JPS5877506A - Reduction of metal oxide to metal powder - Google Patents
Reduction of metal oxide to metal powderInfo
- Publication number
- JPS5877506A JPS5877506A JP17647082A JP17647082A JPS5877506A JP S5877506 A JPS5877506 A JP S5877506A JP 17647082 A JP17647082 A JP 17647082A JP 17647082 A JP17647082 A JP 17647082A JP S5877506 A JPS5877506 A JP S5877506A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- lithium
- oxide
- reducing agent
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1263—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
- C22B34/1268—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/14—Obtaining zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/04—Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
- C22B60/02—Obtaining thorium, uranium, or other actinides
- C22B60/0291—Obtaining thorium, uranium, or other actinides obtaining thorium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は液体金属還元剤を使用することによって金8
11化物を金属粉末に還元する方法に関する。この発明
は特にナタン、ハフニウム及びジルコニウムのような反
応性金属の酸化物の還元方片に関する。DETAILED DESCRIPTION OF THE INVENTION This invention utilizes a liquid metal reducing agent to reduce gold 8.
The present invention relates to a method for reducing 11 compounds to metal powder. This invention particularly relates to the reduction of oxides of reactive metals such as nathane, hafnium and zirconium.
これ才でにもチタン、ジルコニウム、トリウム、ウラン
、バナジウムなどの金属の酸化物を還元するだめの困難
さは米国特許第1.J−73,Og 3号、第1,7θ
lI、、2j7号、第i、gi乞7/?号、第2、+
lIt、o 44号、第2,337,048’号、第ス
、653.g6ワ号及び第2,7θ7.A79号明細書
に記載θ)ようにして液体金属還元剤の使用によって減
少した。他の還元剤も使用しつるけれども液体力ルンウ
ムがその酸化物生成自由エネルギーが非常に負なために
特に好適である。The difficulty of reducing oxides of metals such as titanium, zirconium, thorium, uranium, vanadium, etc. is explained in U.S. Patent No. 1. J-73, Og No. 3, No. 1, 7θ
lI,, 2j7, no.i, gi 7/? No., 2nd, +
lIt, o No. 44, No. 2,337,048', No. 653. g6wa and 2nd, 7θ7. A79 θ) was reduced by the use of a liquid metal reducing agent. Although other reducing agents may be used, liquid hydroxide is particularly preferred because its free energy of oxide formation is very negative.
しかし還元剤として液体カルシウムを使用できるのは純
カルシウムの融点であるざSOC以上の温度に限られて
きた。従来の研究者達により教示された実際の還元温度
は約90θC〜/3socである。これらの高還元温度
は還元反応自体により放出される熱に基ずく局部的高温
度と一緒になって生成する粉末の凝集体を生ずる傾向が
あった。これらの粉末凝集体は酸化カルシウム、カルシ
ウム及び金属粉末を清浄にするために使用する浸出技法
によって除くことが困難な他の不純物をも捕捉含有する
から有害である。However, the use of liquid calcium as a reducing agent has been limited to temperatures above the SOC, which is the melting point of pure calcium. The actual reduction temperature taught by prior researchers is about 90[theta]C to /3 soc. These high reduction temperatures, together with localized high temperatures due to the heat released by the reduction reaction itself, tended to result in powder agglomerates forming. These powder agglomerates are harmful because they also trap and contain calcium oxide, calcium, and other impurities that are difficult to remove by the leaching techniques used to clean the metal powders.
従って、この発明は金属酸化物と該金属酸化物を完全に
還元するのに必要な化学量論量より過剰量°の液体金属
還元剤との反応混合物を造り、#址の不純物量の酸素を
除けば実質上非酸化金属粉末に前記金属酸化物が還元さ
れる一井で前記金属酸化物と液体金属還元剤とを反応さ
せることからなる金属酸化物を実質上非酸化金属粉末に
還元する方法にある。Accordingly, the present invention creates a reaction mixture of a metal oxide and a liquid metal reducing agent in an amount in excess of the stoichiometric amount required to completely reduce the metal oxide, and A method for reducing a metal oxide to a substantially non-oxidized metal powder, comprising reacting the metal oxide with a liquid metal reducing agent in a step where the metal oxide is otherwise reduced to a substantially non-oxidized metal powder. It is in.
還元反応中、金属酸化物と還元剤との反応混合物をかき
捷ぜ或は攪拌することによって生成する金属粉末の凝集
体の数及び大きさヲ減少させることが便宜であることが
判明した。During the reduction reaction, it has been found convenient to reduce the number and size of the metal powder agglomerates formed by stirring or stirring the reaction mixture of metal oxide and reducing agent.
金属酸化物は約tooC以下の温度で還元することが望
ましい。ここに使用する液体金属還元剤はリチウム、リ
チウム−ナトリウム、リチウム−マグネシウム及びリチ
ウム−カルシウム、カルシウム、マグネシウム及びナト
リウムからなる群から選ばれる。反応混合物を還元反応
自体拌することが好ましい。It is desirable to reduce the metal oxide at a temperature of about too much C or less. The liquid metal reducing agent used herein is selected from the group consisting of lithium, lithium-sodium, lithium-magnesium and lithium-calcium, calcium, magnesium and sodium. Preferably, the reaction mixture is stirred during the reduction reaction itself.
過剰量の液体金属還元剤によって金属酸化物を還元した
後で残留する過剰の液体金属を蒸留除去する。液体金属
還元剤はリチウムであるのが好捷しい。Excess liquid metal remaining after reducing the metal oxide with an excess amount of liquid metal reducing agent is distilled off. Preferably, the liquid metal reducing agent is lithium.
この発明の特に便宜な実施態様においては酸化チタンと
この酸化チタンを完全に還元するのに必要な化学量論量
より過剰量の液体リチウムとの混合物が造られる。還元
反応は不活性雰囲気中で約、330C,AOOCの温度
で酸化チタンが非酸化態金属に実質上還元される才で還
元反応が行われる。次いで過剰のリチウムを反応混合物
から減圧蒸留により除けばチタン粉末と酸化リチウム粉
末とが後に残る。還元工程及び蒸留工稈中反応混合物を
攪拌して粉末粒子が凝集するのを制限する。蒸留後、酸
化リチウム及び残留することがある金属リチウムをチタ
ン粉末から浸出し、得られるチタン粉末を(k、浄し、
乾燥する。In a particularly advantageous embodiment of the invention, a mixture of titanium oxide and liquid lithium is produced in excess of the stoichiometric amount required to completely reduce the titanium oxide. The reduction reaction is carried out in an inert atmosphere at a temperature of about 330C, AOOC such that the titanium oxide is substantially reduced to the non-oxidized metal. Excess lithium is then removed from the reaction mixture by vacuum distillation, leaving behind titanium powder and lithium oxide powder. The reaction mixture during the reduction step and distillation process is agitated to limit agglomeration of the powder particles. After distillation, lithium oxide and any remaining metallic lithium are leached from the titanium powder, and the resulting titanium powder is (k, purified,
dry.
得られた金属粉末の基本粒子寸法は約0.7ミフロン〜
約0.5ミクロンで、これは粉末金属部材の製造に、i
たけゲッタ用材料として使用できる。The basic particle size of the obtained metal powder is approximately 0.7 microfron ~
approximately 0.5 microns, which is suitable for the production of powder metal parts.
Can be used as a material for bamboo getter.
リチウムは融点が約/ gOT::と低く、遷移金属酸
化物の還元に約3301ニーAθOCの低還元篇tVそ
使用することを可能となすから、リチウムが好適な液体
金)A還元剤である。ジルコニウム、ハウニウム、トリ
ウム、ランタン、ウラン、スカンジウム及びイツトリウ
ム以外のすべての醍移金属がリチウムを使用するこの液
体金属還元法で唾元できる。約50%壕でのマグネシウ
ムを含むリチウムーマクネシウム溶液を純リチウムの代
りに使用できる。約SθチのリチウムとSo係のマグネ
シウムを含む溶液は約、270C〜3!;O’Qの最高
融点をもつ。上述の例外はそれらの還元反応の熱力学が
好ましくないことに基ずく。リチウムは60OCで容易
に減圧蒸留される点でも好貰しい。既に述べた酸化物、
す方わちジルコニウム、ハフニウム、トリウム、ランタ
ン、ウランなどの一層安定な酸化物の場合にはリチウム
及びカルシウムのm液を使用できる。リチウムとカルシ
ウムとの液体金属還元剤溶液は約75重量%−までのカ
ルシウムを含むことができ、最大のカルシウム含量で約
−300の融点をもつ。これらの低融点は遷移金属酸化
物の液体還元を、先行技術による液体カルシウム還元操
作で従来使用されてきた温度よりはるかに低い温度で行
うことをEJ卵となす。6θOCと液体還元剤の融点と
の間の蕪元温度鎮使用可能である。65θCの融点をも
つ純マグネシウムまたはg socの融点をもつ純カル
シウムはこの発明で使用できるけれども、それらは純す
ナウム捷たはリチウム−マグネシウムまたはリチウム−
カルシウム溶液を使用するより好捷しくない。マグネシ
ウムまたはカルシウム還元操作を使用する際に必要なよ
り高い温度は生成される金属粉末粒子の凝集体の址をよ
り多くする。しかし、これは製造されたチタン金属粒子
を溶液中に懸濁体状に保つように還元操作中混合物の攪
、件着たけかき1ぜによっである程度軽減できる。しか
し、これらの純高融点金属を使用することは明らかに余
り好1しくない。液体金属還元剤による金属酸化物の還
元は還元反応に必要な化学量論量より過剰の量の遷元剤
を使用することによって熱力学的に達成される。化学量
論量の200%のような少量の還元剤をこの発明により
使用できるが、反応を完結まで進行させるだけでなく、
反応混合物の流動性を増大させ且つ該混合物の攪拌を容
易にし懸濁した金属粒子間の接触を制限するために必要
な化学量論量の少くとも/θOθ係の液体還元剤が存在
するのが好ましい。還元される酸化物と液体金属還元剤
との化学反応を封密下に管理され、且つそれらができる
だけ純粋であることが重要である。このために、窒素は
液体金属還元剤によって除去されず、事実、多くの場合
に製造しようとする方の金属によって吸収されるから窒
素@債については特に厳密に制限される。そのほかに金
属塩化物の使用は避けなければならない。この理由は金
属塩化物は金属粉末を不純にし、粉末冶金用に金属粉末
を使用するときに有害であるからである。既に述べたよ
うに、金属酸化物と液体金属還元剤とを含有する反応混
合物は還元操作中攪拌して金属粉末凝集体の生成を軽減
しなければならない。Lithium is the preferred liquid gold reducing agent because lithium has a low melting point of about 3,301 ns, which makes it possible to use it for the reduction of transition metal oxides. . All transferable metals except zirconium, haunium, thorium, lanthanum, uranium, scandium and ythtrium can be produced by this liquid metal reduction method using lithium. A lithium-magnesium solution containing about 50% magnesium can be used in place of pure lithium. A solution containing lithium at about Sθ and magnesium at So is about 270C~3! ; It has a highest melting point of O'Q. The above-mentioned exceptions are based on the unfavorable thermodynamics of these reduction reactions. Lithium is also advantageous in that it can be easily distilled under reduced pressure at 60OC. The oxides already mentioned,
Alternatively, in the case of more stable oxides such as zirconium, hafnium, thorium, lanthanum, uranium, lithium and calcium liquids can be used. The liquid metal reducing agent solution of lithium and calcium can contain up to about 75% calcium by weight and have a melting point of about -300 at maximum calcium content. These low melting points allow EJ eggs to perform liquid reduction of transition metal oxides at temperatures much lower than those traditionally used in prior art liquid calcium reduction operations. Any temperature between 6θOC and the melting point of the liquid reducing agent can be used. Although pure magnesium with a melting point of 65θC or pure calcium with a melting point of
Less preferable than using calcium solution. The higher temperatures required when using magnesium or calcium reduction operations result in more agglomerates of metal powder particles being produced. However, this can be alleviated to some extent by stirring the mixture during the reduction operation so as to keep the titanium metal particles produced in suspension in solution. However, the use of these pure refractory metals is clearly less preferred. Reduction of metal oxides by liquid metal reducing agents is accomplished thermodynamically by using an amount of transition agent in excess of the stoichiometric amount required for the reduction reaction. Although small amounts of reducing agent, such as 200% of the stoichiometric amount, can be used with this invention, they not only drive the reaction to completion;
The presence of a stoichiometric amount of at least /θOθ liquid reducing agent necessary to increase the fluidity of the reaction mixture and to facilitate agitation of the mixture and limit contact between suspended metal particles. preferable. It is important that the chemical reactions between the oxide to be reduced and the liquid metal reducing agent are controlled in a sealed manner and that they are as pure as possible. This places particular limits on nitrogen, since it is not removed by the liquid metal reducing agent, and in fact is often absorbed by the metal being produced. Additionally, the use of metal chlorides must be avoided. The reason for this is that metal chlorides impure metal powders and are harmful when using metal powders for powder metallurgy. As previously mentioned, the reaction mixture containing the metal oxide and liquid metal reducing agent must be agitated during the reduction operation to reduce the formation of metal powder agglomerates.
このかき捷ぜ捷たは攪拌は機緘的手段による形態のもの
であることができる。すなわち、攪拌手段は実際に反応
混合物を攪拌するために反応槽内に設置されていてもよ
く、或は反応槽を収容する室を振動するだめの振動機構
のものであってもよい。攪拌手段は反応混合物容器を通
って反応混合物をポンプ輸送する磁力ポンプの形態をと
るか、或は反応混合物と芙除に接触することなしに反応
混合物を攪拌するマグネナックeスタラーの形態のもの
でもよい。史に、金属粉末凝集体が邪魔板捷たけ陣かい
物に衝突することによってそれらの凝集体を解砕するの
を助勢するために反応混合物を含む各器内に邪魔板捷た
は他の障かい物を設けてもよい。This stirring or agitation can be in the form of mechanical means. That is, the stirring means may be installed within the reaction vessel to actually stir the reaction mixture, or may be a vibration mechanism that vibrates the chamber housing the reaction vessel. The stirring means may take the form of a magnetic pump that pumps the reaction mixture through the reaction mixture vessel, or it may be in the form of a Magnenac e-stirrer that stirs the reaction mixture without contacting the reaction mixture with the stirrer. . Historically, baffles or other barriers have been placed in each vessel containing the reaction mixture to assist in breaking up the metal powder agglomerates by impacting them with the baffle barrier. A paddle may be provided.
以下に実施例を掲げてこの発明を説明する。This invention will be explained below with reference to Examples.
実施例
高純tw IJナウム鋳塊−50gを不銹鋼客器中に装
入した。このリチウムは代表的には窒素含歓が;L o
o ppm以下の純度のものでηければhらない。顔
料品位の酸化ナタン約yogを前記不銹銅客器に添加し
た。上述の装入割合でのリチウムの量は二酸化チタンを
金桟ナタンに還元するのに必要な化学量tfiill惜
の約7gθθ≠であった。これらの物質の混合物を含有
する不銹鋼容器を次いで加熱し、湛用′が/gO’l:
J:f越えるとリチウム鋳塊が融解し、混合物を1晋拌
すると混合物中に液体リチウム中の二酸化チタン粒子の
懸濁体が形成された。約3 !;OCでilじめて反応
が始捷つだ徴候が認められた。rKいて反応混合物を5
ooCに加熱し、その錦度に数分間保って二酸化チタン
の還元を完了させた。この還元反応は下記式に従い進行
する:
Tie、+ダLi→Ti +、2 LiO。Example 50 g of high purity tw IJ Naum ingot was charged into a stainless steel container. This lithium typically contains nitrogen;
If it has a purity of 0 ppm or less, it is acceptable. Approximately yog of pigment grade sodium oxide was added to the rustless copper container. The amount of lithium at the above-mentioned charging ratio was approximately 7 g θθ≠, which was less than the stoichiometric amount required to reduce titanium dioxide to sodium chloride. A stainless steel container containing a mixture of these substances is then heated until the concentration is /gO'l:
When J:f was exceeded, the lithium ingot melted and the mixture was stirred for 1 hour, forming a suspension of titanium dioxide particles in liquid lithium in the mixture. About 3! ; Signs of the beginning of the reaction were observed for the first time in OC. The reaction mixture was heated to
It was heated to ooC and kept at that temperature for several minutes to complete the reduction of titanium dioxide. This reduction reaction proceeds according to the following formula: Tie, +da Li→Ti +, 2 LiO.
この還元は大気圧より僅かに高い圧力のアルゴン雰囲気
を保持した気密箱(glovθbox、)内で行われた
。混合物は今や金属リチウム、金属チタン及び酸化リチ
ウムを3み、この混合物を減圧蒸留装置に移して混合v
Aを10 ’ )ル減圧の下で約600Cに力[1熱し
た。この混合物を蒸留中攪拌した。この蒸留操作を使用
して金属チタン及び酸化リチウムから実質十全部の金属
リチウムを留去し、金属リチウムは蒸留室内に延ひる冷
触手上に回1■される。金属チタン粉末と酸化リチウム
粉末とは不誘鋼蒸貿装置内に残される。金属チタン粉末
と酸化リチウム粉末との混合物を次いで水性媒体で洗浄
して酸化リチウム粒子及び混合物中に残っていることが
ある金属リチウムを溶解する。水捷だは穏)[1な酸を
含む多くの溶媒を使用iiJ能であるが5塩化物を含む
溶媒、例えは塩酸は金属チタン粉末の汚染を阻止するた
めに避けるべきである。上述のように浸出処理後に金属
チタン粉末を脱イオン水中で洗浄し、次いで乾燥する。This reduction was carried out in an airtight box (glovθbox) that maintained an argon atmosphere at a pressure slightly higher than atmospheric pressure. The mixture now contains lithium metal, titanium metal and lithium oxide, and the mixture is transferred to a vacuum distillation apparatus and mixed.
A was heated to about 600C under 10' vacuum. This mixture was stirred during the distillation. This distillation operation is used to distill off substantially all of the metallic lithium from the metallic titanium and lithium oxide, and the metallic lithium is passed over a cold tentacle spread within the distillation chamber. The metallic titanium powder and the lithium oxide powder remain in the non-magnetic steel vaporizer. The mixture of titanium metal powder and lithium oxide powder is then washed with an aqueous medium to dissolve the lithium oxide particles and any lithium metal that may remain in the mixture. Although many solvents containing acids can be used, such as pentachloride-containing solvents, such as hydrochloric acid, should be avoided to prevent contamination of the metallic titanium powder. After the leaching process as described above, the metallic titanium powder is washed in deionized water and then dried.
製造した金属チタン粉末の例を第7図及び第1図に示す
。これらの図はチタン粉末の走査電子顕微鏡写真である
。Examples of the manufactured titanium metal powder are shown in FIGS. 7 and 1. These figures are scanning electron micrographs of titanium powder.
図かられかるように金属チタン粉末は凝集体の形態をし
ており、第1図より高倍率で粉末を示す第2図で見られ
るように基本粒子寸法は約0.1ミクロンないし約θ、
3−ミクロンである。第1図で殻察された凝集体r1こ
れら0)基本粒子からできたものである。As can be seen from the figure, the metallic titanium powder is in the form of aggregates, and as can be seen in Figure 2, which shows the powder at a higher magnification than in Figure 1, the basic particle size is about 0.1 micron to about θ,
3-micron. The aggregates r1 observed in Figure 1 are made from these 0) elementary particles.
浸出により造られた水酸化リナウノ、は下記の式により
co、+at□により処理して塩化リチウムを生成する
。塩化リチウムを次いで′酢剪してリチウム及び塩素を
回収する:
、2 Lion −4−co、→Li0O3−1−H,
O(/ILi、CO,−1−0f2−) 、211i0
ffi (−Co、 −1−30,(,2)電解
2T、1G1−ヨ:lr、j十〇z、
(、r)正味反応:
、2 ’I、10H→コLt +H20+2 o。The hydroxide Rinauno produced by leaching is treated with co, +at□ to produce lithium chloride according to the formula below. The lithium chloride is then treated with vinegar to recover lithium and chlorine: , 2 Lion -4-co, →Li0O3-1-H,
O(/ILi, CO, -1-0f2-), 211i0
ffi (-Co, -1-30, (,2) electrolytic 2T, 1G1-yo:lr, j10z,
(,r) Net reaction: ,2'I,10H→koLt +H20+2o.
上述の操作によって金属リチウム苓・回収し、再循環し
て、更に金属醇化物の還元に使用する。Through the above-mentioned operations, metallic lithium is recovered, recycled, and further used for the reduction of metal ingots.
第1図は金属チタン粉末の走査電子顕微鏡写真、第2図
は第1図より高倍率の第1図と同様な走髭′[K子顕微
鏡写真である。FIG. 1 is a scanning electron micrograph of metallic titanium powder, and FIG. 2 is a scanning electron micrograph similar to that of FIG. 1 at a higher magnification.
Claims (1)
必要な化学址論鼠より過剰址の液体金属還元剤との反応
混合物を造り、微量の不純vJ址の酸累を除けば実質上
非酸化金属粉末に前6己金属酸化物が還元される一チで
前記金属酸化物と液体金属還元剤とを反応させることを
特徴とする、金jP4酸化物を実質上非酸化金属粉末に
還元する方法。 2 金属酸化物を液体金属還元剤と約6θOc以下の温
度で反応させる特許請求の範囲第7項記載の方法。 3 過剰の液体金属還元剤を実質上還元された金属から
蒸留除去する特許請求の範囲第1項または第2項記載の
方法。 x 1体金属醸元剤がカルシークム、マグネシウム、
リチウム、ナトリウム捷たけそれらの相互からなるfg
液から選ばれる特許請求の範囲第1項捷たは第2項一!
たは第3項に記載の方法。 オ液体金属還元剤がリチウム−マグネシウム浴液、リチ
ウム−ナトリウム浴液及びリチウム−カルシウム溶液か
ら選ばれる特許請求の範囲第41項記載の方法。 乙 液体金属還元剤がリチウム−゛カルシウム溶液で、
金属酸化ノ吻が遷移金属の酸化物である特許請求の範囲
第1yAないし第S瑣のいずれかに記載の方f表。 2 金属酸化物が周期律表第■族遷移金属の酸化物であ
る特許請求の範囲第6項jKi載の方法。 ? 金属酸化物がチタンの酸化物で、液体金属還元剤が
リチウムである特許請′A(の範囲第1狛ないり、ff
i+項のいずれかに記載の方法。 ? 反応混合物を反応王権中かき脣せまたけ攪拌する特
許請求の1111χ囲第1項ないし第8項のいずれかに
記載の方法。 /θ 金属粉末を反応混合物から分離し、清浄にする特
許請求の範囲第1項ないし第9項のいずれかに記載の方
法。 // 酸化チタンと必袈化学量論樋より過剰量の液体リ
チウムとの反応混合物を造り、酸化チタンと液体リチウ
ムとを約3 、t OC−乙θOCの温度で不活性雰囲
気中で酸化チタンが実質上非酸化金属に還元される壕で
反応させ、実質上還元されたチタンから過剰の液体リチ
ウムを減圧蒸留し、反応及び蒸貿T4!、!中反応混合
物を攪拌し、チタンから酸化リナウム及(ト残存するこ
とがある金属リチウムを浸出し、得られた金属チタン粉
末を水中で洗浄し、乾燥することからなる特許請求の範
囲第1r自記載の方法。 /2 蒸留工程及び浸出工程から分離した金属リチウム
を再循環し再利用する特許請求の範囲第1/項記載の方
法。[Claims] l A reaction mixture of a metal oxide and a liquid metal reducing agent in excess of the chemical composition necessary to completely reduce the metal oxide is prepared, and trace amounts of impurities are removed. The process is characterized in that the metal oxide is reacted with a liquid metal reducing agent once the metal oxide is reduced to a substantially non-oxidized metal powder except for acid accumulation, A method of reducing the top to non-oxidized metal powder. 2. The method of claim 7, wherein the metal oxide is reacted with the liquid metal reducing agent at a temperature of about 6θOc or less. 3. A method according to claim 1 or claim 2, wherein excess liquid metal reducing agent is distilled off from the substantially reduced metal. x 1 metal promoter is calcicum, magnesium,
fg consisting of lithium, sodium extract and their mutual
Claims 1 or 2 selected from liquids!
or the method described in Section 3. 42. The method of claim 41, wherein the liquid metal reducing agent is selected from lithium-magnesium baths, lithium-sodium baths, and lithium-calcium solutions. B The liquid metal reducing agent is a lithium-calcium solution,
The method according to any one of claims 1yA to S4, wherein the metal oxide proboscis is an oxide of a transition metal. 2. The method according to claim 6, jKi, wherein the metal oxide is an oxide of a transition metal of group Ⅰ of the periodic table. ? The metal oxide is a titanium oxide, and the liquid metal reducing agent is lithium.
The method according to any of the i+ terms. ? 1111. The method according to any of claims 1 to 8, wherein the reaction mixture is stirred throughout the reaction chamber. /θ A method according to any one of claims 1 to 9, in which the metal powder is separated from the reaction mixture and cleaned. // A reaction mixture of titanium oxide and an excess amount of liquid lithium from the essential stoichiometric gutter is prepared, and the titanium oxide and liquid lithium are mixed in an inert atmosphere at a temperature of about 3 t OC - θ OC. The reaction is carried out in a trench where the titanium is substantially reduced to a non-oxidized metal, and the excess liquid lithium is distilled under reduced pressure from the substantially reduced titanium, and the reaction and vaporization trade T4! ,! The method of claim 1r consists of stirring the reaction mixture, leaching the linium oxide and any remaining metallic lithium from the titanium, and washing the obtained metallic titanium powder in water and drying it. 2. The method according to claim 1, wherein metallic lithium separated from the distillation step and the leaching step is recycled and reused.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30986381A | 1981-10-08 | 1981-10-08 | |
US309863 | 1981-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5877506A true JPS5877506A (en) | 1983-05-10 |
Family
ID=23200001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17647082A Pending JPS5877506A (en) | 1981-10-08 | 1982-10-08 | Reduction of metal oxide to metal powder |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS5877506A (en) |
FR (1) | FR2514369B1 (en) |
GB (1) | GB2107358B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR8402087A (en) * | 1984-05-04 | 1985-12-10 | Vale Do Rio Doce Co | PROCESS OF OBTAINING METALLIC TITANIUM FROM ANASTASIA CONCENTRATE, BY ALUMINOTERMIA AND MAGNESIOTERMIA |
US4923531A (en) * | 1988-09-23 | 1990-05-08 | Rmi Company | Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier |
CN112756621B (en) * | 2020-12-24 | 2021-12-31 | 中国科学院过程工程研究所 | Method for preparing low-oxygen titanium powder |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB606930A (en) * | 1945-01-23 | 1948-08-23 | Westinghouse Electric Int Co | Improved method of manufacturing thorium |
GB729504A (en) * | 1951-12-12 | 1955-05-04 | Mini Of Mines And Technical Su | Improvements in or relating to methods of producing uranium and its alloys |
GB729503A (en) * | 1951-12-12 | 1955-05-04 | Mini Of Mines And Technical Su | Method of producing amphoteric metals and alloys |
BE549070A (en) * | 1955-07-20 | |||
CH352693A (en) * | 1955-10-12 | 1961-03-15 | Hoellerer Oexmann Erika | Process for the production of free-flowing iron powder by reducing yFe2O3-containing material |
GB932168A (en) * | 1959-12-12 | 1963-07-24 | Masashi Okage | Method for the production of tungsten and molybdenum |
FR2359903B1 (en) * | 1976-07-06 | 1981-03-27 | Nrc Inc | PROCESS FOR PRODUCING METAL POWDERS AND METALS AND METAL POWDERS THUS OBTAINED |
-
1982
- 1982-09-27 FR FR8216222A patent/FR2514369B1/en not_active Expired
- 1982-10-08 JP JP17647082A patent/JPS5877506A/en active Pending
- 1982-10-08 GB GB08228826A patent/GB2107358B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2107358A (en) | 1983-04-27 |
FR2514369B1 (en) | 1987-01-30 |
GB2107358B (en) | 1986-07-09 |
FR2514369A1 (en) | 1983-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4519837A (en) | Metal powders and processes for production from oxides | |
JP4874268B2 (en) | Method for producing titanium | |
KR920006603B1 (en) | Neodyme alloy and the method of making | |
US4390365A (en) | Process for making titanium metal from titanium ore | |
US4468248A (en) | Process for making titanium metal from titanium ore | |
JPS6365723B2 (en) | ||
KR101163375B1 (en) | Environmentally friendly advanced refining process of nuclear grade zirconium by integrated metallothermic reduction of Zirconium ore and electrorefining processes | |
US4359449A (en) | Process for making titanium oxide from titanium ore | |
US4269809A (en) | Recovery in titanium metal values by solvent extraction | |
US4313913A (en) | Production of hydrolyzable titanyl sulphate solution | |
JP2023022934A (en) | Recovery apparatus of metal, and recovery method of metal | |
EP0360792A4 (en) | Process for making zero valent titanium from an alkali metal fluotitanate | |
JPS5877506A (en) | Reduction of metal oxide to metal powder | |
JP2002129250A (en) | Method for producing metallic titanium | |
US4178176A (en) | Recovery of iron and titanium metal values | |
KR100832233B1 (en) | Preparation method of metal ingot from metal powders or metal dendrites by using li metal | |
AU2021305839A1 (en) | Processing of titaniferous ores and minerals | |
Takeda et al. | Fundamental study on magnesiothermic reduction of titanium dichloride | |
US5026530A (en) | Method for producing copper arsenate compositions | |
KR920007932B1 (en) | Making process for rare metals-fe alloy | |
US3963824A (en) | Process for extracting chromium from chromium ores | |
JPH07224334A (en) | Separating and recovering method of copper | |
JP7469942B2 (en) | How to make scandium chloride | |
JP2002105554A (en) | Method for recovering tellurium | |
JPS58151328A (en) | Method of sampling vanadium from slug containing vanadium and similar article |