JP2017031468A - METHOD FOR SEPARATING Ru, Rh AND Ir FROM SUBSTANCE CONTAINING SELENIUM AND PLATINUM GROUP ELEMENTS - Google Patents

METHOD FOR SEPARATING Ru, Rh AND Ir FROM SUBSTANCE CONTAINING SELENIUM AND PLATINUM GROUP ELEMENTS Download PDF

Info

Publication number
JP2017031468A
JP2017031468A JP2015152393A JP2015152393A JP2017031468A JP 2017031468 A JP2017031468 A JP 2017031468A JP 2015152393 A JP2015152393 A JP 2015152393A JP 2015152393 A JP2015152393 A JP 2015152393A JP 2017031468 A JP2017031468 A JP 2017031468A
Authority
JP
Japan
Prior art keywords
platinum group
selenium
solid
melt
acid leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152393A
Other languages
Japanese (ja)
Other versions
JP6585955B2 (en
Inventor
裕貴 有吉
Yuki Ariyoshi
裕貴 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015152393A priority Critical patent/JP6585955B2/en
Publication of JP2017031468A publication Critical patent/JP2017031468A/en
Application granted granted Critical
Publication of JP6585955B2 publication Critical patent/JP6585955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently separating Ru, Rh and Ir from a substance containing selenium and platinum group elements.SOLUTION: The method for separating Ru, Rh and Ir from a substance containing selenium and platinum group elements comprises: an alkali treatment step of adding a flux being a mixture of sodium hydroxide and sodium nitrate to a substance containing selenium and platinum group elements composed mainly of Se, Pt, Pd, Ru, Rh and Ir in which Pt, Pd and Ru are bonded mainly to Se to form a selenium compound and melting the substance to produce a melt; and an acid leaching step of subjecting the melt to acid leaching treatment and after that performing solid-liquid separation to produce a solid including Ru, Rh and Ir and a liquid including Se, Pt and Pd.SELECTED DRAWING: None

Description

本発明はセレン白金族元素含有物からRu、RhおよびIrを分離する方法に関する。   The present invention relates to a method for separating Ru, Rh and Ir from a selenium platinum group element-containing material.

銅製錬の銅電解工程で発生する電解殿物には貴金属が含まれており、王水や塩酸等の薬剤により溶解した後に元素ごとに分離回収される。貴金属には白金族元素も含まれており、白金族元素とともにセレンが共存しているセレン白金族元素含有物として存在している。このセレン白金族元素含有物は王水や塩酸等の薬剤で溶解しにくいため湿式処理が困難である。
これに関連して、従来、特許文献1に記載の方法が提案されている。
特許文献1には、セレン白金族元素含有物に苛性ソーダと硝酸ソーダの混合物からなるフラックスを添加し、該フラックスの共晶温度以上に加熱して溶融し、この溶融物を水浸出して固液分離し、亜セレン酸ソーダを含む液分と白金族元素を含む残渣とに分離することを特徴とするセレン白金族元素含有物の溶解処理方法が記載されており、このような方法によれば、セレンを効率よく浸出して白金族元素と分離することができると記載されている。
Electrolytic deposits generated in the copper electrolysis process of copper smelting contain precious metals, which are separated and recovered for each element after being dissolved by chemicals such as aqua regia and hydrochloric acid. The noble metal includes a platinum group element, and exists as a selenium platinum group element-containing material in which selenium coexists with the platinum group element. This selenium platinum group element-containing material is difficult to be wet-treated because it is difficult to dissolve with chemicals such as aqua regia and hydrochloric acid.
In relation to this, a method described in Patent Document 1 has been proposed.
In Patent Document 1, a flux composed of a mixture of caustic soda and sodium nitrate is added to a selenium platinum group element-containing material, heated to a temperature equal to or higher than the eutectic temperature of the flux and melted, and the melt is leached into a solid liquid. A method for dissolving a selenium platinum group element-containing material, characterized in that it is separated and separated into a liquid component containing sodium selenite and a residue containing a platinum group element, is described. Selenium can be efficiently leached and separated from platinum group elements.

特開2003−268457号公報JP 2003-268457 A

しかしながら、セレン白金族元素含有物が、特にRu、RhおよびIrを多く含む場合に、これらの元素成分を、その他の元素(特にSe、PtおよびPd)と効率よく分離する方法については、従来、検討されていなかった。
すなわち、特許文献1に記載の方法のようにSeと白金族元素とを分離するのではなく、Ru、RhおよびIrと、その他の元素とを分離する方法は、従来、提案されていない。
However, when the selenium platinum group element-containing material contains a large amount of Ru, Rh and Ir in particular, a method for efficiently separating these element components from other elements (especially Se, Pt and Pd) has been conventionally known. It was not examined.
That is, a method of separating Ru, Rh, and Ir from other elements has not been proposed conventionally, instead of separating Se and platinum group elements as in the method described in Patent Document 1.

本発明者は上記課題を解決するため鋭意検討し、Ru、RhおよびIrを多く含むセレン白金族元素含有物から、Ru、RhおよびIrを効率よく分離する方法を見出し、本発明を完成させた。
本発明は以下の(1)〜(4)である。
(1)Se、Pt、Pd、Ru、RhおよびIrを主成分として含み、Pt、PdおよびRuは主にSeと結合してセレン化合物を形成しているセレン白金族元素含有物に、苛性ソーダおよび硝酸ソーダの混合物であるフラックスを添加し、溶融して、溶融物を得るアルカリ処理工程と、
前記溶融物に酸浸出処理を施した後、固液分離し、Ru、RhおよびIrを含む固体と、Se、PtおよびPdを含む液体とを得る酸浸出工程と、
を備える、セレン白金族元素含有物からRu、RhおよびIrを分離する分離方法。
(2)前記酸浸出工程において、前記溶融物を1.0〜3.5mol/Lの塩酸水溶液に浸漬する前記酸浸出処理を施す、上記(1)に記載の分離方法。
(3)前記酸浸出工程において、前記溶融物に水浸出処理を施した後、固液分離し、固体として得られた残渣を、前記塩酸水溶液と過酸化水素とを含む溶液に浸漬する前記酸浸出処理を施す、上記(1)または(2)に記載の分離方法。
(4)アルカリ処理工程において、苛性ソーダと硝酸ソーダとを70:30〜89:11のモル比で含む前記フラックスを用いる、上記(1)〜(3)のいずれかに記載の分離方法。
The present inventors diligently studied to solve the above problems, and found a method for efficiently separating Ru, Rh and Ir from a selenium platinum group element-containing material containing a large amount of Ru, Rh and Ir, and completed the present invention. .
The present invention includes the following (1) to (4).
(1) A selenium platinum group element containing se, Pt, Pd, Ru, Rh and Ir as main components, wherein Pt, Pd and Ru are mainly bonded to Se to form a selenium compound. An alkali treatment step of adding a flux that is a mixture of sodium nitrate and melting to obtain a melt;
An acid leaching step of subjecting the melt to an acid leaching treatment followed by solid-liquid separation to obtain a solid containing Ru, Rh and Ir, and a liquid containing Se, Pt and Pd;
A separation method for separating Ru, Rh and Ir from a selenium platinum group element-containing material.
(2) The separation method according to (1), wherein in the acid leaching step, the acid leaching treatment is performed in which the melt is immersed in a 1.0 to 3.5 mol / L hydrochloric acid aqueous solution.
(3) In the acid leaching step, the melt is subjected to a water leaching treatment and then separated into solid and liquid, and the residue obtained as a solid is immersed in a solution containing the hydrochloric acid aqueous solution and hydrogen peroxide. The separation method according to (1) or (2) above, wherein a leaching process is performed.
(4) The separation method according to any one of (1) to (3), wherein in the alkali treatment step, the flux containing caustic soda and sodium nitrate at a molar ratio of 70:30 to 89:11 is used.

本発明によれば、Ru、RhおよびIrを多く含むセレン白金族元素含有物から、Ru、RhおよびIrを効率よく分離する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of isolate | separating Ru, Rh, and Ir efficiently from the selenium platinum group element containing material containing many Ru, Rh, and Ir can be provided.

実施例2の結果を示すグラフである。10 is a graph showing the results of Example 2. 実施例3の結果を示すグラフである。10 is a graph showing the results of Example 3. 実施例3のもう一つの結果を示すグラフである。10 is a graph showing another result of Example 3.

本発明について説明する。
本発明は、Se、Pt、Pd、Ru、RhおよびIrを主成分として含み、Pt、PdおよびRuは主にSeと結合してセレン化合物を形成しているセレン白金族元素含有物に、苛性ソーダおよび硝酸ソーダの混合物であるフラックスを添加し、溶融して、溶融物を得るアルカリ処理工程と、前記溶融物に酸浸出処理を施した後、固液分離し、Ru、RhおよびIrを含む固体と、Se、PtおよびPdを含む液体とを得る酸浸出工程と、を備える、セレン白金族元素含有物からRu、RhおよびIrを分離する分離方法である。
このような分離方法を、以下では「本発明の分離方法」ともいう。
The present invention will be described.
The present invention relates to a selenium platinum group element-containing material containing Se, Pt, Pd, Ru, Rh and Ir as main components, wherein Pt, Pd and Ru are mainly combined with Se to form a selenium compound. And an alkali treatment step of adding a flux that is a mixture of sodium nitrate and melting to obtain a melt, and subjecting the melt to an acid leaching treatment, followed by solid-liquid separation, and a solid containing Ru, Rh, and Ir And an acid leaching step for obtaining a liquid containing Se, Pt, and Pd, and a separation method for separating Ru, Rh, and Ir from a selenium platinum group element-containing material.
Hereinafter, such a separation method is also referred to as “the separation method of the present invention”.

<セレン白金族元素含有物>
初めにセレン白金族元素含有物について説明する。
本発明の分離方法においてセレン白金族元素含有物は、Se、Pt、Pd、Ru、RhおよびIrを主成分として含んでいる。また、それらの中でPt、PdおよびRuは主にSeと結合してセレン化合物を形成し、セレン白金族元素含有物の少なくとも一部を構成している。
<Selenium platinum group element-containing material>
First, the selenium platinum group element-containing material will be described.
In the separation method of the present invention, the selenium platinum group element-containing material contains Se, Pt, Pd, Ru, Rh and Ir as main components. Among them, Pt, Pd, and Ru are mainly bonded to Se to form a selenium compound, and constitute at least a part of the selenium platinum group element-containing material.

本発明において主成分とは、含有率が60質量%以上であることを意味するものとする。すなわち、本発明の分離方法においてセレン白金族元素含有物におけるSe、Pt、Pd、Ru、RhおよびIrの合計含有率は60質量%以上である。
この合計含有率は70質量%以上であることが好ましく、75質量%以上であることがより好ましく、80質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。
In the present invention, the main component means that the content is 60% by mass or more. That is, in the separation method of the present invention, the total content of Se, Pt, Pd, Ru, Rh and Ir in the selenium platinum group element-containing material is 60% by mass or more.
The total content is preferably 70% by mass or more, more preferably 75% by mass or more, more preferably 80% by mass or more, and further preferably 85% by mass or more.

セレン白金族元素含有物においてSe含有率は、40〜80質量%であることが好ましく、50〜70質量%であることがより好ましい。   In the selenium platinum group element-containing material, the Se content is preferably 40 to 80% by mass, and more preferably 50 to 70% by mass.

セレン白金族元素含有物においてPt含有率は、0.1〜10質量%であることが好ましい。   In the selenium platinum group element-containing material, the Pt content is preferably 0.1 to 10% by mass.

セレン白金族元素含有物においてPd含有率は、0.1〜15質量%であることが好ましい。   In the selenium platinum group element-containing material, the Pd content is preferably 0.1 to 15% by mass.

セレン白金族元素含有物においてRu含有率は、1〜45質量%であることが好ましく、5〜40質量%であることがより好ましく、10〜35質量%であることがさらに好ましい。   In the selenium platinum group element-containing material, the Ru content is preferably 1 to 45% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 35% by mass.

セレン白金族元素含有物においてRh含有率は、0.1〜8質量%であることが好ましい。   In the selenium platinum group element-containing material, the Rh content is preferably 0.1 to 8% by mass.

セレン白金族元素含有物においてIr含有率は、0.1〜8質量%であることが好ましい。   In the selenium platinum group element-containing material, the Ir content is preferably 0.1 to 8% by mass.

なお、セレン白金族元素含有物が含むSe、Pt、Pd、Ru、RhおよびIrの各成分ならびにその他成分の含有率は、ICP発光分析装置を用いて測定して得られる値を意味するものとする。   The contents of each component of Se, Pt, Pd, Ru, Rh, and Ir contained in the selenium platinum group element-containing material and other components mean values obtained by measurement using an ICP emission analyzer. To do.

上記のような成分のうち、少なくともPt、PdおよびRuは、主にSeと結合してセレン化合物を形成している。
Pt、PdおよびRuがSeと結合してなるセレン化合物としては、PtRuSe4、PdSe2、PtSe2が挙げられる。
Among the components as described above, at least Pt, Pd, and Ru are mainly bonded to Se to form a selenium compound.
Examples of the selenium compound in which Pt, Pd and Ru are bonded to Se include PtRuSe 4 , PdSe 2 and PtSe 2 .

ここで「主に」とは、他の形態の化合物(例えばPt、PdまたはRuを含む酸化物)や単体(例えばPt、PdおよびRuの各々の単体)と比較して、その含有率が10倍以上であることを意味するものとする。すなわち、Pt、PdおよびRuがSeと結合してなるセレン化合物の含有率は、その他の形態の化合物および単体の合計含有率の10倍以上、好ましくは100倍以上である。   Here, “mainly” means that the content rate is 10% compared to other forms of compounds (for example, oxides containing Pt, Pd, or Ru) or simple substances (for example, single elements of Pt, Pd, and Ru). It means to be more than double. That is, the content of the selenium compound formed by bonding Pt, Pd, and Ru with Se is 10 times or more, preferably 100 times or more, of the total content of other forms of compounds and simple substances.

なお、Pt、PdおよびRuがSeと結合してなるセレン化合物や、他の形態の化合物(例えばPt、PdまたはRuを含む酸化物)や単体(例えばPt、PdおよびRuの各々の単体)のセレン白金族元素含有物における含有率は、鉱物粒子解析装置(MLA解析装置)を用いて測定して得られる値を意味するものとする。   In addition, selenium compounds in which Pt, Pd and Ru are bonded to Se, compounds of other forms (for example, oxides containing Pt, Pd or Ru) and simple substances (for example, simple substances of Pt, Pd and Ru) The content rate in a selenium platinum group element containing material shall mean the value obtained by measuring using a mineral particle analyzer (MLA analyzer).

セレン白金族元素含有物において、Pt、PdおよびRuがSeと結合してなるセレン化合物の合計含有率(例えば、PtRuSe4、PdSe2およびPtSe2の合計含有率)は、65〜99質量%であることが好ましい。 In the selenium platinum group element-containing material, the total content of selenium compounds formed by combining Pt, Pd and Ru with Se (for example, the total content of PtRuSe 4 , PdSe 2 and PtSe 2 ) is 65 to 99% by mass. Preferably there is.

セレン白金族元素含有物においてPtRuSe4の含有率は、50〜90質量%であることが好ましく、60〜80質量%であることがより好ましい。 In the selenium platinum group-containing material, the content of PtRuSe 4 is preferably 50 to 90% by mass, and more preferably 60 to 80% by mass.

セレン白金族元素含有物においてPdSe2の含有率は、5〜40質量%であることが好ましい。 In the selenium platinum group-containing material, the content of PdSe 2 is preferably 5 to 40% by mass.

セレン白金族元素含有物においてPtSe2の含有率は、1〜15質量%であることが好ましい。 In the selenium platinum group-containing material, the content of PtSe 2 is preferably 1 to 15% by mass.

また、銅電解殿物を酸浸出して脱銅した後、固液分離する脱銅工程と、前記脱銅工程において固液分離することで固体として得られる酸浸出後の銅電解殿物を塩化浸出し、その後、固液分離する塩化浸出工程と、前記塩化浸出工程において固液分離することで液体として得られる塩化浸出液から溶媒抽出によって金を分離する金抽出工程と、前記金抽出工程において金を分離した後に得られる金抽出後液に二酸化硫黄を添加してセレンとテルルを順に還元して沈殿分離させ、その後、沈殿物からセレンを蒸留分離して蒸留残渣を得る還元工程と、を備える操作によって得られる前記蒸留残渣を、前記セレン白金族元素含有物として用いることが好ましい。   In addition, after the copper electrolytic deposit is acid leached to remove copper, the copper removal step for solid-liquid separation and the copper electrolytic deposit after acid leaching obtained as a solid by solid-liquid separation in the copper removal step are chlorinated. Chloride leaching step for leaching, followed by solid-liquid separation, gold extraction step for separating gold by solvent extraction from chlorinated leachate obtained as a liquid by solid-liquid separation in the chloride leaching step, and gold in the gold extraction step A reduction step in which sulfur dioxide is added to the gold-extracted solution obtained after the separation of selenium to reduce selenium and tellurium in order to precipitate separation, and then selenium is separated from the precipitate by distillation to obtain a distillation residue. The distillation residue obtained by the operation is preferably used as the selenium platinum group element-containing material.

ここで銅電解殿物は、例えば以下のようにして得られるものである。
銅の電解精製においては、転炉からの粗銅を精製炉において99.5%程度に精製し、鋳造した陽極(アノード)と陰極としての種板を電解槽に交互に数十枚一組で吊し、電解精製が実施される。種板上に電着した銅は電気銅と呼ばれ、周知の態様で爾後処理されて商品化される。電解槽の底には陽極に含まれる不純物が泥状で沈積し、これは銅電解殿物(アノードスライム)と呼ばれている。銅電解殿物には、銅に加えて、金を始め、原料中の貴金属が濃縮しており、貴金属回収の主要原料である。この他、セレン及びテルルも含まれている。
Here, the copper electrolytic product is obtained, for example, as follows.
In the electrolytic refining of copper, the crude copper from the converter is refined to about 99.5% in the refining furnace, and the cast anode (anode) and the seed plate as the cathode are suspended in pairs in the electrolytic cell alternately. Then, electrolytic purification is performed. The copper electrodeposited on the seed plate is called electrolytic copper and is post-treated in a well-known manner and commercialized. Impurities contained in the anode are deposited in a muddy state at the bottom of the electrolytic cell, which is called a copper electrolytic deposit (anode slime). In addition to copper, noble metals in the raw materials are concentrated in the copper electrolytic deposit, and it is the main raw material for precious metal recovery. In addition, selenium and tellurium are also included.

<アルカリ処理工程>
本発明の分離方法におけるアルカリ処理工程について説明する。
アルカリ処理工程では、前記セレン白金族元素含有物に、苛性ソーダおよび硝酸ソーダの混合物であるフラックスを添加し、溶融して、溶融物を得る。
<Alkali treatment process>
The alkali treatment process in the separation method of the present invention will be described.
In the alkali treatment step, a flux that is a mixture of caustic soda and sodium nitrate is added to the selenium platinum group element-containing material and melted to obtain a melt.

セレン白金族元素含有物と、苛性ソーダ(NaOH)および硝酸ソーダ(NaNO3)の混合物からなるフラックスとを、例えば坩堝などの容器へ装入し、これをフラックスの共晶温度以上に加熱して溶融する。具体的には350〜450℃に加熱して溶融することが好ましい。
加熱溶融によってSeが主に4価となり亜セレン酸ソーダ(Na2SeO3)となる。
A selenium platinum group element-containing material and a flux composed of a mixture of caustic soda (NaOH) and sodium nitrate (NaNO 3 ) are charged into a vessel such as a crucible, for example, and heated to a temperature equal to or higher than the eutectic temperature of the flux. To do. Specifically, it is preferable to melt by heating to 350 to 450 ° C.
By heating and melting, Se becomes mainly tetravalent and becomes sodium selenite (Na 2 SeO 3 ).

ここで、苛性ソーダと硝酸ソーダとを70:30〜89:11のモル比(Naモル比)とすることが好ましく、75:25〜85:15のモル比(Naモル比)とすることがより好ましく、75:25〜80:20のモル比(Naモル比)とすることがさらに好ましい。このような範囲であると、Ru、RhおよびIrをより効率よく分離できるからである。
苛性ソーダと硝酸ソーダのモル比が70:30よりも硝酸ソーダ比率が高まると溶融物のSeが6価の割合が高くなる傾向がある。苛性ソーダと硝酸ソーダのモル比が89:11よりも苛性ソーダ比率が高まるとPt,Pdの浸出率が低くなる傾向がある。
なお、本発明において浸出率は、原料として用いるセレン白金族元素含有物に対する各元素の質量ベースの比率(百分率)を意味するものとする。
Here, it is preferable to make caustic soda and sodium nitrate into a molar ratio (Na molar ratio) of 70:30 to 89:11, more preferably 75:25 to 85:15 (Na molar ratio). Preferably, the molar ratio (Na molar ratio) is 75:25 to 80:20. This is because within such a range, Ru, Rh and Ir can be more efficiently separated.
When the molar ratio of caustic soda to sodium nitrate is higher than 70:30, the ratio of hexavalent Se to the melt tends to increase. When the molar ratio of caustic soda and sodium nitrate is higher than 89:11, the leaching rate of Pt and Pd tends to decrease.
In the present invention, the leaching rate means the mass-based ratio (percentage) of each element to the selenium platinum group element-containing material used as a raw material.

また、苛性ソーダと硝酸ソーダとを86:14〜89:11のモル比(Naモル比)とすることが好ましい。6価のSeの存在率を低くすることができるからである。
また、苛性ソーダと硝酸ソーダとを70:30〜74:26のモル比(Naモル比)とすることが好ましい。後述する酸浸出工程におけるPtおよびPdの浸出率を概ね90%以上とすることができるからである。
さらに、苛性ソーダと硝酸ソーダとを70:30〜85:15のモル比(Naモル比)とすることが好ましく、74:26〜80:20のモル比(Naモル比)とすることがより好ましい。後述する酸浸出工程における金の浸出率を高めることができるからである。
Moreover, it is preferable to make caustic soda and sodium nitrate into the molar ratio (Na molar ratio) of 86: 14-89: 11. This is because the abundance ratio of hexavalent Se can be lowered.
Moreover, it is preferable to make caustic soda and sodium nitrate into a molar ratio (Na molar ratio) of 70:30 to 74:26. This is because the leaching rate of Pt and Pd in the acid leaching step described later can be approximately 90% or more.
Furthermore, caustic soda and sodium nitrate are preferably in a molar ratio (Na molar ratio) of 70:30 to 85:15, and more preferably in a molar ratio (Na molar ratio) of 74:26 to 80:20. . This is because the gold leaching rate in the acid leaching step described later can be increased.

このようなアルカリ処理工程を行って、溶融物を得る。   Such an alkali treatment process is performed to obtain a melt.

<酸浸出工程>
本発明の分離方法における酸浸出工程について説明する。
酸浸出工程では、前記溶融物に酸浸出処理を施した後、固液分離し、Ru、RhおよびIrを含む固体と、Se、PtおよびPdを含む液体とを得る。
<Acid leaching process>
The acid leaching process in the separation method of the present invention will be described.
In the acid leaching step, the melt is subjected to an acid leaching treatment and then subjected to solid-liquid separation to obtain a solid containing Ru, Rh and Ir and a liquid containing Se, Pt and Pd.

ここで酸浸出処理は、塩酸を用いることが好ましい。また、前記溶融物を1.0〜3.5mol/L、好ましくは2.0〜3.0mol/L、より好ましくは2.0〜2.9mol/Lの塩酸水溶液に浸漬して酸浸出処理を施すことが好ましい。このような範囲であると、Ru、RhおよびIrをより効率よく分離できるからである。
また、前記溶融物を2.0〜3.0mol/L(好ましくは2.0〜2.9mol/L)の塩酸水溶液に浸漬して酸浸出処理を施すと、酸浸出工程における金の浸出率を高めることができるので好ましい。
Here, hydrochloric acid is preferably used for the acid leaching treatment. The melt is immersed in an aqueous hydrochloric acid solution of 1.0 to 3.5 mol / L, preferably 2.0 to 3.0 mol / L, and more preferably 2.0 to 2.9 mol / L. It is preferable to apply. This is because within such a range, Ru, Rh and Ir can be more efficiently separated.
Moreover, when the said melt is immersed in 2.0-3.0 mol / L (preferably 2.0-2.9 mol / L) hydrochloric acid aqueous solution and an acid leaching process is performed, the leaching rate of gold in the acid leaching step Can be increased, which is preferable.

また、塩酸に過酸化水素を加えた溶液を用いて前記溶融物に酸浸出処理を施すことが好ましい。ここで塩酸に過酸化水素を加えた溶液における過酸化水素の濃度は30〜60質量%であることが好ましい。   Moreover, it is preferable to subject the melt to an acid leaching treatment using a solution obtained by adding hydrogen peroxide to hydrochloric acid. Here, the concentration of hydrogen peroxide in a solution obtained by adding hydrogen peroxide to hydrochloric acid is preferably 30 to 60% by mass.

さらに、酸浸出工程では、前記溶融物に水浸出処理を施した後、固液分離し、固体として得られた残渣について、上記のような酸浸出処理を施すことが好ましい。また、その残渣について、前記塩酸水溶液と過酸化水素とを含む溶液に浸漬する、上記のような酸浸出処理を施すことが好ましい。   Furthermore, in the acid leaching step, it is preferable to subject the molten material to a water leaching treatment, followed by solid-liquid separation and subjecting the residue obtained as a solid to the acid leaching treatment as described above. The residue is preferably subjected to the acid leaching treatment as described above in which the residue is immersed in a solution containing the hydrochloric acid aqueous solution and hydrogen peroxide.

このような酸浸出工程によって、Ru、RhおよびIrを含む固体と、Se、PtおよびPdを含む液体とを得ることができる。
ここでSe、PtおよびPdの液体への浸出率は極めて高い。
具体的にはSeの浸出率は90%以上、好ましくは95%以上、より好ましくは98%以上である。
また、PtまたはPdの浸出率は60%以上、好ましくは80%以上、より好ましくは88%以上である。
そして、Ru、RhおよびIrの液体への浸出率は低く、固体への残存率が高い。
具体的にはRu、Rh、Irのいずれか1種の浸出率は45%以下、好ましくは38%以下、より好ましくは35%以下である。
したがって、Ru、RhおよびIrをより効率よく分離することができる。
By such an acid leaching step, a solid containing Ru, Rh and Ir and a liquid containing Se, Pt and Pd can be obtained.
Here, the leaching rate of Se, Pt and Pd into the liquid is extremely high.
Specifically, the leaching rate of Se is 90% or more, preferably 95% or more, more preferably 98% or more.
The leaching rate of Pt or Pd is 60% or more, preferably 80% or more, more preferably 88% or more.
The leaching rate of Ru, Rh and Ir into the liquid is low, and the residual rate in the solid is high.
Specifically, the leaching rate of any one of Ru, Rh, and Ir is 45% or less, preferably 38% or less, more preferably 35% or less.
Therefore, Ru, Rh and Ir can be separated more efficiently.

上記の酸浸出工程において固液分離することで回収した固体を、例えば特開2004−332041号に記載の方法で処理して、Ru、RhおよびIrを得ることができる。   The solid recovered by solid-liquid separation in the acid leaching step can be processed by, for example, a method described in JP-A No. 2004-332041 to obtain Ru, Rh, and Ir.

<実施例1>
一般的な成分を備える銅電解殿物を用意し、これを硫酸溶液を用いて脱銅浸出処理した。得られた脱銅浸出残渣を塩酸と過酸化水素で溶解した。得られた溶液をDBC(ジブチルカルビトール)を用いて金抽出した。得られた金抽出後液を亜硫酸ガスを用いて還元し白金族含有還元物を分離した。この還元後液に対してさらに亜硫酸ガスを用いて還元してセレン含有還元物を得た。このセレン含有還元物を蒸留してセレンと蒸留残渣を得た。得られた蒸留残渣の分析結果を第1表に示す。
<Example 1>
A copper electrolytic product having general components was prepared and subjected to a copper removal leaching process using a sulfuric acid solution. The obtained decopper leaching residue was dissolved with hydrochloric acid and hydrogen peroxide. The resulting solution was gold extracted using DBC (dibutyl carbitol). The resulting gold-extracted solution was reduced using sulfurous acid gas to separate the platinum group-containing reduced product. The reduced solution was further reduced using sulfurous acid gas to obtain a selenium-containing reduced product. This selenium-containing reduced product was distilled to obtain selenium and a distillation residue. The analysis results of the obtained distillation residue are shown in Table 1.

また、蒸留残渣に含まれる成分の形態を鉱物粒子解析装置(MLA解析装置)により求めた。
測定結果を第2表に示す。
Moreover, the form of the component contained in the distillation residue was calculated | required with the mineral particle analyzer (MLA analyzer).
The measurement results are shown in Table 2.

第1表、第2表に示すように、蒸留残渣はRu、Rh、Irを多く含み、特にRuの含有率が22質量%と高い。また、RuはPtRuSe4の形態で含まれることが分かった。 As shown in Tables 1 and 2, the distillation residue contains a lot of Ru, Rh, and Ir, and the content of Ru is particularly high at 22% by mass. It was also found that Ru is contained in the form of PtRuSe 4 .

上記のような蒸留残渣をアルカリ処理および酸浸出処理を行った。具体的には、坩堝内へ5gの蒸留残渣とフラックス(NaOH:10g+NaNO3:5g)とを装入し、400℃で2時間の処理を行った後、1mol/Lの塩酸水溶液に浸漬し、80℃で2時間の処理を行った。その後、メンブレンフィルターを用いて真空ろ過することによって固液分離を行った。
そして、浸出液に含まれる各成分の含有率を測定し、浸出率(対原料(質量%))を求めた。第3表に示す。
The distillation residue as described above was subjected to alkali treatment and acid leaching treatment. Specifically, 5 g of distillation residue and flux (NaOH: 10 g + NaNO 3 : 5 g) were charged into the crucible, treated at 400 ° C. for 2 hours, then immersed in a 1 mol / L hydrochloric acid aqueous solution, The treatment was performed at 80 ° C. for 2 hours. Then, solid-liquid separation was performed by vacuum filtration using a membrane filter.
And the content rate of each component contained in the leachate was measured, and the leach rate (vs. raw material (mass%)) was determined. It is shown in Table 3.

第3表に示すように、Ru、Rh、Irの大半は固体中に残存させることが可能であることが確認された。
したがって、この固体からRu、Rh、Irを回収し、一方で、浸出液は、例えば金抽出後液の還元工程へ戻し、白金族・金含有還元物と共に従来法によって処理してパラジウム、金等を回収することができる。
As shown in Table 3, it was confirmed that most of Ru, Rh, and Ir can remain in the solid.
Therefore, Ru, Rh, and Ir are recovered from this solid. On the other hand, the leachate is returned to the reduction step of the solution after gold extraction, for example, and treated with a platinum group / gold-containing reduced product by a conventional method to remove palladium, gold, etc. It can be recovered.

<実施例2>
実施例1で用いた蒸留残渣についてアルカリ処理を行った。具体的には、坩堝内へ20gの蒸留残渣とフラックス(NaOHとNaNO3とを86mol:14molで混合したもの)とを装入し、400℃で2時間の処理を行った。
その後、塩酸濃度を変更した複数のパターンの酸浸出処理を行った。具体的には、上記のアルカリ処理後の残留残渣を80℃に調整した蒸留水内で2h撹拌した後、固液分離し、得られた残渣を、1mol/L、2mol/L、3mol/L、4mol/L、6mol/Lの各々に調整した塩酸水溶液に浸漬し、60℃で3時間の処理を行った。なお、塩酸水溶液には30%H22を初期液量に対し75%の体積量を添加した。
そして、その後、メンブレンフィルターを用いて真空ろ過することによって固液分離を行い、浸出液に含まれる各成分の含有率を測定し、浸出率を求めた。
結果を図1および第4表に示す。
<Example 2>
The distillation residue used in Example 1 was subjected to alkali treatment. Specifically, 20 g of distillation residue and flux (mixed with NaOH and NaNO 3 at a ratio of 86 mol: 14 mol) were charged into the crucible and treated at 400 ° C. for 2 hours.
Thereafter, acid leaching treatment was performed in a plurality of patterns with different hydrochloric acid concentrations. Specifically, the residual residue after the alkali treatment was stirred in distilled water adjusted to 80 ° C. for 2 h, and then solid-liquid separation was performed. The obtained residue was 1 mol / L, 2 mol / L, 3 mol / L. It was immersed in a hydrochloric acid aqueous solution adjusted to 4 mol / L and 6 mol / L, respectively, and treated at 60 ° C. for 3 hours. In addition, 75% of the initial volume of 30% H 2 O 2 was added to the aqueous hydrochloric acid solution.
And after that, solid-liquid separation was performed by carrying out vacuum filtration using a membrane filter, the content rate of each component contained in the leachate was measured, and the leach rate was obtained.
The results are shown in FIG. 1 and Table 4.

図1および第4表に示すように、塩酸濃度が2mol/L以上である場合にPtおよびPdの浸出率が70%以上となり、Auの浸出率が69%以上となった。また、塩酸濃度が4mol/L以上であると、Ru、Rh、Irの浸出率が高くなることがわかった。
これより、塩酸濃度が好ましくは1〜3.5mol/L(より好ましくは2〜3mol/L)である場合にPt、Pdの浸出率を高く、かつ、Ru、Rh、Irの浸出率を低くすることができることがわかった。
したがって、塩酸濃度を上記の範囲とした酸浸出処理を行い、その後、固液分離して得られる固体としてRu、Rh、Irを効率よく回収し、一方で、浸出液は、例えば金抽出後液の還元工程へ戻し、白金族・金含有還元物と共に従来法によって処理してパラジウム、金等を回収することができる。
As shown in FIG. 1 and Table 4, when the hydrochloric acid concentration was 2 mol / L or more, the leaching rate of Pt and Pd was 70% or more, and the leaching rate of Au was 69% or more. It was also found that the leaching rate of Ru, Rh, and Ir was increased when the hydrochloric acid concentration was 4 mol / L or more.
Accordingly, when the hydrochloric acid concentration is preferably 1 to 3.5 mol / L (more preferably 2 to 3 mol / L), the leaching rate of Pt and Pd is high, and the leaching rate of Ru, Rh, and Ir is low. I found out that I can do it.
Therefore, an acid leaching treatment with a hydrochloric acid concentration in the above range is performed, and then Ru, Rh, and Ir are efficiently recovered as solids obtained by solid-liquid separation, while the leachate is, for example, a solution after gold extraction Returning to the reduction step, palladium, gold and the like can be recovered by treating with a platinum group / gold-containing reduced product by a conventional method.

<実施例3>
実施例1で用いた蒸留残渣について、NaOHとNaNO3との混合比を変更した複数のパターンのフラックスを用いたアルカリ処理を行った。具体的には、坩堝内へ20gの蒸留残渣とNaNO3の混合比を0〜26mol%(Naモル比)の範囲で変更したフラックスとを装入し、400℃で2時間の処理を行った。
そして、上記のアルカリ処理後の残留残渣を80℃に調整した蒸留水内で2h撹拌した後、固液分離し、得られた残渣を1mol/Lの塩酸水溶液に浸漬し、60℃で3時間の処理を行い、さらにメンブレンフィルターを用いて真空ろ過することによって固液分離を行った。なお、塩酸水溶液には30%H22を初期液量に対し75%の体積量を添加した。
そして、その後、メンブレンフィルターを用いて真空ろ過することによって固液分離を行い、浸出液に含まれる各成分の含有率を測定し、浸出率を求めた。結果を図2および第5表に示す。
また、上記のアルカリ処理後の残留残渣を80℃に調整した蒸留水内で2h撹拌した後に固液分離して得られた水に含まれる4価Seおよび6価Seの割合を測定した。結果を図3および第6表に示す。
<Example 3>
The distillation residue used in Example 1 was subjected to alkali treatment using a plurality of patterns of flux in which the mixing ratio of NaOH and NaNO 3 was changed. Specifically, 20 g of distillation residue and a flux in which the mixing ratio of NaNO 3 was changed in the range of 0 to 26 mol% (Na molar ratio) were charged into the crucible, and the treatment was performed at 400 ° C. for 2 hours. .
The residual residue after the alkali treatment was stirred in distilled water adjusted to 80 ° C. for 2 h, then solid-liquid separated, and the resulting residue was immersed in a 1 mol / L aqueous hydrochloric acid solution at 60 ° C. for 3 hours. The solid-liquid separation was performed by vacuum filtration using a membrane filter. In addition, 75% of the initial volume of 30% H 2 O 2 was added to the aqueous hydrochloric acid solution.
And after that, solid-liquid separation was performed by carrying out vacuum filtration using a membrane filter, the content rate of each component contained in the leachate was measured, and the leach rate was obtained. The results are shown in FIG. 2 and Table 5.
Further, the ratio of tetravalent Se and hexavalent Se contained in the water obtained by solid-liquid separation after stirring for 2 h in distilled water adjusted to 80 ° C. was measured for the residual residue after the alkali treatment. The results are shown in FIG. 3 and Table 6.

図2および第5表に示すように、フラックスに含まれるNaNO3の割合が10mol%(Naモル比)以下であると、PtおよびPdの浸出率が低くなることが分かった。また、フラックスに含まれるNaNO3の割合が高くても、Ru、Rh、Irの浸出率は高くならないことがわかった。
これより、フラックスに含まれるNaNO3の割合が11〜30mol%(Naモル比)とすると、Pt、Pdの浸出率を高く、かつ、Ru、Rh、Irの浸出率を低くすることができることがわかった。
したがって、フラックスに含まれるNaNO3の割合を上記の範囲としたアルカリ処理を行い、その後、固液分離して得られる固体としてRu、Rh、Irを効率よく回収し、一方で、浸出液は、例えば金抽出後液の還元工程へ戻し、白金族・金含有還元物と共に従来法によって処理してパラジウム、金等を回収することができる。
As shown in FIG. 2 and Table 5, it was found that when the proportion of NaNO 3 contained in the flux was 10 mol% (Na molar ratio) or less, the leaching rate of Pt and Pd was lowered. It was also found that even if the ratio of NaNO 3 contained in the flux was high, the leaching rate of Ru, Rh, and Ir did not increase.
From this, when the ratio of NaNO 3 contained in the flux is 11 to 30 mol% (Na molar ratio), the leaching rate of Pt and Pd can be increased and the leaching rate of Ru, Rh, and Ir can be decreased. all right.
Therefore, an alkali treatment is performed with the ratio of NaNO 3 contained in the flux within the above range, and then Ru, Rh, and Ir are efficiently recovered as solids obtained by solid-liquid separation, while leachate is, for example, It can return to the reduction | restoration process of the liquid after gold extraction, and can process palladium and gold | metal | money containing reduction products with a conventional method, and can collect | recover palladium, gold | metal | money, etc.

また、図3および第6表に示すように、フラックスに含まれるNaNO3の割合が高くなると水浸出によるSe浸出率が高くなることが分かった。また、フラックスに含まれるNaNO3の割合が高くなるほど、4価Seの割合が減り、6価Seの割合が増えることが分かった。 Further, as shown in FIG. 3 and Table 6, it was found that the Se leaching rate due to water leaching increases as the proportion of NaNO 3 contained in the flux increases. It was also found that the higher the proportion of NaNO 3 contained in the flux, the lower the proportion of tetravalent Se and the higher the proportion of hexavalent Se.

Claims (4)

Se、Pt、Pd、Ru、RhおよびIrを主成分として含み、Pt、PdおよびRuは主にSeと結合してセレン化合物を形成しているセレン白金族元素含有物に、苛性ソーダおよび硝酸ソーダの混合物であるフラックスを添加し、溶融して、溶融物を得るアルカリ処理工程と、
前記溶融物に酸浸出処理を施した後、固液分離し、Ru、RhおよびIrを含む固体と、Se、PtおよびPdを含む液体とを得る酸浸出工程と、
を備える、セレン白金族元素含有物からRu、RhおよびIrを分離する分離方法。
It contains Se, Pt, Pd, Ru, Rh, and Ir as main components, and Pt, Pd, and Ru are mainly combined with Se to form a selenium compound. An alkali treatment step of adding and melting a flux as a mixture to obtain a melt;
An acid leaching step of subjecting the melt to an acid leaching treatment followed by solid-liquid separation to obtain a solid containing Ru, Rh and Ir, and a liquid containing Se, Pt and Pd;
A separation method for separating Ru, Rh and Ir from a selenium platinum group element-containing material.
前記酸浸出工程において、前記溶融物を1.0〜3.5mol/Lの塩酸水溶液に浸漬する前記酸浸出処理を施す、請求項1に記載の分離方法。   The separation method according to claim 1, wherein in the acid leaching step, the acid leaching treatment is performed in which the melt is immersed in a 1.0 to 3.5 mol / L hydrochloric acid aqueous solution. 前記酸浸出工程において、前記溶融物に水浸出処理を施した後、固液分離し、固体として得られた残渣を、前記塩酸水溶液と過酸化水素とを含む溶液に浸漬する前記酸浸出処理を施す、請求項1または2に記載の分離方法。   In the acid leaching step, the melt is subjected to a water leaching treatment, followed by solid-liquid separation, and the acid leaching treatment in which the residue obtained as a solid is immersed in a solution containing the hydrochloric acid aqueous solution and hydrogen peroxide. The separation method according to claim 1 or 2, which is performed. アルカリ処理工程において、苛性ソーダと硝酸ソーダとを70:30〜89:11のモル比で含む前記フラックスを用いる、請求項1〜3のいずれかに記載の分離方法。   The separation method according to any one of claims 1 to 3, wherein in the alkali treatment step, the flux containing caustic soda and sodium nitrate at a molar ratio of 70:30 to 89:11 is used.
JP2015152393A 2015-07-31 2015-07-31 Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material Active JP6585955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152393A JP6585955B2 (en) 2015-07-31 2015-07-31 Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152393A JP6585955B2 (en) 2015-07-31 2015-07-31 Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material

Publications (2)

Publication Number Publication Date
JP2017031468A true JP2017031468A (en) 2017-02-09
JP6585955B2 JP6585955B2 (en) 2019-10-02

Family

ID=57987896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152393A Active JP6585955B2 (en) 2015-07-31 2015-07-31 Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material

Country Status (1)

Country Link
JP (1) JP6585955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003126A (en) * 2016-07-06 2018-01-11 エコシステムリサイクリング株式会社 Processing method of ruthenium-containing article and recovery method of ruthenium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125626A (en) * 1975-01-29 1976-11-02 Nat I Fuoa Metaraajii Treating method of concentrates of noble metals
JPS59104438A (en) * 1982-12-07 1984-06-16 Permelec Electrode Ltd Recovery of ruthenium from metal electrode
JPH10195552A (en) * 1997-01-13 1998-07-28 Sumitomo Metal Mining Co Ltd Method for making scarcely soluble platinum group element
JP2003268457A (en) * 2002-03-15 2003-09-25 Mitsubishi Materials Corp Method for dissolving substance containing selenium and platinum group element
JP2007302944A (en) * 2006-05-11 2007-11-22 Sumitomo Metal Mining Co Ltd Method for recovering platinum group element from ion-exchange resin containing adsorbed platinum group element
JP2010215999A (en) * 2009-03-19 2010-09-30 Eco-System Recycling Co Ltd Method for concentrating ruthenium and method for recovering the same
JP2012167367A (en) * 2011-01-28 2012-09-06 Mitsubishi Materials Corp Recovery method of platinum group metal
JP2012241198A (en) * 2011-05-16 2012-12-10 Dowa Holdings Co Ltd Method for recovering platinum group metal from blasting sand containing platinum group metal
JP2015513614A (en) * 2012-03-05 2015-05-14 ▲陽▼光▲凱▼迪新能源集▲団▼有限公司 Comprehensive method for the recovery of metallic cobalt, ruthenium and aluminum from Co-Ru / Al2O3 waste catalyst synthesized by Fischer-Tropsch

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125626A (en) * 1975-01-29 1976-11-02 Nat I Fuoa Metaraajii Treating method of concentrates of noble metals
JPS59104438A (en) * 1982-12-07 1984-06-16 Permelec Electrode Ltd Recovery of ruthenium from metal electrode
JPH10195552A (en) * 1997-01-13 1998-07-28 Sumitomo Metal Mining Co Ltd Method for making scarcely soluble platinum group element
JP2003268457A (en) * 2002-03-15 2003-09-25 Mitsubishi Materials Corp Method for dissolving substance containing selenium and platinum group element
JP2007302944A (en) * 2006-05-11 2007-11-22 Sumitomo Metal Mining Co Ltd Method for recovering platinum group element from ion-exchange resin containing adsorbed platinum group element
JP2010215999A (en) * 2009-03-19 2010-09-30 Eco-System Recycling Co Ltd Method for concentrating ruthenium and method for recovering the same
JP2012167367A (en) * 2011-01-28 2012-09-06 Mitsubishi Materials Corp Recovery method of platinum group metal
JP2012241198A (en) * 2011-05-16 2012-12-10 Dowa Holdings Co Ltd Method for recovering platinum group metal from blasting sand containing platinum group metal
JP2015513614A (en) * 2012-03-05 2015-05-14 ▲陽▼光▲凱▼迪新能源集▲団▼有限公司 Comprehensive method for the recovery of metallic cobalt, ruthenium and aluminum from Co-Ru / Al2O3 waste catalyst synthesized by Fischer-Tropsch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003126A (en) * 2016-07-06 2018-01-11 エコシステムリサイクリング株式会社 Processing method of ruthenium-containing article and recovery method of ruthenium

Also Published As

Publication number Publication date
JP6585955B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP3616314B2 (en) Method for treating copper electrolytic deposits
JP3474526B2 (en) How to recover silver
CN106119554A (en) High Purity Gold the method being enriched with silver, platinum and palladium is prepared from silver anode slime
CN102459659A (en) Method for processing precious metal source materials
JP6011809B2 (en) Method for producing gold powder with high bulk density
JP5591749B2 (en) Method for recovering tellurium from alkaline leaching residue containing tellurium
JP2012246198A (en) Method for purifying selenium by wet process
JP5200588B2 (en) Method for producing high purity silver
JP6585955B2 (en) Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP6475403B2 (en) How to recover tellurium
JP5591748B2 (en) How to recover tellurium
US5939042A (en) Tellurium extraction from copper electrorefining slimes
JP5533770B2 (en) Separation method of selenium
JP2008088470A (en) Method for recovering indium from indium-containing material
JP2012214307A (en) Method for recovering tellurium
JP7006332B2 (en) How to make gold powder
JP6163392B2 (en) Germanium recovery method
JP2017119623A (en) Method for recovering tellurium
JPS6221851B2 (en)
RU2534093C2 (en) Method of copper-electrolyte processing
JP2019085618A (en) Recovery method of antimony
JPH10158752A (en) Method for extracting and recovering silver
JP7198036B2 (en) Selenium production method
US1941914A (en) Electrochemical process for the recovery of metals from ores and other metal bearing materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190906

R150 Certificate of patent or registration of utility model

Ref document number: 6585955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250