JP3663795B2 - Method for solubilizing poorly soluble platinum group elements - Google Patents
Method for solubilizing poorly soluble platinum group elements Download PDFInfo
- Publication number
- JP3663795B2 JP3663795B2 JP352897A JP352897A JP3663795B2 JP 3663795 B2 JP3663795 B2 JP 3663795B2 JP 352897 A JP352897 A JP 352897A JP 352897 A JP352897 A JP 352897A JP 3663795 B2 JP3663795 B2 JP 3663795B2
- Authority
- JP
- Japan
- Prior art keywords
- platinum group
- group element
- powder
- soluble platinum
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非鉄金属製錬工程で生成する白金族濃縮物、白金族触媒のスクラップ等から、難溶性白金族元素を分離回収する方法に関するものである。
【0002】
【従来の技術】
白金族元素の中でも白金(Pt)とパラジウム(Pd)以外の元素、即ちルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)、イリジウム(Ir)は難溶性白金族元素とも称され、一般に白金族元素の湿式溶解に使用される塩酸及び塩素との反応速度が非常に遅く、特に4価の酸化物の形態では事実上全く溶解しない。
【0003】
これらの難溶性白金族元素を、常法の湿式法で塩酸及び塩素により溶解可能な状態とする可溶性化方法として、かっては酸化剤及びアルカリと融解するか、又は二硫酸塩と融解する方法が広く行われていたが、反応が不完全で繰り返し処理物量が多くなるという欠点があった。このため近年では、下記する塩化処理法、ガス還元法、融解還元法などで可溶性化処理されている。
【0004】
塩化処理法としては、原料を塩素単独、又は還元剤及び塩素、あるいは塩化アルカリ及び塩素と共に加熱して、白金族元素を塩化物又はクロロ錯体として可溶性化する方法や、特公平7−65122号公報に示されているように塩化水素の発生源及び還元剤の混合物と加熱し、生成した白金族元素の塩化物を金属に還元することにより、可溶性化する方法が知られている。
【0005】
しかし、塩素を使用する方法は勿論、特公平7−65122号公報に記載の塩化水素発生源を使用する方法でも、揮発した塩化物が金属だけでなくガラスや石英をも激しく腐食するため、装置の耐久性に問題があった。また、生成する白金族元素の塩化物は不完全に固相と気相に分配するため、完全な回収が困難であるうえ、白金族元素以外にも揮発物が生成し、これらが装置配管内に析出して閉塞をおこす原因となっていた。更に、塩素や塩化物に対して抵抗が高いRuやIrの酸化物に関しては、可溶性化が不完全であった。
【0006】
また、ガス還元法では、白金族元素を含む原料を、水素、又は一酸化炭素と加熱するか、あるいは特公平7−65121号公報に示されているように炭素含有物及び水蒸気と加熱して、生成する水性ガスにより還元し、可溶性化する方法が知られている。
【0007】
しかし、これらの方法では、基本的に白金族元素が金属単体まで還元されるだけであるから、他の可溶性金属が大過剰に共存し、且つ難溶性白金族元素がその中に均一に分散している場合、及び難溶性白金族元素の比表面積が非常に大きい場合に限り有効であって、難溶性白金族元素が単独であるか又は共存元素の存在量が少ない場合、あるいは難溶性白金族元素を含む原料が数μm以上である場合には可溶性化が困難であった。
【0008】
融解還元法としては、原料を白金族元素と合金を形成しうる金属と加熱融解して合金を形成させる方法、又は“Analyst”、 June 1995、Vol.120、No.6、1675〜1680に記載されているように、原料をNiとS及びNa2B4O7等と加熱処理し、白金族元素をNiS塊に吸収させて可溶性化する方法が知られている。
【0009】
しかしながら、これらの融解還元法では、融点の高い白金族元素及び合金化元素を完全に融解する必要があるため、白金族元素含有量が少ない場合でも1050℃、白金族元素含有量が多い場合には1350〜1550℃程度の高温に加熱する必要があった。従って、特殊な高温融解炉がないと実施できないばかりか、そのような高温融解炉を用いても溶融物による炉内壁面の損傷が激しく、短期間で使用不可能になるという問題があった。また、炉内から完全に融体を取り出すことは困難であるため、かなりの量の融体が繰返物として炉壁に残留しやすかった。
【0010】
更に、融解還元法における特に大きな問題として、融体を冷却して得られた融塊は、そのままでは常法に従って湿式浸出できないため、粉砕工程が不可欠な点がある。そのために、付帯設備として粉砕設備が必要になると共に、融魂の組成に関しても粉砕性の良好な元素をわざわざ添加し、且つ融体を急冷するなど、操業上の困難が伴っていた。
【0011】
【発明が解決しようとする課題】
本発明は、このような従来の事情に鑑み、原料中に含まれる難溶性白金族元素を可溶性化する際に、装置の腐食や白金族元素の不完全な揮発がなく、しかも特別な高温融解炉や湿式浸出前の粉砕が不要であり、イリジウムやルテニウムのような特に難溶性の白金族元素が多く含まれる原料でも可溶性化が可能な方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明が提供する難溶性白金族元素の可溶性化方法は、難溶性白金族元素を含有する固体原料粉末を、白金族元素と合金化しうる鉄族元素粉末と混合し、該難溶性白金族元素及び鉄族元素の融点未満で且つその合金の共融点未満の温度で加熱処理することを特徴とする。
【0013】
本発明の難溶性白金族元素の可溶性化方法において、難溶性白金族元素とは、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)、及びイリジウム(Ir)をいう。また、白金族元素と合金化しうる元素としては鉄族元素、例えば、鉄、ニッケル、コバルト等を使用することができるが、中でも鉄が好ましい。
【0014】
【発明の実施の形態】
本発明では、難溶性白金族元素であっても、これを含む原料を固体粉末の状態として鉄族元素粉末と混合し、各元素の融点及びその合金の共融点よりやや低い温度で加熱することによって、各粉末中の原子が接触面を介して相互に拡散するので、融解を経ることなく、可溶性化した難溶性白金族元素を含む合金が粉末として得られる。
【0015】
得られた合金粉末は、白金族元素が均一に分散して合金化されているので、後の常法による湿式溶解工程において、酸などに溶解する際に原子レベルの極めて微細な白金族元素の粒子が生成し、その比表面積が非常に大きいため可溶性になるものである。尚、難溶性白金族元素を含む原料には可溶性白金族元素が通常含まれるが、この可溶性白金族元素も溶解工程で支障なく溶解される。
【0016】
白金族元素と合金化しうる元素としては、前記のごとく鉄族の元素である鉄、ニッケル、コバルト等が使用可能である。これら以外にも白金族元素と合金化が可能な元素は存在するが、融点が難溶性白金族元素の融点よりも掛け離れて低いと、その融点未満での加熱温度では白金族元素の拡散が不完全になり、また逆に融点が高すぎると鉄族元素の拡散が不完全になるため好ましくない。
【0017】
上記鉄族元素の中でも、価格を配慮すると鉄が最も適している。しかし、鉄は、単独では融点が1535℃と高いため、加熱下での白金族元素の拡散が不完全になる恐れがある。そのため、鉄粉末に炭素粉末を添加して、加熱時に融点1153℃の炭化鉄(Fe3C)を生成させ、且つその融点である1153℃未満の温度で加熱処理することが望ましい。
【0018】
また、固体原料粉末中の難溶性白金族元素が酸化物等の金属単体以外の形態で存在し、且つ使用する鉄族元素に還元力が無い場合には、同時に還元剤を共存させて加熱処理することにより金属の状態にまで還元しなければ、可溶性の合金を形成できない。このような場合、粉末の還元剤を添加するか、水素のような還元性ガス雰囲気中で加熱処理するか、又はこれらを併用することが好ましい。
【0019】
加熱処理の温度は、原料粉末に含まれる白金族元素及び鉄族元素の種類及び含有量により変動するが、各元素の融点及びその合金の共融点を越えない範囲であれば高温であるほど好ましい。また、加熱処理温度が低くなるほど、融点が高い難溶性白金族元素の完全な拡散が困難になるため、好ましくは850℃以上、更に好ましくは950℃以上の温度で加熱処理することが望ましい。
【0020】
また、加熱処理の時間は原料粉末及び合金化粉末の粒子の大きさに依存し、粉末の粒径が大きくなるほど拡散に要する時間が長くなる。例えば、粉末の粒径が200μm程度までの場合には、3時間ほどの処理時間で十分である。一般的には、粒径がほぼ1mm程度以下であれば十分に拡散が進行し、可溶性化された合金粉末を得ることが可能である。尚、加熱処理温度が低いほど、拡散に要する時間も長くなるので、処理時間も長くなる。
【0021】
本発明方法によって、加熱処理による拡散終了後に得られた合金粉末は、塩酸と塩素など、酸化性のハロゲン化水素酸を用いた常法の湿式法に従って、合金中に含有されている難溶性白金族元素を含む全ての白金族元素を溶解し、簡単に効率良く抽出することができる。
【0022】
【実施例】
実施例1
非鉄金属精錬工程から産出した下記表1に示す組成を有し、粒径が45μm以下の固体原料粉末に、粒径45μm以下のFe粉末を全体の20重量%になるように添加混合し、水素気流中において850℃で3時間又は6時間保持する加熱処理を行った。
【0023】
【表1】
【0024】
得られた合金粉末を5N−HCl中に400g/lとなるように懸濁し、90℃まで昇温した後塩素を吹込み、酸化還元電位が最大値に達した後、更にその電位が保たれる程度に塩素を5時間吹込み続けた。
【0025】
このようにして得られた浸出液と残った沈澱とから、各白金族元素の浸出率を算出し、結果を下記表2に示した。比較例として、上記の加熱処理を実施しなかった原料固体粉末を用いて、そのまま上記と同様に浸出した場合についても浸出率を算出し、その結果を表2に併せて示した。
【0026】
【表2】
【0027】
原料中に含まれる白金族元素は、難溶性の白金族元素であっても、本発明の加熱処理を施すことにより可溶化され、常法の湿式法により浸出できることが分かる。ただし、特に難溶性のRuとIrは浸出率が若干劣っている。
【0028】
実施例2
前記表1の組成を有する粒径45μm以下の固体原料粉末を使用し、粒径45μm以下のFe粉末を全体の20重量%になるように添加混合した後、水素気流中において950℃で3時間保持する加熱処理を行った。
【0029】
得られた合金粉末は、実施例1と同様に5N−HCl中に400g/lとなるように懸濁し、90℃まで昇温した後塩素を吹込み、酸化還元電位が最大値に達した後、更にその電位が保たれる程度に塩素を5時間吹込み続けた。このようにして得られた浸出液及び沈澱より各白金族元素の浸出率を算出し、結果を表3に示した。
【0030】
【表3】
【0031】
加熱処理温度を950℃にすることにより、全ての白金族元素の浸出率が約95%又はそれ以上に向上した。
【0032】
実施例3
前記表1の組成を有する粒径45μm以下の固体原料粉末を使用し、粒径45μm以下のFe粉末と、Fe粉末の1/3モル相当のグラファイト粉末を添加混合した後、実施例1と同様に加熱処理及び浸出処理を実施した。
【0033】
このようにして得られた浸出液及び沈澱より各白金族元素の浸出率を算出し、その結果を表4に示した。
【0034】
【表4】
【0035】
固体原料粉末にFe粉末と炭素粉末とを添加し、且つ水素雰囲気中950℃で加熱処理することにより、難溶性白金族元素を含む全ての白金族元素を98%以上の高い浸出率で浸出させることが可能となった。
【0036】
【発明の効果】
本発明によれば、難溶性白金族元素を含む固体原料でも、これを粉末の状態で白金族元素と合金化可能な元素粉末と混合し、各粉末の融点及びその合金の共融点未満の温度で加熱処理することにより、融解を経ることなく、難溶性白金族元素を可溶性の状態で含む合金粉末とすることができる。
【0037】
従って、本発明では、特別な高温融解炉などを使用せずに、比較的低い温度で可溶性化処理でき、しかも装置の腐食や白金族元素の不完全な揮発がなく、得られる合金も粉末であるから湿式浸出前の粉砕が不要であって、経済的且つ効率的に難溶性白金族元素を分離回収することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for separating and recovering a hardly soluble platinum group element from a platinum group concentrate produced in a non-ferrous metal smelting step, scraps of a platinum group catalyst, and the like.
[0002]
[Prior art]
Among platinum group elements, elements other than platinum (Pt) and palladium (Pd), that is, ruthenium (Ru), rhodium (Rh), osmium (Os), and iridium (Ir) are also referred to as poorly soluble platinum group elements. The reaction rate with hydrochloric acid and chlorine used for wet dissolution of group elements is very slow, especially in the form of tetravalent oxides, virtually no dissolution.
[0003]
As a solubilizing method for making these hardly soluble platinum group elements soluble in hydrochloric acid and chlorine by a conventional wet method, there is a method of melting with an oxidizing agent and an alkali, or melting with a disulfate. Although widely performed, there is a disadvantage that the reaction is incomplete and the amount of processed material increases. For this reason, in recent years, it has been solubilized by the following chlorination treatment method, gas reduction method, melting reduction method and the like.
[0004]
As a chlorination treatment method, a raw material is heated with chlorine alone, or with a reducing agent and chlorine, or an alkali chloride and chlorine to solubilize a platinum group element as a chloride or a chloro complex, or Japanese Patent Publication No. 7-65122. As shown in the above, there is known a method of solubilization by heating a mixture of a hydrogen chloride source and a reducing agent and reducing the generated platinum group element chloride to a metal.
[0005]
However, not only the method using chlorine but also the method using a hydrogen chloride generation source described in Japanese Patent Publication No. 7-65122, the volatilized chloride severely corrodes not only metals but also glass and quartz. There was a problem with durability. In addition, the generated platinum group element chloride is incompletely distributed between the solid phase and the gas phase, so that complete recovery is difficult and volatiles are generated in addition to the platinum group element. It deposited on the surface and caused clogging. Further, Ru and Ir oxides having high resistance to chlorine and chlorides were incompletely solubilized.
[0006]
In the gas reduction method, a raw material containing a platinum group element is heated with hydrogen or carbon monoxide, or is heated with a carbon-containing material and water vapor as disclosed in Japanese Patent Publication No. 7-65121. A method of reducing and solubilizing with generated water gas is known.
[0007]
However, in these methods, basically, the platinum group element is merely reduced to a single metal, so that other soluble metals coexist in a large excess and the hardly soluble platinum group element is uniformly dispersed therein. Effective only when the specific surface area of the sparingly soluble platinum group element is very large, and when the sparingly soluble platinum group element is singular or the amount of coexisting elements is small, or the sparingly soluble platinum group element Solubilization was difficult when the raw material containing the element was several μm or more.
[0008]
As a melting reduction method, a raw material is heated and melted with a metal capable of forming an alloy with a platinum group element to form an alloy, or described in “Analyst”, June 1995, Vol. 120, No. 6, 1675 to 1680. As described above, a method is known in which a raw material is heat-treated with Ni, S, Na 2 B 4 O 7, etc., and a platinum group element is absorbed into a NiS lump so as to be solubilized.
[0009]
However, in these melting reduction methods, it is necessary to completely melt the platinum group element and alloying element having a high melting point, so even when the platinum group element content is low, 1050 ° C., when the platinum group element content is high. Needed to be heated to a high temperature of about 1350 to 1550 ° C. Therefore, there is a problem that not only a high temperature melting furnace can be used but also the inner wall surface of the furnace is severely damaged by the melt even if such a high temperature melting furnace is used, and it cannot be used in a short period of time. Further, since it is difficult to completely remove the melt from the furnace, a considerable amount of the melt easily remains on the furnace wall as a repetitive product.
[0010]
Further, as a particularly big problem in the smelting reduction method, the melt obtained by cooling the melt cannot be wet leached according to a conventional method as it is, so that a pulverization step is indispensable. Therefore, a pulverization facility is required as ancillary facilities, and an operational difficulty such as adding an element having a good pulverization property and quenching the melt in terms of the composition of the soul is accompanied.
[0011]
[Problems to be solved by the invention]
In view of such conventional circumstances, the present invention eliminates corrosion of the apparatus and incomplete volatilization of the platinum group element when solubilizing the poorly soluble platinum group element contained in the raw material. An object of the present invention is to provide a method that does not require a furnace or pulverization before wet leaching, and can be solubilized even with a raw material that contains a large amount of a particularly insoluble platinum group element such as iridium or ruthenium.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the method for solubilizing a hardly soluble platinum group element provided by the present invention comprises mixing a solid raw material powder containing a hardly soluble platinum group element with an iron group element powder that can be alloyed with the platinum group element. And heat treatment at a temperature lower than the melting point of the hardly soluble platinum group element and iron group element and lower than the eutectic point of the alloy.
[0013]
In the method for solubilizing the hardly soluble platinum group element of the present invention, the hardly soluble platinum group element means ruthenium (Ru), rhodium (Rh), osmium (Os), and iridium (Ir). In addition, as an element that can be alloyed with a platinum group element, an iron group element such as iron, nickel, cobalt, or the like can be used , and iron is particularly preferable.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, even a hardly soluble platinum group element is mixed with an iron group element powder in the form of a solid powder, and heated at a temperature slightly lower than the melting point of each element and the eutectic point of the alloy. As a result, atoms in each powder diffuse to each other through the contact surface, so that an alloy containing a solubilized hardly soluble platinum group element is obtained as a powder without melting.
[0015]
In the obtained alloy powder, platinum group elements are uniformly dispersed and alloyed. Therefore, in the subsequent wet dissolution process by a conventional method, when dissolved in an acid or the like, extremely fine platinum group elements at the atomic level are formed. Particles are produced and become so soluble that their specific surface area is very large. In addition, although the soluble platinum group element is normally contained in the raw material containing a hardly soluble platinum group element, this soluble platinum group element is also melt | dissolved without trouble in a melt | dissolution process.
[0016]
As an element that can be alloyed with a platinum group element, iron, nickel, cobalt, or the like , which is an iron group element as described above, can be used. There are other elements that can be alloyed with platinum group elements. However, if the melting point is far below the melting point of the sparingly soluble platinum group element, diffusion of the platinum group element is not possible at heating temperatures below that melting point. On the contrary, if the melting point is too high, the diffusion of iron group elements becomes incomplete, which is not preferable.
[0017]
Among the iron group elements , iron is most suitable in consideration of price. However, since iron alone has a high melting point of 1535 ° C., the diffusion of platinum group elements under heating may be incomplete. Therefore, it is desirable to add carbon powder to iron powder to produce iron carbide (Fe 3 C) having a melting point of 1153 ° C. during heating, and to perform heat treatment at a temperature lower than 1153 ° C. which is the melting point.
[0018]
In addition, if the poorly soluble platinum group element in the solid raw material powder exists in a form other than a simple metal such as an oxide, and the iron group element to be used has no reducing power, heat treatment is simultaneously performed in the presence of a reducing agent. Thus, a soluble alloy cannot be formed unless it is reduced to a metallic state. In such a case, it is preferable to add a powder reducing agent, heat-treat in a reducing gas atmosphere such as hydrogen, or use these in combination.
[0019]
The temperature of the heat treatment varies depending on the types and contents of platinum group elements and iron group elements contained in the raw material powder, but a higher temperature is preferable as long as it does not exceed the melting point of each element and the eutectic point of the alloy. . Further, the lower the heat treatment temperature, the more difficult the complete diffusion of the poorly soluble platinum group element having a high melting point. Therefore, the heat treatment is preferably performed at a temperature of 850 ° C. or higher, more preferably 950 ° C. or higher.
[0020]
Further, the heat treatment time depends on the particle size of the raw material powder and the alloyed powder, and the time required for diffusion becomes longer as the particle size of the powder becomes larger. For example, when the particle size of the powder is up to about 200 μm, a processing time of about 3 hours is sufficient. In general, if the particle size is about 1 mm or less, the diffusion proceeds sufficiently and it is possible to obtain a solubilized alloy powder. Note that the lower the heat treatment temperature, the longer the time required for diffusion, and the longer the treatment time.
[0021]
According to the method of the present invention, the alloy powder obtained after the end of the diffusion by heat treatment is obtained from the hardly soluble platinum contained in the alloy according to a conventional wet method using oxidizing hydrohalic acid such as hydrochloric acid and chlorine. All platinum group elements including group elements can be dissolved and extracted easily and efficiently.
[0022]
【Example】
Example 1
The composition shown in the following Table 1 produced from the non-ferrous metal refining process is added to and mixed with a solid raw material powder having a particle size of 45 μm or less and Fe powder having a particle size of 45 μm or less to 20 wt% of the total, Heat treatment was performed by holding at 850 ° C. for 3 hours or 6 hours in an air stream.
[0023]
[Table 1]
[0024]
The obtained alloy powder was suspended in 5N-HCl to 400 g / l, heated to 90 ° C. and then blown with chlorine. After the redox potential reached the maximum value, the potential was further maintained. Chlorine was continued to be blown for 5 hours.
[0025]
The leaching rate of each platinum group element was calculated from the leaching solution thus obtained and the remaining precipitate, and the results are shown in Table 2 below. As a comparative example, the leaching rate was calculated for the case where the raw solid powder not subjected to the above heat treatment was leached in the same manner as described above, and the results are also shown in Table 2.
[0026]
[Table 2]
[0027]
It can be seen that even when the platinum group element contained in the raw material is a hardly soluble platinum group element, it is solubilized by the heat treatment of the present invention and can be leached by a conventional wet method. However, insoluble Ru and Ir, in particular, have a slightly poor leaching rate.
[0028]
Example 2
A solid raw material powder having a particle size of 45 μm or less having the composition shown in Table 1 was used, and Fe powder having a particle size of 45 μm or less was added and mixed so as to be 20% by weight of the total, and then in a hydrogen stream at 950 ° C. for 3 hours. The heat processing to hold | maintain was performed.
[0029]
The obtained alloy powder was suspended in 5N-HCl to 400 g / l in the same manner as in Example 1, heated to 90 ° C., and then blown with chlorine, after the oxidation-reduction potential reached the maximum value. Further, chlorine was continuously blown for 5 hours so that the potential was maintained. The leaching rate of each platinum group element was calculated from the leaching solution and the precipitate thus obtained, and the results are shown in Table 3.
[0030]
[Table 3]
[0031]
By setting the heat treatment temperature to 950 ° C., the leaching rate of all platinum group elements was improved to about 95% or more.
[0032]
Example 3
Using a solid raw material powder having a particle size of 45 μm or less having the composition shown in Table 1 above, adding and mixing Fe powder having a particle size of 45 μm or less and graphite powder corresponding to 1/3 mol of Fe powder, the same as in Example 1 A heat treatment and a leaching treatment were carried out.
[0033]
The leaching rate of each platinum group element was calculated from the leaching solution and precipitation thus obtained, and the results are shown in Table 4.
[0034]
[Table 4]
[0035]
By adding Fe powder and carbon powder to a solid raw material powder and heat-treating at 950 ° C. in a hydrogen atmosphere, all platinum group elements including a hardly soluble platinum group element are leached at a high leaching rate of 98% or more. It became possible.
[0036]
【The invention's effect】
According to the present invention, even a solid raw material containing a hardly soluble platinum group element is mixed with an element powder that can be alloyed with a platinum group element in a powder state, and the melting point of each powder and the temperature lower than the eutectic point of the alloy. By performing the heat treatment at, an alloy powder containing a hardly soluble platinum group element in a soluble state can be obtained without melting.
[0037]
Therefore, in the present invention, solubilization treatment can be performed at a relatively low temperature without using a special high-temperature melting furnace, etc., and there is no corrosion of the apparatus or incomplete volatilization of the platinum group element, and the resulting alloy is also a powder. Therefore, pulverization before wet leaching is unnecessary, and it is possible to separate and recover the poorly soluble platinum group element economically and efficiently.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP352897A JP3663795B2 (en) | 1997-01-13 | 1997-01-13 | Method for solubilizing poorly soluble platinum group elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP352897A JP3663795B2 (en) | 1997-01-13 | 1997-01-13 | Method for solubilizing poorly soluble platinum group elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10195552A JPH10195552A (en) | 1998-07-28 |
JP3663795B2 true JP3663795B2 (en) | 2005-06-22 |
Family
ID=11559895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP352897A Expired - Lifetime JP3663795B2 (en) | 1997-01-13 | 1997-01-13 | Method for solubilizing poorly soluble platinum group elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3663795B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4595082B2 (en) * | 2004-03-05 | 2010-12-08 | 財団法人生産技術研究奨励会 | Precious metal recovery method |
JP5317094B2 (en) * | 2008-04-18 | 2013-10-16 | 一般財団法人生産技術研究奨励会 | Precious metal recovery method |
WO2015030243A1 (en) * | 2013-09-02 | 2015-03-05 | 田中貴金属工業株式会社 | Composition for recovering ruthenium and iridium and method for recovering ruthenium and iridium |
JP6585955B2 (en) * | 2015-07-31 | 2019-10-02 | Jx金属株式会社 | Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material |
JP6620031B2 (en) * | 2016-02-16 | 2019-12-11 | Dowaテクノロジー株式会社 | Quantitative determination of precious metal elements |
JPWO2021153710A1 (en) * | 2020-01-30 | 2021-08-05 |
-
1997
- 1997-01-13 JP JP352897A patent/JP3663795B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10195552A (en) | 1998-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5376437B2 (en) | Method for recovering ruthenium from materials containing ruthenium or ruthenium oxide or ruthenium-containing noble metal concentrates | |
JP6780448B2 (en) | How to recover high-grade rhodium powder | |
US20100180730A1 (en) | Method of separating rhodium from platinum and/or palladium | |
CN102534244A (en) | Method for concentrating precious metal from low-grade precious metal material | |
JP5021331B2 (en) | Method for recovering platinum group metals from waste | |
JP2007154250A (en) | CHLORINATION TREATMENT METHOD FOR Ru AND/OR Rh | |
US4188362A (en) | Process for the treatment of platinum group metals and gold | |
JP3663795B2 (en) | Method for solubilizing poorly soluble platinum group elements | |
Nagai et al. | Development of methods for concentration and dissolution of Rh and Ru from copper slime | |
WO2021014946A1 (en) | Pgm recovery method | |
CA1068116A (en) | Process for the treatment of platinum group metals and gold | |
JP6940089B2 (en) | Precious metal recovery method | |
Mooiman et al. | Refining of gold-and silver-bearing dore | |
JP4715598B2 (en) | Chloride leaching method of lead electrolysis slime | |
JP3024385B2 (en) | Method for recovering indium from indium scrap | |
Yoshimura et al. | Establishment of a Novel Recycling Process for Iridium Using “Dry Aqua Regia” | |
KR101817079B1 (en) | process of recovering Platinum group metal from waste sludge generated from refining process of precious metal ore | |
JP2004190133A (en) | Method of treating selenium, tellurium, and platinum group-containing material | |
Yoshimura et al. | The improvement of platinum recovery ratio in the recycling process using “dry aqua regia” | |
RU2086685C1 (en) | Method for pyrometallurgical refining gold- and silver-containing wastes | |
JPS61235520A (en) | Method for leaching noble metal | |
JP2021143414A (en) | Method for leaching sparingly soluble platinum group element | |
EP3532646A1 (en) | Method for platinum group metals recovery from spent catalysts | |
JP2698424B2 (en) | Liquefaction method of iridium | |
JP3591134B2 (en) | Recovery method of platinum group elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050321 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080408 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090408 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090408 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100408 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100408 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110408 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110408 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120408 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130408 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130408 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |