mold powder becomes small, and the cooling of the solidified shell in the mold becomes uneven in the width direction. Longitudinal cracks are likely to occur. When the Q value exceeds 14,
In the range of the casting speed of 1.0 to 5.0 m / min, the average liquid phase thickness is 0.1 mm or less. When the average liquid phase thickness is 0.1 mm or less, the solidified shell is likely to be seized onto the cooling plate of the mold, so that a restrictive breakout is likely to occur. EXAMPLE A vertical bending type continuous casting machine having a vertical portion length of 1 m, a bending radius of 3.5 m, and a machine length of 15 m was used.
An 11% by mass medium carbon steel, a hypoperitectic steel, was cast at a casting speed of 3 m.
Casting at / min. Mold exit side thickness is 120mm, width is 1
A rectangular mold of 500 mm was used. The cooling plate of the mold has a thermal conductivity of 355 W /
Ag-added deoxidized copper with m 2 · k or 209 W / m 2
* Cr * Zr copper of precipitation hardening type copper alloy which is k was used.
The thickness of the cooling plate of the mold was 30 mm. The cross-sectional size of the cooling water passage is 20 m long
m, width 5 mm, and the height was the total height of the cooling plate. The cooling water passage was arranged in such a manner that the portion of 5 mm in width was in contact with the back frame on the anti-melting steel side in the cooling plate on the long side of the mold. 75 cooling water passages were arranged on one cooling plate. The test was performed by changing the linear flow velocity of the cooling water passing through the cooling water passage of the cooling plate in the mold within a range of 4 to 12 m / sec. Further, four types of mold powders having a solidification temperature changed within a range of 1000 to 1300 ° C. were used. Table 1 shows the chemical composition and solidification temperature of the mold powder. In each test, 1-heat single casting was performed. One heat is about 100
ton. [Table 1] The occurrence of a constraining breakout during casting was predicted by mounting a thermocouple in the cooling plate of the mold. Specifically, it is as follows. The temperature of the cooling plate was measured by a thermocouple attached in the cooling plate on the long side on both sides of the mold. Thermocouples were placed in a total of 18 locations in the width direction at the center of the thickness of the cooling plate in one side, ie, 6 locations in the width direction and 3 locations in the casting direction. When the difference between the maximum and minimum values of the temperature measurement results by the thermocouple in the cooling plate on one side is 10 ° C or higher, a breakout prediction alarm is sounded as the solidified shell starts to be seized on the cooling plate of the mold, I made a prediction. The number of predictive warnings in each test was measured to evaluate the ease of occurrence of a restrictive breakout. A representative 10 m long slab sample was taken from each test, and the number of occurrences of restraint marks (seizure marks) on the slab surface was examined by visual inspection. Investigate. From the measured number of restraint marks generated, the number of restraint marks generated per slab length was determined. Also, from the measured length of occurrence of vertical cracks, the slab length 1
The length of the vertical crack per m was calculated | required. Furthermore, from each test, a typical length of 10 m
The slab was hot rolled and wound on a hot coil. After pickling the hot coil, visually observe the surface,
The occurrence of surface defects due to vertical cracks and restraint marks in the slab was investigated. The value obtained by dividing the weight of the surface flawed portion by the total weight of the hot coil was defined as the hot coil quality defect occurrence rate. Each test condition and each test result are shown in Table 2 and Table 3. [Table 2] [Table 3] Test No. of the example of the present invention. 1-No. In 8,
The range of each condition of the solidification temperature of the mold powder prescribed by the method of the present invention, the thickness of the cooling plate of the mold, the linear flow rate of the cooling water passing through the cooling water passage provided in the cooling plate, and the Q value Tested within. For the mold cooling plate, Ag-added deoxidized copper having a thermal conductivity of 355 W / m 2 · k was used. These test Nos. 1-No. In No. 8, the number of predictive alarms for restrictive breakout was zero, and the number of slab restraint marks generated was zero. Moreover, vertical cracks did not occur on the slab surface. In addition, there were tests with a hot coil quality defect rate of 1-2%, but in most tests,
No surface flaws occurred on the hot coil. in this way,
Occurrence of constraining breakout could be prevented, and slabs and hot coils with good surface quality were obtained. Comparative Example Test No. 9 and no. 10, the linear flow velocity of the cooling water passing through the cooling water passage was increased outside the range defined by the method of the present invention, and the Q value was also tested outside the upper limit of the conditions defined by the method of the present invention. Comparative Example Test No. 11 and no. 12
Then, the linear flow velocity of the cooling water passing through the cooling water passage is within the range defined by the method of the present invention, and the Q value is defined by the method of the present invention by using a mold powder having a high solidification temperature. Tested outside the upper limit of conditions. Comparative Example Test No. In No. 13, the linear flow velocity of the cooling water passing through the cooling water passage was slowed outside the range defined by the method of the present invention, but the Q value was tested within the range defined by the method of the present invention. Test No. of the comparative example. 14
Although the linear flow rate of the cooling water passing through the cooling water flow path was increased outside the range defined by the method of the present invention, the Q value was tested within the range defined by the method of the present invention. These test Nos. 9-No. In No. 12, no constraining breakout occurred, but the number of predictive alarms for constraining breakout was 3-6 times / heat.
The number of slab restraint marks generated is 0.02 to 0.10 / m.
Met. This is because the average liquid phase thickness of the molten slag is reduced because the Q value is large, and the solidified shell is easily seized onto the cooling plate of the mold. Vertical cracks did not occur on the slab surface. However, the hot coil quality defect incidence is 5-1
At 5%, it was a slightly more frequent occurrence. This is because the restraint mark on the surface of the slab became a surface defect of the hot coil. Test No. 1 in which the linear flow rate of the cooling water was slowed down. 13
And test No. with increased linear flow velocity. In No. 14, vertical cracks occurred on the surface of the slab, and quality defects also occurred in the hot coil. Test No. of the example of the present invention. 15-No. In No. 26, Cr · Zr copper of a precipitation hardening type copper alloy having a thermal conductivity of 209 W / m 2 · k was used. Other conditions are test N
o. 1-No. Same as 8. Test No. 15-No. 26, test N
o. 1-No. The test results were almost the same as the test results of No. 8, and the occurrence of constraining breakout could be prevented, and slabs and hot coils with good surface quality were obtained. Comparative Example Test No. 27 and no. 28
Then, the linear flow velocity of the cooling water passing through the cooling water flow path provided in the cooling plate is slightly slower within the range specified by the method of the present invention, or outside the lower limit of the range specified by the method of the present invention. Then, by slowing down, the Q value was tested outside the lower limit of the conditions defined by the method of the present invention. For other conditions, test no. 15-No. 26 under the same conditions. Test No. with small Q value 27 and no.
In No. 28, vertical cracks occurred on the surface of the slab, and defective quality also occurred in the hot coil. Comparative Example Test No. In No. 29, the linear flow velocity of the cooling water passing through the cooling water flow path was increased outside the range defined by the method of the present invention, but the Q value was tested within the range defined by the method of the present invention. Test No. 1 in which the linear flow rate of the cooling water was increased. 29
Then, vertical cracks occurred on the surface of the slab, and defective quality also occurred in the hot coil. As a result of the application of the method of the present invention, a high speed of about 3 to 5 m / min or more from low carbon steel to medium carbon steel including subperitectic steel, which is prone to vertical cracks, on the slab surface. Also when cast by, a slab of good surface quality can be obtained without causing a vertical crack on the surface without generating a constraining breakout.

【図面の簡単な説明】 【図1】本発明の方法で用いる鋳型および鋳型内の添加
したパウダおよび溶鋼の冷却過程の状況を模式的に示す
図である。 【図2】固相の平均の厚さとQ値との関係を示す図であ
る。 【図3】液相の平均の厚さとQ値との関係を示す図であ
る。 【符号の説明】 1:鋳型 1a:鋳型の長辺 2:冷却板 3:バックフレーム 4:冷却水通流路 5:浸漬ノズル 6:溶鋼 7:凝固殻 8:モールドパウダ 9:溶融スラグ 10:固相 11:溶融スラグの液
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically showing the cooling process of a mold used in the method of the present invention, powder added in the mold, and molten steel. FIG. 2 is a diagram showing a relationship between an average thickness of a solid phase and a Q value. FIG. 3 is a diagram showing a relationship between an average thickness of a liquid phase and a Q value. [Description of Symbols] 1: Mold 1a: Long side of mold 2: Cooling plate 3: Back frame 4: Cooling water passage 5: Immersion nozzle 6: Molten steel 7: Solidified shell 8: Mold powder 9: Molten slag 10: Solid phase 11: Liquid phase of molten slag

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B22D 11/16 B22D 11/16 A (72)発明者 村上 敏彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 岡 正彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平10−263769(JP,A) 特開 平10−58093(JP,A) 特開 平5−318035(JP,A) 特開 平9−94635(JP,A) 特開 平8−47760(JP,A) 特開 平9−136144(JP,A) 特開 平7−214266(JP,A) 特開 平8−141713(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/10 B22D 11/00 B22D 11/055 B22D 11/059 120 B22D 11/108 B22D 11/16 ─────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI B22D 11/16 B22D 11/16 A (72) Inventor Toshihiko Murakami 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries Intra (72) Inventor Masahiko Oka 4-5-33 Kitahama, Chuo-ku, Osaka, Osaka Sumitomo Metal Industries, Ltd. (56) References JP 10-263769 (JP, A) JP 10-10 58093 (JP, A) JP-A-5-318035 (JP, A) JP-A-9-94635 (JP, A) JP-A-8-47760 (JP, A) JP-A-9-136144 (JP, A) JP-A-7-214266 (JP, A) JP-A-8-141713 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11/10 B22D 11/00 B22D 11/055 B22D 11/059 120 B22D 11/108 B22D 11/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】凝固温度αが1000〜1300℃のモー
ルドパウダを用いて、C含有率が0.05〜0.18質
量%の溶鋼を鋳造する連続鋳造方法であって、厚さδが
20〜45mmで、熱伝導率がγ(W/m2 ・k)であ
る銅または銅合金からなる鋳型の冷却板を用い、鋳型の
冷却板内でバックフレーム側に設けられた冷却水通流路
を通過する冷却水の線流速βを5〜10m/秒とし、か
つ、上記α、β、γおよびδから求められるQ値が、下
記(A)式を満足する条件で鋳造することを特徴とする
鋼の連続鋳造法。 4.6≦Q≦14 ・・・(A) ここで、Q=(α×β×γ)/(δ×104
(57) Claims 1. A continuous casting method for casting molten steel having a C content of 0.05 to 0.18% by mass using a mold powder having a solidification temperature α of 1000 to 1300 ° C. A mold cooling plate made of copper or copper alloy having a thickness δ of 20 to 45 mm and a thermal conductivity of γ (W / m 2 · k) is used, and the back frame side in the mold cooling plate is used. The linear flow rate β of the cooling water passing through the cooling water flow path provided at 5 to 10 m / sec, and the Q value obtained from α, β, γ and δ satisfies the following formula (A) A continuous casting method for steel, characterized by casting under the following conditions. 4.6 ≦ Q ≦ 14 (A) where Q = (α × β × γ) / (δ × 10 4 )
JP32742899A 1999-11-17 1999-11-17 Continuous casting method Expired - Fee Related JP3402286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32742899A JP3402286B2 (en) 1999-11-17 1999-11-17 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32742899A JP3402286B2 (en) 1999-11-17 1999-11-17 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2001138015A JP2001138015A (en) 2001-05-22
JP3402286B2 true JP3402286B2 (en) 2003-05-06

Family

ID=18199069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32742899A Expired - Fee Related JP3402286B2 (en) 1999-11-17 1999-11-17 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3402286B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617704B2 (en) * 2011-03-11 2014-11-05 新日鐵住金株式会社 Steel continuous casting method
JP6358178B2 (en) * 2015-06-30 2018-07-18 Jfeスチール株式会社 Continuous casting method and mold cooling water control device

Also Published As

Publication number Publication date
JP2001138015A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP3019859B1 (en) Continuous casting method
KR102239946B1 (en) Manufacturing method of austenitic stainless steel slab
JP4462255B2 (en) Continuous casting method for medium carbon steel
JP7284403B2 (en) Twin roll continuous casting apparatus and twin roll continuous casting method
KR102245010B1 (en) Method for continuous casting of steel
JP2007533459A (en) Nonferrous metal and light metal belt casting method and apparatus therefor
JP3402286B2 (en) Continuous casting method
KR101286890B1 (en) Casting steel strip
JP5131992B2 (en) Continuous casting method for medium carbon steel
JP7226043B2 (en) Continuous casting method
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JP3610871B2 (en) Continuous casting method of steel
JP3856686B2 (en) Casting status monitoring system for continuous casting
JP4407371B2 (en) Steel continuous casting method
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
JP2024004032A (en) Continuous casting method
JP2001179413A (en) Method for continuously casting steel
JP2007289977A (en) Method and instrument for estimating molten metal temperature in mold for continuous casting
Bhattacharya et al. Root cause analysis of surface defects in coils produced through thin slab route
JP3395749B2 (en) Steel continuous casting method
JP3546137B2 (en) Steel continuous casting method
JP2991222B2 (en) Twin roll continuous casting of stainless steel
Esaka Continuous casting of steels
JP2001347353A (en) Method for continuously casting steel
JP2023141391A (en) Continuous casting method for steal

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3402286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees