JPH10195552A - Method for making scarcely soluble platinum group element - Google Patents

Method for making scarcely soluble platinum group element

Info

Publication number
JPH10195552A
JPH10195552A JP352897A JP352897A JPH10195552A JP H10195552 A JPH10195552 A JP H10195552A JP 352897 A JP352897 A JP 352897A JP 352897 A JP352897 A JP 352897A JP H10195552 A JPH10195552 A JP H10195552A
Authority
JP
Japan
Prior art keywords
platinum group
powder
group element
soluble platinum
group elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP352897A
Other languages
Japanese (ja)
Other versions
JP3663795B2 (en
Inventor
Satoshi Asano
聡 浅野
Kaoru Terao
薫 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP352897A priority Critical patent/JP3663795B2/en
Publication of JPH10195552A publication Critical patent/JPH10195552A/en
Application granted granted Critical
Publication of JP3663795B2 publication Critical patent/JP3663795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To efficiently separate and recover scarcely soluble platinum group elements by mixing solid raw powder containing the scarcely soluble platinum group elements with alloying element powder to be alloyed with the platinum group elements and heat-treating them under a specific condition. SOLUTION: The solid raw powder containing the scarcely soluble platinum group elements (Ru, Rh, Os, Tr) produced in non-ferrous metal refining process is mixed with the alloying element powder (preferably, iron powder) capable of being alloyed with the platinum group elements. The mixed powder is heat- treated at less than the m.p. of the alloying element and the scarcely soluble platinum group elements and at less than the eutectic point of the alloy (preferably, >=950 deg.C) in the atmosphere of reducing gas such as hydrogen. Successively, the scarcely soluble platinum group elements can simply and efficiently be extracted and recovered by dissolving the alloy powder obtd. by the heat treatment by a wetting method using hydrochloric acid and chlorine, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非鉄金属製錬工程
で生成する白金族濃縮物、白金族触媒のスクラップ等か
ら、難溶性白金族元素を分離回収する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering a poorly soluble platinum group element from a platinum group concentrate, a platinum group catalyst scrap, etc. produced in a nonferrous metal smelting process.

【0002】[0002]

【従来の技術】白金族元素の中でも白金(Pt)とパラ
ジウム(Pd)以外の元素、即ちルテニウム(Ru)、
ロジウム(Rh)、オスミウム(Os)、イリジウム
(Ir)は難溶性白金族元素とも称され、一般に白金族
元素の湿式溶解に使用される塩酸及び塩素との反応速度
が非常に遅く、特に4価の酸化物の形態では事実上全く
溶解しない。
2. Description of the Related Art Among the platinum group elements, elements other than platinum (Pt) and palladium (Pd), that is, ruthenium (Ru),
Rhodium (Rh), osmium (Os), and iridium (Ir) are also referred to as poorly soluble platinum group elements, and generally have a very slow reaction rate with hydrochloric acid and chlorine used for wet dissolution of platinum group elements. Practically does not dissolve at all in the oxide form of

【0003】これらの難溶性白金族元素を、常法の湿式
法で塩酸及び塩素により溶解可能な状態とする可溶性化
方法として、かっては酸化剤及びアルカリと融解する
か、又は二硫酸塩と融解する方法が広く行われていた
が、反応が不完全で繰り返し処理物量が多くなるという
欠点があった。このため近年では、下記する塩化処理
法、ガス還元法、融解還元法などで可溶性化処理されて
いる。
[0003] As a method for solubilizing these poorly soluble platinum group elements in a state where they can be dissolved by hydrochloric acid and chlorine by a conventional wet method, they are either melted with an oxidizing agent and an alkali, or melted with a disulfate. Although such a method has been widely used, there is a disadvantage that the reaction is incomplete and the amount of repeatedly processed material is increased. For this reason, in recent years, a solubilization treatment has been performed by a chlorination treatment method, a gas reduction method, a melting reduction method, or the like described below.

【0004】塩化処理法としては、原料を塩素単独、又
は還元剤及び塩素、あるいは塩化アルカリ及び塩素と共
に加熱して、白金族元素を塩化物又はクロロ錯体として
可溶性化する方法や、特公平7−65122号公報に示
されているように塩化水素の発生源及び還元剤の混合物
と加熱し、生成した白金族元素の塩化物を金属に還元す
ることにより、可溶性化する方法が知られている。
As the chlorination treatment method, a method of heating a raw material alone with chlorine or a reducing agent and chlorine, or together with an alkali chloride and chlorine to solubilize a platinum group element as a chloride or a chloro complex, As disclosed in Japanese Patent No. 65122, a method is known in which a mixture of a source of hydrogen chloride and a reducing agent is heated to reduce the generated chloride of a platinum group element to a metal, thereby making the metal soluble.

【0005】しかし、塩素を使用する方法は勿論、特公
平7−65122号公報に記載の塩化水素発生源を使用
する方法でも、揮発した塩化物が金属だけでなくガラス
や石英をも激しく腐食するため、装置の耐久性に問題が
あった。また、生成する白金族元素の塩化物は不完全に
固相と気相に分配するため、完全な回収が困難であるう
え、白金族元素以外にも揮発物が生成し、これらが装置
配管内に析出して閉塞をおこす原因となっていた。更
に、塩素や塩化物に対して抵抗が高いRuやIrの酸化
物に関しては、可溶性化が不完全であった。
However, not only the method using chlorine, but also the method using a hydrogen chloride generation source described in Japanese Patent Publication No. 7-65122, the volatile chloride corrodes not only metal but also glass and quartz violently. Therefore, there was a problem in the durability of the device. In addition, the generated chlorides of the platinum group elements are incompletely distributed between the solid phase and the gas phase, which makes it difficult to completely recover them. This caused precipitation and clogging. Further, the solubilization of oxides of Ru and Ir having high resistance to chlorine and chloride was incomplete.

【0006】また、ガス還元法では、白金族元素を含む
原料を、水素、又は一酸化炭素と加熱するか、あるいは
特公平7−65121号公報に示されているように炭素
含有物及び水蒸気と加熱して、生成する水性ガスにより
還元し、可溶性化する方法が知られている。
[0006] In the gas reduction method, a raw material containing a platinum group element is heated with hydrogen or carbon monoxide, or as described in Japanese Patent Publication No. 7-65121, with a carbon-containing material and water vapor. There is known a method of heating to reduce and solubilize with generated water gas.

【0007】しかし、これらの方法では、基本的に白金
族元素が金属単体まで還元されるだけであるから、他の
可溶性金属が大過剰に共存し、且つ難溶性白金族元素が
その中に均一に分散している場合、及び難溶性白金族元
素の比表面積が非常に大きい場合に限り有効であって、
難溶性白金族元素が単独であるか又は共存元素の存在量
が少ない場合、あるいは難溶性白金族元素を含む原料が
数μm以上である場合には可溶性化が困難であった。
However, in these methods, since the platinum group element is basically reduced only to the elemental metal, other soluble metals coexist in a large excess, and the hardly soluble platinum group element is uniformly contained therein. Is effective only when the specific surface area of the sparingly soluble platinum group element is very large,
When the poorly soluble platinum group element was used alone or in the presence of a small amount of the coexisting element, or when the raw material containing the poorly soluble platinum group element was several μm or more, it was difficult to solubilize.

【0008】融解還元法としては、原料を白金族元素と
合金を形成しうる金属と加熱融解して合金を形成させる
方法、又は“Analyst”、 June 1995、
Vol.120、No.6、1675〜1680に記載さ
れているように、原料をNiとS及びNa247等と
加熱処理し、白金族元素をNiS塊に吸収させて可溶性
化する方法が知られている。
As the smelting reduction method, a method in which a raw material is heated and melted with a metal capable of forming an alloy with a platinum group element to form an alloy, or “Analyst”, June 1995,
As described in Vol. 120, No. 6, 1675-1680, the raw material is heat-treated with Ni, S, Na 2 B 4 O 7 and the like, so that the platinum group element is absorbed into the NiS mass and solubilized. Methods are known.

【0009】しかしながら、これらの融解還元法では、
融点の高い白金族元素及び合金化元素を完全に融解する
必要があるため、白金族元素含有量が少ない場合でも1
050℃、白金族元素含有量が多い場合には1350〜
1550℃程度の高温に加熱する必要があった。従っ
て、特殊な高温融解炉がないと実施できないばかりか、
そのような高温融解炉を用いても溶融物による炉内壁面
の損傷が激しく、短期間で使用不可能になるという問題
があった。また、炉内から完全に融体を取り出すことは
困難であるため、かなりの量の融体が繰返物として炉壁
に残留しやすかった。
[0009] However, in these melting reduction methods,
It is necessary to completely melt the platinum group element and alloying element having a high melting point.
050 ° C, 1350-
It was necessary to heat to a high temperature of about 1550 ° C. Therefore, it cannot be carried out without a special high-temperature melting furnace,
Even if such a high-temperature melting furnace is used, there is a problem that the inner wall of the furnace is severely damaged by the molten material and cannot be used in a short time. Further, since it is difficult to completely remove the melt from the furnace, a considerable amount of the melt was likely to remain on the furnace wall as a repetition product.

【0010】更に、融解還元法における特に大きな問題
として、融体を冷却して得られた融塊は、そのままでは
常法に従って湿式浸出できないため、粉砕工程が不可欠
な点がある。そのために、付帯設備として粉砕設備が必
要になると共に、融魂の組成に関しても粉砕性の良好な
元素をわざわざ添加し、且つ融体を急冷するなど、操業
上の困難が伴っていた。
[0010] Further, as a particularly serious problem in the smelting reduction method, since a melt obtained by cooling a melt cannot be wet-leached according to a conventional method as it is, a pulverizing step is indispensable. For this reason, crushing equipment is required as ancillary equipment, and with respect to the composition of the molten soul, there have been operational difficulties, such as intentionally adding elements having good crushability and rapidly cooling the melt.

【0011】[0011]

【発明が解決しようとする課題】本発明は、このような
従来の事情に鑑み、原料中に含まれる難溶性白金族元素
を可溶性化する際に、装置の腐食や白金族元素の不完全
な揮発がなく、しかも特別な高温融解炉や湿式浸出前の
粉砕が不要であり、イリジウムやルテニウムのような特
に難溶性の白金族元素が多く含まれる原料でも可溶性化
が可能な方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention provides a method for dissolving a poorly soluble platinum group element contained in a raw material, which causes corrosion of equipment and imperfect platinum group element. To provide a method that does not require volatilization and does not require a special high-temperature melting furnace or pulverization before wet leaching, and can solubilize even a raw material containing a large amount of particularly insoluble platinum group elements such as iridium and ruthenium. With the goal.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明が提供する難溶性白金族元素の可溶性化方法
は、難溶性白金族元素を含有する固体原料粉末を、白金
族元素と合金化しうる合金化元素粉末と混合し、該難溶
性白金族元素及び合金化元素の融点未満で且つその合金
の共融点未満の温度で加熱処理することを特徴とする。
In order to achieve the above object, the present invention provides a method for solubilizing a sparingly soluble platinum group element, comprising the steps of: converting a solid raw material powder containing a sparingly soluble platinum group element with a platinum group element; It is characterized in that it is mixed with an alloying element powder which can be alloyed and heat-treated at a temperature lower than the melting point of the insoluble platinum group element and the alloying element and lower than the eutectic point of the alloy.

【0013】本発明の難溶性白金族元素の可溶性化方法
において、難溶性白金族元素とは、ルテニウム(R
u)、ロジウム(Rh)、オスミウム(Os)、及びイ
リジウム(Ir)をいう。また、合金化元素としては、
鉄、ニッケル、コバルト、あるいは可溶性白金族元素の
白金(Pt)及びパラジウム(Pd)等を使用すること
ができるが、中でも鉄が好ましい。
In the method for solubilizing a sparingly soluble platinum group element according to the present invention, the sparingly soluble platinum group element is ruthenium (R
u), rhodium (Rh), osmium (Os), and iridium (Ir). Also, as alloying elements,
Iron, nickel, cobalt, or a soluble platinum group element such as platinum (Pt) and palladium (Pd) can be used, with iron being preferred.

【0014】[0014]

【発明の実施の形態】本発明では、難溶性白金族元素で
あっても、これを含む原料を固体粉末の状態として合金
化元素粉末と混合し、各元素の融点及びその合金の共融
点よりやや低い温度で加熱することによって、各粉末中
の原子が接触面を介して相互に拡散するので、融解を経
ることなく、可溶性化した難溶性白金族元素を含む合金
が粉末として得られる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a raw material containing a poorly soluble platinum group element is mixed with an alloying element powder in the form of a solid powder, and the melting point of each element and the eutectic point of the alloy are determined. By heating at a slightly lower temperature, the atoms in the respective powders diffuse into each other through the contact surface, so that an alloy containing the solubilized hardly soluble platinum group element can be obtained as a powder without undergoing melting.

【0015】得られた合金粉末は、白金族元素が均一に
分散して合金化されているので、後の常法による湿式溶
解工程において、酸などに溶解する際に原子レベルの極
めて微細な白金族元素の粒子が生成し、その比表面積が
非常に大きいため可溶性になるものである。尚、難溶性
白金族元素を含む原料には可溶性白金族元素が通常含ま
れるが、この可溶性白金族元素も溶解工程で支障なく溶
解される。
Since the obtained alloy powder is alloyed by uniformly dispersing the platinum group elements, in the subsequent wet dissolving step according to a conventional method, when dissolving in an acid or the like, extremely fine platinum at the atomic level is obtained. Particles of a group element are formed, and the particles have a very large specific surface area and become soluble. The raw material containing the poorly soluble platinum group element usually contains a soluble platinum group element, and this soluble platinum group element is also dissolved without any trouble in the dissolving step.

【0016】合金化元素としては、前記のごとく鉄族の
元素である鉄、ニッケル、コバルトのほか、可溶性白金
族元素の白金、パラジウム等が使用可能である。これら
以外にも白金族元素と合金化が可能な元素は存在する
が、融点が難溶性白金族元素の融点よりも掛け離れて低
いと、その融点未満での加熱温度では白金族元素の拡散
が不完全になり、また逆に融点が高すぎると合金化元素
の拡散が不完全になるため好ましくない。
As the alloying element, as described above, in addition to iron group elements such as iron, nickel and cobalt, soluble platinum group elements such as platinum and palladium can be used. There are other elements that can be alloyed with the platinum group element, but if the melting point is much lower than the melting point of the poorly soluble platinum group element, diffusion of the platinum group element will not be possible at a heating temperature below the melting point. On the contrary, if the melting point is too high, the diffusion of the alloying element becomes incomplete, which is not preferable.

【0017】上記合金化元素の中でも、価格を配慮する
と鉄が最も適している。しかし、鉄は、単独では融点が
1535℃と高いため、加熱下での白金族元素の拡散が
不完全になる恐れがある。そのため、鉄粉末に炭素粉末
を添加して、加熱時に融点1153℃の炭化鉄(Fe3
C)を生成させ、且つその融点である1153℃未満の
温度で加熱処理することが望ましい。
Of the above alloying elements, iron is the most suitable in consideration of price. However, since iron alone has a high melting point of 1535 ° C., the diffusion of the platinum group element under heating may be incomplete. Therefore, carbon powder is added to iron powder, and iron carbide (Fe 3
It is desirable to produce C) and heat-treat it at a temperature below its melting point of 1153 ° C.

【0018】また、固体原料粉末中の難溶性白金族元素
が酸化物等の金属単体以外の形態で存在し、且つ使用す
る合金化元素に還元力が無い場合には、同時に還元剤を
共存させて加熱処理することにより金属の状態にまで還
元しなければ、可溶性の合金を形成できない。このよう
な場合、粉末の還元剤を添加するか、水素のような還元
性ガス雰囲気中で加熱処理するか、又はこれらを併用す
ることが好ましい。
When the hardly soluble platinum group element in the solid raw material powder exists in a form other than a simple metal such as an oxide, and the alloying element used has no reducing power, a reducing agent is allowed to coexist at the same time. Unless the metal is reduced to a metal state by heat treatment, a soluble alloy cannot be formed. In such a case, it is preferable to add a powdery reducing agent, heat-treat in a reducing gas atmosphere such as hydrogen, or use them in combination.

【0019】加熱処理の温度は、原料粉末に含まれる白
金族元素及び合金化元素の種類及び含有量により変動す
るが、各元素の融点及びその合金の共融点を越えない範
囲であれば高温であるほど好ましい。また、加熱処理温
度が低くなるほど、融点が高い難溶性白金族元素の完全
な拡散が困難になるため、好ましくは850℃以上、更
に好ましくは950℃以上の温度で加熱処理することが
望ましい。
The temperature of the heat treatment varies depending on the types and contents of the platinum group element and the alloying element contained in the raw material powder, but at a high temperature as long as the melting point of each element and the eutectic point of the alloy are not exceeded. It is more preferable. In addition, the lower the heat treatment temperature, the more difficult it becomes to completely diffuse the insoluble platinum group element having a high melting point. Therefore, the heat treatment is preferably performed at a temperature of 850 ° C. or higher, more preferably 950 ° C. or higher.

【0020】また、加熱処理の時間は原料粉末及び合金
化粉末の粒子の大きさに依存し、粉末の粒径が大きくな
るほど拡散に要する時間が長くなる。例えば、粉末の粒
径が200μm程度までの場合には、3時間ほどの処理
時間で十分である。一般的には、粒径がほぼ1mm程度
以下であれば十分に拡散が進行し、可溶性化された合金
粉末を得ることが可能である。尚、加熱処理温度が低い
ほど、拡散に要する時間も長くなるので、処理時間も長
くなる。
The time of the heat treatment depends on the size of the particles of the raw material powder and the alloying powder. As the particle size of the powder increases, the time required for diffusion increases. For example, when the particle size of the powder is up to about 200 μm, a processing time of about 3 hours is sufficient. Generally, when the particle size is about 1 mm or less, diffusion proceeds sufficiently, and a solubilized alloy powder can be obtained. Note that the lower the heat treatment temperature, the longer the time required for diffusion, and thus the longer the treatment time.

【0021】本発明方法によって、加熱処理による拡散
終了後に得られた合金粉末は、塩酸と塩素など、酸化性
のハロゲン化水素酸を用いた常法の湿式法に従って、合
金中に含有されている難溶性白金族元素を含む全ての白
金族元素を溶解し、簡単に効率良く抽出することができ
る。
According to the method of the present invention, the alloy powder obtained after the completion of the diffusion by heat treatment is contained in the alloy according to a conventional wet method using an oxidizing hydrohalic acid such as hydrochloric acid and chlorine. All of the platinum group elements including the poorly soluble platinum group elements can be dissolved and easily and efficiently extracted.

【0022】[0022]

【実施例】実施例1 非鉄金属精錬工程から産出した下記表1に示す組成を有
し、粒径が45μm以下の固体原料粉末に、粒径45μ
m以下のFe粉末を全体の20重量%になるように添加
混合し、水素気流中において850℃で3時間又は6時
間保持する加熱処理を行った。
EXAMPLE 1 A solid raw material powder having a composition shown in the following Table 1 and having a particle diameter of 45 μm or less produced from a nonferrous metal refining process was added to a solid raw material powder having a particle diameter of 45 μm.
m or less of Fe powder was added and mixed so as to be 20% by weight of the whole, and heat treatment was performed at 850 ° C. for 3 hours or 6 hours in a hydrogen stream.

【0023】[0023]

【表1】固体原料粉末の組成 可溶性白金族元素 難溶性白金族元素 その他の元素 Pt Pd Rh Ru Ir Cu Ni S O 8.0 6.4 5.2 7.4 3.7 8.06 5.31 5.42 6.6[Table 1] Composition of solid raw material powder Soluble platinum group element Poorly soluble platinum group element Other elements Pt Pd Rh Ru Ir Cu Ni S O 8.0 6.4 5.2 7.4 3.7 8.06 5.31 5.42 6.6

【0024】得られた合金粉末を5N−HCl中に40
0g/lとなるように懸濁し、90℃まで昇温した後塩
素を吹込み、酸化還元電位が最大値に達した後、更にそ
の電位が保たれる程度に塩素を5時間吹込み続けた。
The obtained alloy powder is placed in 5N-HCl for 40 minutes.
After suspending to 0 g / l, raising the temperature to 90 ° C., blowing in chlorine, and after the oxidation-reduction potential reached the maximum value, further continued blowing in chlorine for 5 hours to such an extent that the potential was maintained. .

【0025】このようにして得られた浸出液と残った沈
澱とから、各白金族元素の浸出率を算出し、結果を下記
表2に示した。比較例として、上記の加熱処理を実施し
なかった原料固体粉末を用いて、そのまま上記と同様に
浸出した場合についても浸出率を算出し、その結果を表
2に併せて示した。
The leaching rate of each platinum group element was calculated from the leaching solution thus obtained and the remaining precipitate, and the results are shown in Table 2 below. As a comparative example, the leaching rate was also calculated for a case where leaching was carried out in the same manner as described above using the raw material solid powder not subjected to the heat treatment, and the results are also shown in Table 2.

【0026】[0026]

【表2】白金族元素の浸出率(%) 加 熱 処 理 Pt Pd Rh Ru Ir 未 処 理 83.8 93.9 68.0 29.8 32.7 850℃×3h 97.4 99.4 93.8 73.2 82.4 850℃×6h 98.6 99.7 94.6 86.5 84.8[Table 2] Leaching rate of platinum group elements (%) Heat treatment Pt Pd Rh Ru Ir Untreated 83.8 93.9 68.0 29.8 32.7 850 ° C x 3h 97.4 99.4 93.8 73.2 82.4 850 ° C x 6h 98.6 99.7 94.6 86.5 84.8

【0027】原料中に含まれる白金族元素は、難溶性の
白金族元素であっても、本発明の加熱処理を施すことに
より可溶化され、常法の湿式法により浸出できることが
分かる。ただし、特に難溶性のRuとIrは浸出率が若
干劣っている。
It can be seen that even if the platinum group element contained in the raw material is a poorly soluble platinum group element, it is solubilized by the heat treatment of the present invention and can be leached by a conventional wet method. However, particularly insoluble Ru and Ir have a slightly inferior leaching rate.

【0028】実施例2 前記表1の組成を有する粒径45μm以下の固体原料粉
末を使用し、粒径45μm以下のFe粉末を全体の20
重量%になるように添加混合した後、水素気流中におい
て950℃で3時間保持する加熱処理を行った。
Example 2 A solid raw material powder having a composition shown in Table 1 and having a particle size of 45 μm or less was used.
After the addition and mixing to give a weight%, a heat treatment was carried out in a hydrogen stream at 950 ° C. for 3 hours.

【0029】得られた合金粉末は、実施例1と同様に5
N−HCl中に400g/lとなるように懸濁し、90
℃まで昇温した後塩素を吹込み、酸化還元電位が最大値
に達した後、更にその電位が保たれる程度に塩素を5時
間吹込み続けた。このようにして得られた浸出液及び沈
澱より各白金族元素の浸出率を算出し、結果を表3に示
した。
The obtained alloy powder was mixed with 5
Suspend to 400 g / l in N-HCl,
After the temperature was raised to ° C., chlorine was blown in, and after the oxidation-reduction potential reached the maximum value, chlorine was blown in for 5 hours to such an extent that the potential was maintained. The leaching rate of each platinum group element was calculated from the leaching solution and the precipitate thus obtained, and the results are shown in Table 3.

【0030】[0030]

【表3】白金族元素の浸出率(%) 加 熱 処 理 Pt Pd Rh Ru Ir 950℃×3h 97.4 99.1 96.0 94.7 94.7[Table 3] Leaching rate (%) of platinum group elements Heat treatment Pt Pd Rh Ru Ir 950 ° C x 3h 97.4 99.1 96.0 94.7 94.7

【0031】加熱処理温度を950℃にすることによ
り、全ての白金族元素の浸出率が約95%又はそれ以上
に向上した。
By setting the heat treatment temperature to 950 ° C., the leaching rate of all platinum group elements was improved to about 95% or more.

【0032】実施例3 前記表1の組成を有する粒径45μm以下の固体原料粉
末を使用し、粒径45μm以下のFe粉末と、Fe粉末
の1/3モル相当のグラファイト粉末を添加混合した
後、実施例1と同様に加熱処理及び浸出処理を実施し
た。
[0032]Example 3  Solid raw material powder having a composition shown in Table 1 and having a particle size of 45 μm or less
Powder, Fe powder having a particle size of 45 μm or less, and Fe powder
1/3 mole of graphite powder was added and mixed
Then, a heat treatment and a leaching treatment were performed in the same manner as in Example 1.
Was.

【0033】このようにして得られた浸出液及び沈澱よ
り各白金族元素の浸出率を算出し、その結果を表4に示
した。
The leaching rate of each platinum group element was calculated from the leaching solution and the precipitate thus obtained, and the results are shown in Table 4.

【0034】[0034]

【表4】白金族元素の浸出率(%) 加 熱 処 理 Pt Pd Rh Ru Ir 950℃×3h 99.6 99.8 99.4 98.5 98.0[Table 4] Leaching rate of platinum group elements (%) Heat treatment Pt Pd Rh Ru Ir 950 ° C x 3h 99.6 99.8 99.4 98.5 98.0

【0035】固体原料粉末にFe粉末と炭素粉末とを添
加し、且つ水素雰囲気中950℃で加熱処理することに
より、難溶性白金族元素を含む全ての白金族元素を98
%以上の高い浸出率で浸出させることが可能となった。
By adding Fe powder and carbon powder to the solid raw material powder and performing a heat treatment at 950 ° C. in a hydrogen atmosphere, all the platinum group elements including the poorly soluble platinum group element can be reduced to 98%.
% Or more.

【0036】[0036]

【発明の効果】本発明によれば、難溶性白金族元素を含
む固体原料でも、これを粉末の状態で白金族元素と合金
化可能な元素粉末と混合し、各粉末の融点及びその合金
の共融点未満の温度で加熱処理することにより、融解を
経ることなく、難溶性白金族元素を可溶性の状態で含む
合金粉末とすることができる。
According to the present invention, even in the case of a solid raw material containing a poorly soluble platinum group element, this is mixed in powder form with an element powder that can be alloyed with the platinum group element, and the melting point of each powder and the alloy By performing the heat treatment at a temperature lower than the eutectic point, an alloy powder containing a sparingly soluble platinum group element in a soluble state can be obtained without melting.

【0037】従って、本発明では、特別な高温融解炉な
どを使用せずに、比較的低い温度で可溶性化処理でき、
しかも装置の腐食や白金族元素の不完全な揮発がなく、
得られる合金も粉末であるから湿式浸出前の粉砕が不要
であって、経済的且つ効率的に難溶性白金族元素を分離
回収することが可能である。
Therefore, according to the present invention, the solubilization treatment can be performed at a relatively low temperature without using a special high-temperature melting furnace or the like.
Moreover, there is no corrosion of equipment and incomplete volatilization of platinum group elements,
Since the obtained alloy is also a powder, pulverization before wet leaching is unnecessary, and it is possible to economically and efficiently separate and recover the insoluble platinum group element.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 難溶性白金族元素を含有する固体原料粉
末を、白金族元素と合金化しうる合金化元素粉末と混合
し、該難溶性白金族元素及び合金化元素の融点未満で且
つその合金の共融点未満の温度で加熱処理することを特
徴とする難溶性白金族元素の可溶性化方法。
1. A solid raw material powder containing a poorly soluble platinum group element is mixed with an alloying element powder which can be alloyed with the platinum group element, and the alloy powder is less than the melting point of the poorly soluble platinum group element and the alloying element. A method for solubilizing a poorly soluble platinum group element, wherein the method comprises a heat treatment at a temperature lower than the eutectic point.
【請求項2】 合金化元素粉末が鉄粉末であることを特
徴とする、請求項1に記載の難溶性白金族元素の可溶性
化方法。
2. The method for solubilizing a poorly soluble platinum group element according to claim 1, wherein the alloying element powder is iron powder.
【請求項3】 合金化元素粉末の鉄粉末と共に炭素粉末
を混合することを特徴とする、請求項2に記載の難溶性
白金族元素の可溶性化方法。
3. The method for solubilizing a sparingly soluble platinum group element according to claim 2, wherein carbon powder is mixed with iron powder of the alloying element powder.
【請求項4】 加熱処理を還元性雰囲気中で行うことを
特徴とする、請求項1〜3のいずれかに記載の難溶性白
金族元素の可溶性化方法。
4. The method according to claim 1, wherein the heat treatment is performed in a reducing atmosphere.
【請求項5】 加熱処理を950℃以上で行うことを特
徴とする、請求項1〜4のいずれかに記載の難溶性白金
族元素の可溶性化方法。
5. The method for solubilizing a poorly soluble platinum group element according to claim 1, wherein the heat treatment is performed at 950 ° C. or higher.
JP352897A 1997-01-13 1997-01-13 Method for solubilizing poorly soluble platinum group elements Expired - Lifetime JP3663795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP352897A JP3663795B2 (en) 1997-01-13 1997-01-13 Method for solubilizing poorly soluble platinum group elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP352897A JP3663795B2 (en) 1997-01-13 1997-01-13 Method for solubilizing poorly soluble platinum group elements

Publications (2)

Publication Number Publication Date
JPH10195552A true JPH10195552A (en) 1998-07-28
JP3663795B2 JP3663795B2 (en) 2005-06-22

Family

ID=11559895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP352897A Expired - Lifetime JP3663795B2 (en) 1997-01-13 1997-01-13 Method for solubilizing poorly soluble platinum group elements

Country Status (1)

Country Link
JP (1) JP3663795B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248280A (en) * 2004-03-05 2005-09-15 Foundation For The Promotion Of Industrial Science Method for recovering noble metal
JP2009256745A (en) * 2008-04-18 2009-11-05 Foundation For The Promotion Of Industrial Science Method for recovering noble metal
JP2015063754A (en) * 2013-09-02 2015-04-09 田中貴金属工業株式会社 Composition for recovering ruthenium and iridium and method for recovering ruthenium and iridium
JP2017031468A (en) * 2015-07-31 2017-02-09 Jx金属株式会社 METHOD FOR SEPARATING Ru, Rh AND Ir FROM SUBSTANCE CONTAINING SELENIUM AND PLATINUM GROUP ELEMENTS
JP2017146132A (en) * 2016-02-16 2017-08-24 Dowaテクノロジー株式会社 Assaying method for precious metal elements
WO2021153710A1 (en) * 2020-01-30 2021-08-05 国立大学法人福井大学 Platinum-group metal recovery method, composition containing platinum-group metals, and ceramic material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248280A (en) * 2004-03-05 2005-09-15 Foundation For The Promotion Of Industrial Science Method for recovering noble metal
JP4595082B2 (en) * 2004-03-05 2010-12-08 財団法人生産技術研究奨励会 Precious metal recovery method
JP2009256745A (en) * 2008-04-18 2009-11-05 Foundation For The Promotion Of Industrial Science Method for recovering noble metal
JP2015063754A (en) * 2013-09-02 2015-04-09 田中貴金属工業株式会社 Composition for recovering ruthenium and iridium and method for recovering ruthenium and iridium
JP2017031468A (en) * 2015-07-31 2017-02-09 Jx金属株式会社 METHOD FOR SEPARATING Ru, Rh AND Ir FROM SUBSTANCE CONTAINING SELENIUM AND PLATINUM GROUP ELEMENTS
JP2017146132A (en) * 2016-02-16 2017-08-24 Dowaテクノロジー株式会社 Assaying method for precious metal elements
WO2021153710A1 (en) * 2020-01-30 2021-08-05 国立大学法人福井大学 Platinum-group metal recovery method, composition containing platinum-group metals, and ceramic material
CN115003830A (en) * 2020-01-30 2022-09-02 国立大学法人福井大学 Method for recovering platinum group metal, composition containing platinum group metal, and ceramic material

Also Published As

Publication number Publication date
JP3663795B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP5376437B2 (en) Method for recovering ruthenium from materials containing ruthenium or ruthenium oxide or ruthenium-containing noble metal concentrates
EP2370606B1 (en) Plasma method and apparatus for recovery of precious metals
JP4313361B2 (en) Method of chlorinating Ru and / or Rh
CN102534244A (en) Method for concentrating precious metal from low-grade precious metal material
JP2009057611A (en) Method for recovering ruthenium
US4188362A (en) Process for the treatment of platinum group metals and gold
JP2008202063A (en) Method for recovering platinum group metal from waste
JP3663795B2 (en) Method for solubilizing poorly soluble platinum group elements
CA1068116A (en) Process for the treatment of platinum group metals and gold
JP4715598B2 (en) Chloride leaching method of lead electrolysis slime
JP3024385B2 (en) Method for recovering indium from indium scrap
US3212883A (en) Copper refining process
KR101817079B1 (en) process of recovering Platinum group metal from waste sludge generated from refining process of precious metal ore
CN112899493B (en) Method for recovering and purifying platinum from platinum-tungsten alloy
JP3591135B2 (en) Recovery method of platinum group elements
US4608235A (en) Recovery of cobalt
JP3591134B2 (en) Recovery method of platinum group elements
JP3763286B2 (en) How to recover high-quality rhodium powder
JP2698424B2 (en) Liquefaction method of iridium
US4173467A (en) Process for recovering valuable metals from superalloy scrap
RU2086685C1 (en) Method for pyrometallurgical refining gold- and silver-containing wastes
Douglass et al. High-temperature Properties and Alloying Behaviour of the Refractory Platinum-group Metals
US2778725A (en) Method for making powdered vanadium metal
US5004500A (en) Chlorination process for recovering gold values from gold alloys
JPH09324223A (en) Method of recovery of platinum group element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

EXPY Cancellation because of completion of term