JPH02271926A - Liquefaction of iridium - Google Patents

Liquefaction of iridium

Info

Publication number
JPH02271926A
JPH02271926A JP9415289A JP9415289A JPH02271926A JP H02271926 A JPH02271926 A JP H02271926A JP 9415289 A JP9415289 A JP 9415289A JP 9415289 A JP9415289 A JP 9415289A JP H02271926 A JPH02271926 A JP H02271926A
Authority
JP
Japan
Prior art keywords
iridium
black
acid
manganese
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9415289A
Other languages
Japanese (ja)
Other versions
JP2698424B2 (en
Inventor
Akihiko Okuda
晃彦 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1094152A priority Critical patent/JP2698424B2/en
Publication of JPH02271926A publication Critical patent/JPH02271926A/en
Application granted granted Critical
Publication of JP2698424B2 publication Critical patent/JP2698424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To improve the efficiency of chlorination and the liquefaction rate of Ir compd. produced by chlorination by subjecting a Mn-Ir alloy the Ir content of which is controlled to <=30wt.% to leaching with acid and then chlorinating the obtd. Ir black. CONSTITUTION:The Ir-Mn alloy is controlled to have <=30wt.% Ir. This alloy is subjected to leaching of Mn with acid (hydrochloric acid, sulfuric acid or nitric acid) to obtain Ir black. The Ir black is mixed with chloride (NaCl, KCl, BaCl2), chlorinated with Cl gas by heating and then extracted with water.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イリジウムの液化方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for liquefying iridium.

(従来技術とその問題点) イリジウムは、その性質である耐薬品に優れていること
から通常の酸、アルカリはもちろんのこと、王水、塩酸
−塩素にもほとんど溶解されない。
(Prior art and its problems) Iridium has excellent chemical resistance and is hardly dissolved in ordinary acids and alkalis, as well as aqua regia and hydrochloric acid-chlorine.

そのためイリジウムと亜鉛(80〜90wt%)の合金
を800℃〜850℃で2.5〜3時間、表面に食塩被
覆を20〜30[llff1の厚さにして時々攪拌して
合金化したのち、塩酸等で亜鉛を溶解しイリジウムブラ
ック (イリジウム黒)を得る。
Therefore, an alloy of iridium and zinc (80 to 90 wt%) was alloyed at 800°C to 850°C for 2.5 to 3 hours, with a salt coating on the surface to a thickness of 20 to 30 [llff1], with occasional stirring. Dissolve zinc with hydrochloric acid, etc. to obtain iridium black.

ついで、水酸化ナトリウムと過酸化ナトリウムまたは硝
酸カリウムの混合塩と上記イリジウムブラックを800
℃付近でアルカリ溶融し、水で塩を溶解するとイリジウ
ムは酸化イリジウムとなり濾過、分離したのち、塩酸ま
たは王水に溶解する方法が用いられていた。
Next, a mixed salt of sodium hydroxide and sodium peroxide or potassium nitrate and the above iridium black were mixed at 800%
Iridium was converted into iridium oxide by alkali melting at around °C and dissolving the salt with water, followed by filtration and separation, followed by dissolving in hydrochloric acid or aqua regia.

しかし、イリジウムと亜鉛の合金をする際にイリジウム
を細かな粉末や薄い板状等にしないと合金化に時間を要
し、亜鉛が溶解中に酸化しないように食塩で被覆してお
く必要があるなどの欠点があった。
However, when alloying iridium and zinc, unless the iridium is made into a fine powder or thin plate, alloying takes time, and the zinc must be coated with salt to prevent it from oxidizing during melting. There were drawbacks such as.

また、イリジウムブラックをアルカリ溶融して水で塩を
溶解した際に該水溶液中にイリジウムが一部分溶解する
ので、そのイリジウムを回収精製するための経済的な欠
点もあった。
Furthermore, when iridium black is melted with an alkali and the salt is dissolved in water, some of the iridium is dissolved in the aqueous solution, so there is an economic disadvantage in recovering and purifying the iridium.

(発明の目的) 本発明は、斯かる欠点を解決すべく成されたもので、イ
リジウム金属の粉末およびバルクを塩素化し、水抽出に
より液化するイリジウムの液化方法を提供することを目
的とする。
(Object of the Invention) The present invention was made to solve the above drawbacks, and an object of the present invention is to provide a method for liquefying iridium by chlorinating powder and bulk of iridium metal and liquefying the same by water extraction.

(問題点を解決するための手段) 本発明は、イリジウムを液化する方法において、イリジ
ウムの含有率を30重里%以下の割合でマンガンと合金
化する第1の工程と、該イリジウムとマンガンの合金を
酸で浸出してイリジウムのブラックを得る第2の工程と
、該イリジウムのブラックを塩化物塩と混合して加熱下
で塩素ガスによりイリジウムを塩素化する第3の工程と
、該塩素化したイリジウムを水で抽出する第4の工程と
から成ることを特徴とするイリジウムの液化方法である
(Means for Solving the Problems) The present invention provides a method for liquefying iridium, including a first step of alloying iridium with manganese at a content of 30% or less, and an alloy of iridium and manganese. a second step of leaching with acid to obtain iridium black; a third step of mixing the iridium black with a chloride salt and chlorinating the iridium with chlorine gas under heating; This is a method for liquefying iridium characterized by comprising a fourth step of extracting iridium with water.

イリジウムとマンガンを合金化する理由は、イリジウム
とマンガンが合金化しやすく、しかも合金とし酸で浸出
した場合に亜鉛などの他の金属に比べて浸出速度が速く
、得られるイリジウムブラックが微細で表面積が極めて
大きく、塩素化反応をさせる場合に塩化物塩との混合が
させやすく、反応活性を高くできるからである。
The reason for alloying iridium and manganese is that iridium and manganese are easy to alloy, and when they are alloyed and leached with acid, the leaching rate is faster than that of other metals such as zinc, and the resulting iridium black is fine and has a small surface area. This is because it is extremely large and can be easily mixed with a chloride salt when carrying out a chlorination reaction, making it possible to increase the reaction activity.

またイリジウムの合金割合を30 w t%以下にする
理由は、イリジウムの割合が高い場合イリジウムのバル
クと同様な性質を示し、酸では浸出できなくなり、イリ
ジウムの割合が低い場合でもイリジウムの割合が3 Q
 w t%以上であると酸浸出が困難になるかあるいは
酸浸出に多くの時間を要することになる。
The reason why the alloy proportion of iridium is set to 30 wt% or less is that when the proportion of iridium is high, it exhibits properties similar to bulk iridium and cannot be leached with acid, and even when the proportion of iridium is low, the proportion of iridium is 30 wt% or less. Q
If it exceeds wt%, acid leaching becomes difficult or takes a long time.

浸出に用いる酸の種類は工業的によく用いられる鉱酸が
適当であり、塩酸、硫酸、硝酸がよく、酸濃度について
は特に限定はないが、酸浸出を行う際の発熱や水素発生
の制御が行える範囲であることが望ましく、また上記の
酸の混合したものはイリジウムブラックを少量溶解する
こともあるので用いないほうがよい。
The appropriate type of acid used for leaching is mineral acid, which is often used industrially, such as hydrochloric acid, sulfuric acid, or nitric acid.There are no particular limitations on the acid concentration, but it is important to control heat generation and hydrogen generation during acid leaching. It is desirable that the acid is within a range where the above-mentioned acids can be dissolved, and it is better not to use a mixture of the above acids since they may dissolve a small amount of iridium black.

塩素化によりイリジウムが液化する理由については、下
記のような塩素ガスと塩化物塩との塩素化反応により可
溶性の錯塩を形成する。
The reason why iridium liquefies due to chlorination is that a soluble complex salt is formed by the chlorination reaction between chlorine gas and chloride salt as described below.

I r+2NaCβ+2CL =Na21 rCf。Ir+2NaCβ+2CL=Na21rCf.

I r+2KCj!  +2cfz =に2I rCj
!sI r+Bacj!2+2(:i!z =Ba I
 rClgこれらの錯塩は水に容易に溶解する。
Ir+2KCj! +2cfz = 2I rCj
! sI r+Bacj! 2+2(:i!z =Ba I
rClg These complex salts are easily soluble in water.

上記の塩素化に必要な塩化物塩は塩化す) IJウム、
塩化カリウム、塩化バリウムなどの代表的なものを用い
ればよく、イリジウムブラックに対して塩化物塩の必要
遣はイリジウム1モルに対して塩化す) IJウム、塩
化カリウムは2モル、塩化バリウムは1モルであるが、
塩素化の反応を経済的に促進させるためには化学量論型
の1.2倍〜2倍用いるとよい。
The chloride salt required for the above chlorination is chloride) IJum,
Typical ones such as potassium chloride and barium chloride may be used, and the required amount of chloride salt for iridium black is chloride per 1 mole of iridium) IJum, potassium chloride is 2 moles, and barium chloride is 1 mole. Although it is a mole,
In order to economically promote the chlorination reaction, it is recommended to use 1.2 to 2 times the stoichiometric amount.

塩素化の反応温度は500℃〜900℃がよいが、温度
を高くしすぎると塩化物塩が溶融するため、気体と液体
、気体と固体の接触が低下し、塩素化の反応が遅くなる
The reaction temperature for chlorination is preferably 500°C to 900°C, but if the temperature is too high, the chloride salt will melt, reducing contact between gas and liquid, and gas and solid, and slowing down the chlorination reaction.

また、塩素化の反応後は冷却したのちに反応物を取り出
さなければならない。
Furthermore, after the chlorination reaction, the reactants must be taken out after cooling.

これは塩素化したイリジウムの錯塩を温度の高い状態で
塩素ガス雰囲気から取り出すと熱分解により再びイリジ
ウムブラックやイリジウムの酸化物が生成することがあ
るからである。
This is because if a chlorinated iridium complex salt is removed from a chlorine gas atmosphere at a high temperature, iridium black or iridium oxide may be generated again due to thermal decomposition.

ついで、塩素化したイリジウムの錯塩は水で抽出する。The chlorinated iridium complex is then extracted with water.

この際塩化物塩が吸熱反応を伴うため、温水を用いると
より効果的に水抽出が可能となる。
At this time, since chloride salts involve an endothermic reaction, water extraction becomes more effective when hot water is used.

以下、本発明の実施例を記載するが、該実施例は本発明
を限定するものではない。
Examples of the present invention will be described below, but the examples are not intended to limit the present invention.

(実施例1) イリジウム金属(30mmX98.5mmX1.5mm
t)100gをマンガンフレーク550gと混ぜ、ルツ
ボ(アルミナ製の直径60mm高さ150mm厚み5f
flIIl)に入れ真空中で400KH2で高周波溶解
し40分間後に銅製の鋳型に鋳造して、イリジウムl 
5wt%とマンガン85wt%の合金インゴットを得た
(Example 1) Iridium metal (30mmX98.5mmX1.5mm
t) Mix 100g with 550g of manganese flakes and place in a crucible (made of alumina, diameter 60mm, height 150mm, thickness 5f).
Iridium l
An alloy ingot containing 5 wt% manganese and 85 wt% manganese was obtained.

上記の合金インゴットをガラスピーカ内で6N−HCj
!IOI!を加え、液温45℃で3時間浸出し、マンガ
ンを溶解してイリジウムブラックとし、該イリジウムブ
ラックを濾過、温水で洗浄したのち、60℃で12時間
乾燥した。 上記の6N−HCfでマンガンを溶解した
溶液中のイリジウムを確認のためICP分析装置で分析
したところ不検出であった。
The above alloy ingot was heated to 6N-HCj in a glass speaker.
! IOI! was added and leached for 3 hours at a liquid temperature of 45°C, manganese was dissolved to obtain iridium black, the iridium black was filtered, washed with warm water, and then dried at 60°C for 12 hours. Iridium in the solution in which manganese was dissolved in 6N-HCf was analyzed using an ICP analyzer to confirm that it was not detected.

ついで、乾燥したイリジウムブラックを塩化ナトリウム
100gと混合し石英ボートに入れ、横型管状電気炉に
装填された石英管中に該石英ボートを入れて、塩素気流
中600℃で2時間塩素化したのち、塩素ガスと窒素ガ
スを供給して冷却してから石英ボートを取り出した。
Next, the dried iridium black was mixed with 100 g of sodium chloride and placed in a quartz boat, and the quartz boat was placed in a quartz tube loaded in a horizontal tubular electric furnace and chlorinated at 600°C for 2 hours in a chlorine stream. After cooling by supplying chlorine gas and nitrogen gas, the quartz boat was taken out.

塩化ナトリウムと混合して塩素化したイリジウムブラッ
クを21!の水で抽出した水溶液中のイリジウムを分析
したところ46g/I!の濃度であった。
Iridium black, which is chlorinated by mixing it with sodium chloride, is 21! Iridium in the aqueous solution extracted with water was analyzed and found to be 46g/I! The concentration was

以上の結果から液化率は92%であった。From the above results, the liquefaction rate was 92%.

(実施例2) 実施例1と同じ高周波溶解方法でイリジウム(10++
+mX89mmX5mmt)100gをマンガンフレー
ク230gと混ぜ溶解してイリジウム30wt%とマン
カリ70wt%の合金インゴットを得た。
(Example 2) Iridium (10++
+ m x 89 mm x 5 mmt) was mixed and dissolved with 230 g of manganese flakes to obtain an alloy ingot containing 30 wt% iridium and 70 wt% mancali.

上記の合金インゴットをガラスピーカ内で6N−H2S
O<t Oβを加え、加熱して液温60t’で6時間浸
出し、マンガンを溶解してイリジウムブラックとし、該
イリジウムブラックを濾過、温水で洗浄したのち、60
t’で12時間乾燥した。
The above alloy ingot was heated to 6N-H2S in a glass speaker.
O
It was dried at t' for 12 hours.

上記の6N−H,SO,でマンガンを溶解した溶液中の
イリジウムを確認のためICP分析装置で分析したとこ
ろ不検出であった。
Iridium in the solution in which manganese was dissolved in 6N-H, SO, was analyzed using an ICP analyzer to confirm that it was not detected.

ついで、乾燥したイリジウムブラックを実施例1と同様
に塩素化を行ったのち、21の水で抽出した水溶液中の
イリジウムを分析したところ43g / lの濃度であ
った。
Next, the dried iridium black was chlorinated in the same manner as in Example 1, and the iridium in the aqueous solution extracted with water in No. 21 was analyzed and found to have a concentration of 43 g/l.

以上の結果から液化率は86%であった。From the above results, the liquefaction rate was 86%.

(比較例1) 粒径5〜20μmのイリジウム100gと塩化ナトリウ
ム100gを混合し、実施例1と同様に塩素化したのち
、水抽出して水溶液中のイリジウムを分析したところ2
1g/I!であった。
(Comparative Example 1) 100 g of iridium with a particle size of 5 to 20 μm and 100 g of sodium chloride were mixed, chlorinated in the same manner as in Example 1, extracted with water, and analyzed for iridium in the aqueous solution.2
1g/I! Met.

この結果から液化率は42%であった。From this result, the liquefaction rate was 42%.

(比較例2) 実施例1と同じ高周波溶解方法で、イリジウム(30n
+mx98.5mmx1.5mmt) 100gをマン
ガンフレーク186gと混ぜ溶解してイリジウム35w
t%とマンガン65wt%の合金インゴットを得た。
(Comparative Example 2) Using the same high-frequency melting method as in Example 1, iridium (30n
+mx98.5mmx1.5mmt) Mix 100g with 186g of manganese flakes and dissolve to make iridium 35w.
An alloy ingot containing 65 wt% of manganese and 65 wt% of manganese was obtained.

以下実施例1と同様に操作して酸浸出したところ、完全
に浸出させるのに30時間かかった。
Thereafter, acid leaching was carried out in the same manner as in Example 1, and it took 30 hours for complete leaching.

また実施例1と同様にイリジウムブラックを塩素化した
のち、水抽出して得た水溶液中のイリジウムを分析した
ところ36g/ji!であった。
Further, in the same manner as in Example 1, iridium black was chlorinated and then extracted with water. Iridium in the aqueous solution obtained was analyzed and found to be 36 g/ji! Met.

この結果から液化率は72%であった。From this result, the liquefaction rate was 72%.

(実施例3) 実施例1と同じに操作して得た、イリジウム15wt%
とマンガン85wt%の合金インゴットを実施例1と同
じに酸浸出し濾過、洗浄、乾燥して得たイリジウムブラ
ックを塩化バリウム150gと混合して、実施例1と同
じ装置で塩素気流中800℃で2時間塩素化したのち、
実施例1と同様に塩素ガスと窒素ガス気流中で冷却した
のち、塩素化したイリジウムブラックを31の水で水抽
出して得た水溶液中のイリジウムを分析したところ29
g/lであった。
(Example 3) Iridium 15wt% obtained by the same operation as Example 1
Iridium black obtained by acid leaching, filtering, washing, and drying an alloy ingot containing 85 wt% manganese in the same manner as in Example 1 was mixed with 150 g of barium chloride and heated at 800°C in a chlorine stream in the same apparatus as in Example 1. After chlorination for 2 hours,
After cooling in a stream of chlorine gas and nitrogen gas in the same manner as in Example 1, the iridium in the aqueous solution obtained by extracting chlorinated iridium black with water of 31 was analyzed.29
g/l.

この結果から液化率は87%であった。From this result, the liquefaction rate was 87%.

(従来例) イリジウム(30mmX 98. 5mmX 1. 5
mmt)100gを亜鉛550gと混ぜ、ルツボ(アル
ミナ製の直径60mm高さ150mm厚み5mm)に入
れ食塩被覆を30mmL、て電気炉で溶解し、1時間後
に銅製の鋳型に鋳造して、イリジウムと亜鉛の合金イン
ゴットを得た。
(Conventional example) Iridium (30mm x 98.5mm x 1.5
mmt) was mixed with 550 g of zinc, placed in a crucible (made of alumina, diameter 60 mm, height 150 mm, thickness 5 mm), covered with 30 mm of common salt, melted in an electric furnace, and after 1 hour cast in a copper mold to combine iridium and zinc. obtained alloy ingots.

上記の合金インゴットをガラスピーカ内で6N−HCl
l 0 I!を加え、加熱して液温60tt’6時間浸
出し、亜鉛を溶解してイリジウムブラックとし、該イリ
ジウムブラックを濾過、温水で洗浄した。上記の6N−
HCfで亜鉛を溶解した溶液中のイリジウムをm2のた
めICP分析装置で分析したところ不検出であった。
The above alloy ingot was mixed with 6N-HCl in a glass speaker.
l 0 I! was added and heated to leached at a liquid temperature of 60 tt for 6 hours to dissolve the zinc to form iridium black, which was filtered and washed with warm water. 6N- above
When m2 of iridium in a solution of zinc dissolved in HCf was analyzed using an ICP analyzer, no detection was found.

ついで、イリジウムブラックを水酸化ナトリウム300
gと過酸化ナトリウム300gを混合しニッケルルツボ
に入れ、電気炉中で800℃で1時間アルカリ溶融した
のち、該アルカリ溶融したものを51の水で抽出し濾過
して水溶液中のイリジウムを分析したところ0.Ig/
fの濃度であった。
Next, add iridium black to 300% sodium hydroxide.
g and 300 g of sodium peroxide were mixed, placed in a nickel crucible, and melted with alkali at 800°C for 1 hour in an electric furnace.The alkali melt was extracted with 51 water and filtered to analyze iridium in the aqueous solution. Tokoro 0. Ig/
The concentration was f.

上記濾過して得た沈殿物を塩酸で溶解したところイリジ
ウム12g/j2の濃度の溶液3j2を得た。
The precipitate obtained by the above filtration was dissolved in hydrochloric acid to obtain a solution 3j2 having a concentration of 12 g/j2 of iridium.

以上の結果から液化率は36%であったが水で抽出した
水溶液中と、塩酸に溶解した溶液中とイリジウムが分か
れて液化されてしまった。
From the above results, the liquefaction rate was 36%, but iridium was separated and liquefied in the aqueous solution extracted with water and the solution dissolved in hydrochloric acid.

(発明の効果) 以上の説明から明らかのように本発明によるイリジウム
金属の液化方法は、イリジウムを30wt%以下の割合
でマンガンと合金過したのち、このイリジウムとマンガ
ン合金を酸で浸出することにより微細な表面積の大きい
イリジウムブラックを得ることができ、該イリジウムブ
ラックは塩化物塩と塩素ガスにより塩素化が効率よくで
きしかも水抽出で液化することができるため、回収精製
あるいはイリジウムの化合物等を製造する上で極めて有
効なものである。
(Effects of the Invention) As is clear from the above explanation, the method for liquefying iridium metal according to the present invention involves alloying iridium with manganese in a proportion of 30 wt% or less, and then leaching this iridium and manganese alloy with acid. Fine iridium black with a large surface area can be obtained, and this iridium black can be efficiently chlorinated with chloride salt and chlorine gas, and can be liquefied by water extraction, so it can be recovered and purified or used to produce iridium compounds. It is extremely effective in doing so.

Claims (1)

【特許請求の範囲】[Claims] 1、イリジウムを液化する方法において、イリジウムの
含有率を30重量%以下の割合でマンガンと合金化する
第1の工程と、該イリジウムとマンガンの合金を酸で浸
出してイリジウムのブラックを得る第2の工程と、該イ
リジウムのブラックを塩化物塩と混合して加熱下で塩素
ガスによりイリジウムを塩素化する第3の工程と、該塩
素化したイリジウムを水で抽出する第4の工程とから成
ることを特徴とするイリジウムの液化方法。
1. A method for liquefying iridium, which includes a first step of alloying iridium with manganese at a content of 30% by weight or less, and a second step of leaching the iridium and manganese alloy with acid to obtain iridium black. 2, a third step of mixing the iridium black with a chloride salt and chlorinating the iridium with chlorine gas under heating, and a fourth step of extracting the chlorinated iridium with water. A method for liquefying iridium, characterized by:
JP1094152A 1989-04-13 1989-04-13 Liquefaction method of iridium Expired - Lifetime JP2698424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1094152A JP2698424B2 (en) 1989-04-13 1989-04-13 Liquefaction method of iridium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094152A JP2698424B2 (en) 1989-04-13 1989-04-13 Liquefaction method of iridium

Publications (2)

Publication Number Publication Date
JPH02271926A true JPH02271926A (en) 1990-11-06
JP2698424B2 JP2698424B2 (en) 1998-01-19

Family

ID=14102410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094152A Expired - Lifetime JP2698424B2 (en) 1989-04-13 1989-04-13 Liquefaction method of iridium

Country Status (1)

Country Link
JP (1) JP2698424B2 (en)

Also Published As

Publication number Publication date
JP2698424B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US4636353A (en) Novel neodymium/iron alloys
JP4874268B2 (en) Method for producing titanium
KR101965121B1 (en) Method for deoxygenating a metal in which oxygen is dissolved in solid solution state
CN105200243B (en) A kind of technique of electrum separating-purifying
JPS6191335A (en) Method for recovering platinum group metal
Li et al. An approach to prepare high-purity TiSi 2 for clean utilization of Ti-bearing blast furnace slag
JPS6139383B2 (en)
JPH02271926A (en) Liquefaction of iridium
US3212883A (en) Copper refining process
JPS6179736A (en) Recovering method of platinum group metal
JP3663795B2 (en) Method for solubilizing poorly soluble platinum group elements
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
US4406693A (en) Method for refining contaminated iridium
Yoshimura et al. The improvement of platinum recovery ratio in the recycling process using “dry aqua regia”
US5004500A (en) Chlorination process for recovering gold values from gold alloys
US4608235A (en) Recovery of cobalt
RU2534323C1 (en) Metallic cobalt obtaining method
JPS5884934A (en) Recovering method for palladium
JP2505492B2 (en) How to dissolve iridium
JPH05310433A (en) Liquefaction of iridium
JPH0524207B2 (en)
JPS63222020A (en) Production of chlororhodium acid
JPS6049701B2 (en) Method for removing arsenic and/or copper in molten metal
JPS5877506A (en) Reduction of metal oxide to metal powder
JPS63291819A (en) Recovery of gallium