JPH02271923A - Production of raw material oxide for ferrite - Google Patents

Production of raw material oxide for ferrite

Info

Publication number
JPH02271923A
JPH02271923A JP1091893A JP9189389A JPH02271923A JP H02271923 A JPH02271923 A JP H02271923A JP 1091893 A JP1091893 A JP 1091893A JP 9189389 A JP9189389 A JP 9189389A JP H02271923 A JPH02271923 A JP H02271923A
Authority
JP
Japan
Prior art keywords
ferrite
mixture
oxide
mixed
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1091893A
Other languages
Japanese (ja)
Inventor
Satoru Narutani
成谷 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1091893A priority Critical patent/JPH02271923A/en
Publication of JPH02271923A publication Critical patent/JPH02271923A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Abstract

PURPOSE:To reduce residual chlorine by mixing chlorides of metals which compose a ferrite, oxidation calcining this mixture to obtain an oxide mixture and then heating at a specified temp. CONSTITUTION:The metals used are Fe, Mn, Ni, Cu, Zn, Mg, etc., depending on the types of ferrite. For example, when Fe and Mn are used, aqueous solutions of FeCl2 and MnCl2 are mixed by a specified molar ratio, calcined with spraying at about 800 deg.C to obtain an oxide mixture of Fe2O3/Mn2O3 with about 75.3/24.7 weight ratio. This mixture is heated in air at 600-1000 deg.C for 40 minutes to reduce the residual chlorine to 500ppm or below. Then ZnO is added to the mixture by the weight ratio Fe2O3/Mn2O3/ZnO of about 69.4/22.8/7.8, and source materials of Ca and Si are added so that the mixture contains CaO and SiO2 by 500 and 200ppm, respectively, after sintered. They are mixed and processed into powder of 0.9-1.3mum particle size to obtain the raw material oxide for ferrite.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、フェライト用原料酸化物の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a raw material oxide for ferrite.

〈従来の技術〉 塩化鉄を酸化焙焼してフェライト用原料酸化鉄を得るこ
とは、鋼板等の酸洗廃液の噴霧焙焼を代表的な方法とし
て商業的に広く行われている。しかし得られる酸化鉄に
は通常0.1〜0.4重■%の塩素が含まれている。こ
れらの残存塩素は、フェライト製造工程特にコアの焼成
時に遊翔1して焼成炉等の機器の腐食・劣化を促進する
と共にフェライトの異常粒成長を生起する等の有害な作
用を及ぼす。
<Prior Art> The oxidative roasting of iron chloride to obtain iron oxide as a raw material for ferrite is widely practiced commercially, with spray roasting of pickling waste liquid from steel plates, etc., as a typical method. However, the iron oxide obtained usually contains 0.1 to 0.4% by weight of chlorine. These residual chlorine floats freely during the ferrite manufacturing process, particularly during core firing, and has harmful effects such as promoting corrosion and deterioration of equipment such as firing furnaces and causing abnormal grain growth of ferrite.

そこで、その低減に関してこれまでに種々の提案がなさ
れてきた。
Therefore, various proposals have been made so far regarding its reduction.

例を挙げると、 ■ 焙焼炉下部に反応生成物を滞留させ、空気を吹込む
方法(特開昭50−116393号公報)。
Examples include: (1) A method in which the reaction product is retained in the lower part of the roasting furnace and air is blown into it (Japanese Patent Application Laid-open No. 116393/1983).

■ 生成酸化鉄粒子を265℃以上で粉砕し、保有熱下
で一定時間保持する方法(特公昭54−880号公報)
■ A method in which the produced iron oxide particles are crushed at 265°C or higher and held for a certain period of time under retained heat (Japanese Patent Publication No. 1988-880)
.

■ フェライトの原料酸化物混合時に重炭酸アンモニウ
ムを添加する方法(特公昭54−5117号公報)。
(2) A method of adding ammonium bicarbonate when mixing raw material oxides for ferrite (Japanese Patent Publication No. 54-5117).

■ 酸化鉄を減圧下で加熱する方法(特開昭61−14
6719号公報) ■ 酸化鉄を純水で洗滌する方法。
■ Method of heating iron oxide under reduced pressure (Japanese Unexamined Patent Publication No. 61-14
(No. 6719) ■ A method of washing iron oxide with pure water.

等がある。etc.

これらの方法はすべて酸化鉄を対象としているが、フェ
ライト製造時に酸化鉄と他の金属の酸化物との十分均一
な混合分散を得るためには、脱塩素処理時に酸化鉄の焼
結による粒成長が生起することは好ましくなく、■、■
、■の実施例ではすべて500℃以下の低温で処理され
ている。ところで、このような酸化鉄の脱塩素挙動を詳
細に調査した報告が日本化学会誌Th? (1984)
 1202になされているが、これによると酸化鉄の粒
成長が生じない500℃以下の処理では脱塩素効率が悪
く通常の残留塩素量0.1〜0.2 wt%を500−
以下にするには4.5肚以上の長時間を必要とすること
が明らかである。つまり酸化鉄単体の脱塩素処理の場合
、粉体の粒度を他の金属酸化物と十分均一な混合分散を
得るために0.5〜0.7 n以下のサブミクロン範囲
に維持する必要があり、そのため脱塩素処理の効率が悪
く、塩素量レベルを充分低くすることが難しかった。
All of these methods target iron oxide, but in order to obtain a sufficiently uniform mixing and dispersion of iron oxide and other metal oxides during ferrite production, grain growth by sintering iron oxide during dechlorination treatment is necessary. It is undesirable for this to occur, and ■,■
, (2) are all processed at a low temperature of 500° C. or lower. By the way, a report on the detailed investigation of the dechlorination behavior of iron oxide is published in the journal Th? of the Chemical Society of Japan. (1984)
1202, but according to this, treatment at temperatures below 500°C, where grain growth of iron oxide does not occur, has poor dechlorination efficiency and the normal amount of residual chlorine of 0.1 to 0.2 wt% is reduced to 500°C.
It is clear that it would take a long time of 4.5 degrees or more to achieve the following. In other words, in the case of dechlorination treatment of iron oxide alone, it is necessary to maintain the particle size of the powder in the submicron range of 0.5 to 0.7 n or less in order to obtain sufficiently uniform mixing and dispersion with other metal oxides. Therefore, the efficiency of dechlorination treatment was poor, and it was difficult to reduce the level of chlorine to a sufficiently low level.

また■の方法はフェライト製造のためには不必要な添加
物を加えなければならないこと、■の方法は本来表面吸
着ガス量の多い微粒子に対して低真空にするためには大
容量の排気装置が必要となり、かつ連続化が難しいこと
、■の方法は純水の使用を要しさらに水洗後乾燥のため
に余分なエネルギーを加えなければならずコストアップ
の原因になること等の欠点を有する。
In addition, the method (■) requires the addition of unnecessary additives for ferrite production, and the method (■) requires a large-capacity exhaust system to create a low vacuum for fine particles that originally have a large amount of surface-adsorbed gas. method (2) requires the use of pure water and requires additional energy for drying after washing, which increases costs. .

ところで、通常フェライトの製造法はフェライトを構成
する金属の酸化物又は炭酸塩等の単体を所定のモル比で
混合し、仮焼・粉砕・成型・焼成してフェライトとする
が、微視的な組成の不均一性、製造時の不純物の混入等
の問題を有している。
By the way, the normal manufacturing method for ferrite is to mix the metal oxides or carbonates that make up ferrite in a predetermined molar ratio, and then to make ferrite by calcining, crushing, molding, and firing. It has problems such as non-uniformity of composition and contamination of impurities during manufacturing.

これらの問題を改善するために混合塩化物を焙焼して得
られる混合酸化物をフェライトの原料として使用するこ
とが特公昭47−11550号公報で提案されているが
、しかしこの場合も、得られる酸化物中には0.1〜0
.4重量%の塩素が残留しており、後工程で有害作用を
及ぼずこと、また通常の600〜850“Cでの酸化焙
焼によって得られたこの混合酸化物は、粒度が0.8n
以下と小さく、本提案の特(衣である仮焼工程を省略し
た場合コアのプレス成形特充分高いプレス密度が得られ
ず、そのため焼成時の焼結に伴う収縮が大きく最終製品
の寸法精度が得にくい上、微粉末の存在により異常粒成
長を起こし易いという欠点があった。
In order to improve these problems, it has been proposed in Japanese Patent Publication No. 11550/1983 to use a mixed oxide obtained by roasting mixed chlorides as a raw material for ferrite, but in this case as well, the 0.1 to 0 in the oxides
.. This mixed oxide, obtained by conventional oxidative roasting at 600-850"C, has a particle size of 0.8n.
The characteristics of this proposal (if the calcination step, which is the batter) is omitted, a sufficiently high press density cannot be obtained during core press forming, and as a result, the shrinkage due to sintering during firing is large and the dimensional accuracy of the final product is reduced. In addition to being difficult to obtain, the presence of fine powder tends to cause abnormal grain growth.

〈発明が解決しようとする課題〉 本発明の目的は、有害な塩素の除去を可能にし、かつプ
レス成形に好適な範囲の粒度を保持するフェライト用原
料酸化物の製造方法を提供するものである。
<Problems to be Solved by the Invention> An object of the present invention is to provide a method for producing a raw material oxide for ferrite that makes it possible to remove harmful chlorine and maintains a particle size within a range suitable for press molding. .

く課題を解決するための手段〉 以上の課題を解決するため種り実験を重ねた結果、フェ
ライトを構成する主要金属元素例えばP8を代表として
、その他Mn、 Mg等を1種以上含む混合塩化物を串
備し、これを酸化焙焼して混合酸化物とした後、該混合
酸化物を600〜1000℃の温度範囲に加熱すること
により、効率良く残留塩素量を500−以下とし、かつ
粒子径をプレス成形に最適な0.9〜1.3 Hに調整
することができることを見出した。そしてこれをフェラ
イト製造用原料に適用することによって焼成時の収縮率
の小さい、磁気特性の優れたフェライトコアを安定して
製造することができた。
As a result of repeated experiments to solve the above problems, we found that a mixed chloride containing the main metal elements constituting ferrite, such as P8, and one or more other elements such as Mn and Mg. is skewered, oxidized and roasted to form a mixed oxide, and then heated to a temperature range of 600 to 1000°C to efficiently reduce the amount of residual chlorine to 500°C or less and to reduce the amount of particle It has been found that the diameter can be adjusted to 0.9 to 1.3 H, which is optimal for press molding. By applying this to a raw material for producing ferrite, it was possible to stably produce a ferrite core with low shrinkage during firing and excellent magnetic properties.

く作 用〉 まず以下に実験例により、本発明の基礎になった新たに
得られた知見について詳しく述べる。
Effect> First, the newly obtained knowledge that formed the basis of the present invention will be described in detail using experimental examples.

FeC1gとMnC1tの塩化物水溶液を所定のモル比
で混合した後、800℃で噴霧焙焼して混合酸化物j 
24.7 (重量%比)から成り、残留塩素量は301
〇−1平均粒径(空気透過法による)は0.74μmで
あった。
After mixing chloride aqueous solution of 1 g of FeC and 1 t of MnC at a predetermined molar ratio, spray roasting at 800°C produces a mixed oxide j
24.7 (weight% ratio), and the amount of residual chlorine is 301
〇-1 average particle size (by air permeation method) was 0.74 μm.

第1図は、この混合酸化物を500〜1000℃の温度
範囲に加熱し、空気気流中で40分間保持した後の残留
塩素量の変化を示す、処理温度が600℃以上では50
0騨以下になり、特に800℃を超えると50−と極め
て低いレベルになることがわかる。
Figure 1 shows the change in the amount of residual chlorine after heating this mixed oxide to a temperature range of 500 to 1000°C and holding it in an air stream for 40 minutes.
It can be seen that when the temperature becomes 0 or less, especially when it exceeds 800°C, it becomes an extremely low level of 50-.

610℃の黒丸印は空気気流中に水蒸気を加えて露点を
調整した場合で、脱塩素は一層促進されることかわかる
The black circle at 610°C shows that dechlorination is further promoted when water vapor is added to the air stream to adjust the dew point.

次に第2図は脱塩素加熱処理なしの受は入れのままの混
合酸化物と500〜1000℃に加熱し脱塩素処理した
ものにZnOを8.0重量%と少量の510!lCa1
J1を加えた後、アトライターでlO分間混合・乾燥・
造粒(PVA添加)を行い、次にIt/cdの成形圧力
で外径35m5.内径24mのトロイダルコアにプレス
成形した時の成形密度とアトライター混合後の平均粒径
の関係を示している0図中カッコ内の数値は加熱処理温
度を表している。
Next, FIG. 2 shows the mixed oxide as received without dechlorination heat treatment, and the mixed oxide that was heated to 500 to 1000°C and dechlorinated, and 8.0% by weight of ZnO and a small amount of 510! lCa1
After adding J1, mix, dry, and dry for 10 minutes using an attritor.
Granulation (PVA addition) is carried out, and then the outer diameter is 35 m5 at a molding pressure of It/cd. The numbers in parentheses in Figure 0, which shows the relationship between the compacting density when press-molded into a toroidal core with an inner diameter of 24 m and the average particle diameter after mixing the attritor, represent the heat treatment temperature.

成形密度は平均粒径が1.0〜1.2.nで最も高く、
粒径がこれより大きくても小さ(ても密度は低下するこ
とがわかる。これを処理温度についてみると受は入れの
まま及び500℃処理材では平均粒子径は0.8閣以下
で、それに対応する成形密度は2.81g/c−以下で
あるのに対し、処理温度が600℃以上では成形密度は
2.87 g /cd以上と充分高いレベルとなること
がわかる。
The compacting density has an average particle size of 1.0 to 1.2. highest in n,
It can be seen that the density decreases even if the particle size is larger or smaller than this.If we look at the treatment temperature, the average particle size is 0.8 degrees or less for the material as it is and the material treated at 500℃. It can be seen that the corresponding molded density is 2.81 g/c- or less, whereas when the processing temperature is 600° C. or higher, the molded density becomes a sufficiently high level of 2.87 g/cd or more.

一方、従来のようにFezO3を単体をフェライト原料
として用いる場合は、Mn酸化物との均一混合を確保す
るために脱塩素処理時のFeオ0.の粒成長を極力押さ
えなければならないが、本発明を適用する場合には例え
ばFeとMnの混合酸化物は受は入れのままの状態で既
にFezO3とMIDOsが微細な粒子として既に均一
に混合分散しているので、脱塩素処理を高温で行い粒成
長をさせても、構成酸化物の均一混合に影響を与えず、
更にプレス成形時に高い成形密度を得ることができるこ
とを知見した。
On the other hand, when FezO3 is used alone as a ferrite raw material as in the past, in order to ensure uniform mixing with Mn oxide, FeO 0. However, when applying the present invention, for example, in the case of a mixed oxide of Fe and Mn, FezO3 and MIDOs are already uniformly mixed and dispersed as fine particles in the receiving state. Therefore, even if dechlorination is performed at high temperatures to cause grain growth, it will not affect the uniform mixing of the constituent oxides.
Furthermore, it has been found that high molding density can be obtained during press molding.

第3図は、前述の800℃処理材を用いたトロイダルコ
アを大気雰囲気中で図中に示したヒートパターンで昇温
した際に、途中の各温度で試料を引き出しX線回折法に
より相比率の変化を測定した結果である。この図からF
e、0.及びMn*Osのスピネル相への変化は100
0℃を超える温度まで徐々に進行していくのに対しZn
Oは650℃で消滅して他の相に変化してしまうことが
わかる。このことはフェライト製造にあたってフェライ
ト構成元素の各酸化物の混合の均一性の確保点で、上の
例ではFeとMnのフェライトを構成する主要金属の酸
化物の混合が重要であることを意味している。この場合
、Fe (!: Mnの塩化物を混合することが重要で
あり、Znは最終混合段階でZnOの形で添加できる。
Figure 3 shows that when a toroidal core made of the 800°C treated material mentioned above was heated in the air using the heat pattern shown in the figure, samples were pulled out at each temperature along the way and the phase ratio was determined by X-ray diffraction. These are the results of measuring changes in . From this figure, F
e, 0. and the change of Mn*Os to spinel phase is 100
While the temperature gradually increases to over 0°C, Zn
It can be seen that O disappears at 650°C and changes to other phases. This means that in the production of ferrite, it is important to ensure the uniformity of the mixing of the oxides of the ferrite constituent elements, and in the above example, it is important to mix the oxides of the main metals that make up the ferrite, Fe and Mn. ing. In this case it is important to mix the chloride of Fe(!:Mn), and Zn can be added in the form of ZnO in the final mixing step.

本発明においては、フェライトを構成する主要金属の塩
化物のみを予め混合しておくだけでよい。
In the present invention, it is only necessary to mix in advance only the chlorides of the main metals constituting the ferrite.

従ってフェライトの種類により、Fe、 Mn+ Nl
+Cu+ Zn+ ”g等が主要金属となる。
Therefore, depending on the type of ferrite, Fe, Mn+Nl
+Cu+ Zn+ "g etc. are the main metals.

例えばフェライトを構成する主要元素がFe1 Mn+
M、の3種の場合にはこれらの混合塩化物を酸化焙焼す
ることが必要である。
For example, the main elements constituting ferrite are Fe1 Mn+
In the case of three types of M, it is necessary to oxidize and roast these mixed chlorides.

°、木発明の混合された塩化物を酸化焙焼する方法は特
に限定しないが、鉄鋼製品の塩酸酸洗廃液の処理に通常
店(利用されている噴霧焙焼法が経済的観点から好まし
い。
The method of oxidizing and roasting the mixed chlorides of the wood invention is not particularly limited, but the spray roasting method, which is commonly used in the treatment of hydrochloric acid pickling waste for steel products, is preferred from an economical point of view.

本発明の中心をなす処理は600〜1000℃の温度範
囲でなされるが、この温度範囲の限定は前述したところ
から明らかなように残留塩素量を500−以下の低レベ
ルにするためには600℃以上が必要である。また、1
000℃を超えると処理費用が増大し、処理後に粉砕を
しなければならなくなるので1000℃以下に限定した
。処理時の雰囲気は窒素等の不活性ガスでも良いが空気
でも充分である。また、脱塩素効率を上げるためには水
蒸気で加湿するとよい0本発明による処理は熱効率を重
視する場合には、例えば噴霧焙焼炉の出口に連続してロ
ータリーキルン等を接続して連続処理を行えば約500
℃前後の生成酸化物自身の保有熱が利用でき加熱に要す
るエネルギーを低減することが可能になる。
The treatment that forms the core of the present invention is carried out at a temperature range of 600 to 1000°C, but as is clear from the above, this temperature range is limited to 600°C in order to reduce the amount of residual chlorine to a low level of 500°C or less. ℃ or higher is required. Also, 1
If the temperature exceeds 1,000°C, processing costs will increase and pulverization will be required after processing, so the temperature was limited to 1,000°C or less. The atmosphere during the treatment may be an inert gas such as nitrogen, but air is also sufficient. In addition, in order to increase the dechlorination efficiency, it is recommended to humidify with steam. If thermal efficiency is important in the treatment of the present invention, continuous treatment may be performed, for example, by connecting a rotary kiln or the like continuously to the outlet of the spray roasting furnace. For example, about 500
The heat possessed by the produced oxide itself, which is around ℃, can be used, making it possible to reduce the energy required for heating.

次に実施例に基づいて本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail based on Examples.

〈実施例〉 実施例1 FeChとMnCZgの水溶液を所定のモル比で混合し
た後、800℃で噴霧焙焼した。得られた酸化物組成は
Fezes : Hn*Os −75,3: 24.7
 (重量%比)で、残留塩素量は3010−であった0
次にこの混合酸化物を500〜1000℃の温度範囲で
空気気流中で40分間加熱したときの、残留塩素量の変
化を第1図に示す。
<Examples> Example 1 Aqueous solutions of FeCh and MnCZg were mixed at a predetermined molar ratio, and then spray roasted at 800°C. The resulting oxide composition was Fezes: Hn*Os -75,3: 24.7
(wt% ratio), the amount of residual chlorine was 3010-0
Next, FIG. 1 shows the change in the amount of residual chlorine when this mixed oxide was heated in an air stream for 40 minutes at a temperature range of 500 to 1000°C.

次にこの脱塩素した酸化物にZnOを所定量及び焼成後
に含まれるCab、 510!換算でCa、 st源を
それぞれ500.20Orpm添加してFezes +
 MnzO3: Zn0−69.4 : 22.8 :
 7.8  (重量%比)の組成にし、仮焼・粉砕を施
さずにトロイダルコアにプレス成形した第2図に示す成
形密度の試料を1330’c3時間の焼成を行った時の
体積収縮率を鉄…値と共にプレス成形前の粉体の平均粒
径に対して第4図に図示した。この焼成により焼成後の
密度は4.81〜4.94g/cdとなったが、プレス
後の成形密度の大小を反映して体積収縮率に多寡が生じ
、本発明による処理を施したものは体積収縮率が42%
以下と小さな値を示した。また受は入れのまま及び50
0℃処理材は著しい異常粒成長を生じたのに対し、本発
明による処理を施したものは均一な正常粒組織が得られ
た。上記の異常粒&[l織となった理由は必ずしも十分
明らかでないが、高レベルの残留塩素および微小粉末の
存在に因っていると考えられる。
Next, a predetermined amount of ZnO is added to this dechlorinated oxide and Cab contained after firing, 510! Calculated by adding Ca and st sources at 500.20 Orpm each,
MnzO3: Zn0-69.4: 22.8:
7.8 (wt% ratio), press-molded into a toroidal core without calcining or pulverization, and firing a sample with the molding density shown in Figure 2 at 1330'C for 3 hours. Fig. 4 shows the average particle size of the powder before press molding along with the iron value. This firing resulted in a density after firing of 4.81 to 4.94 g/cd, but the volumetric shrinkage rate varied depending on the density of the molded material after pressing. Volume shrinkage rate is 42%
It showed a small value as below. Also, the receiver is left in place and 50
The material treated at 0° C. showed significant abnormal grain growth, whereas the material treated according to the present invention had a uniform normal grain structure. Although the reason for the above-mentioned abnormal grains and weave is not completely clear, it is thought to be due to the presence of a high level of residual chlorine and fine powder.

なお、焼結コアの磁気特性は100kHz 200mT
の鉄1貝値を測定によって評価したが、本発明の処理に
より非常に優れた値が得られることがわかる。
In addition, the magnetic properties of the sintered core are 100kHz 200mT
The iron shell value was evaluated by measurement, and it can be seen that very excellent values can be obtained by the treatment of the present invention.

実施例2 所定量のFe、 Mn、 Mgを含む混合塩化物を噴霧
焙焼してVetos : MnzOs : MgO=8
0.4 : 5.8 : 13.8 (重量%比)の組
成の混合酸化物を得た。残留塩素量は2430.、平均
粒径は0.69pmであった。これに850’C30分
間の本発明による処理を施した後、アトライターを用い
13゜7重量%のZnO及び焼結後Cab。
Example 2 A mixed chloride containing predetermined amounts of Fe, Mn, and Mg was spray roasted to produce Vetos: MnzOs: MgO=8
A mixed oxide having a composition of 0.4:5.8:13.8 (wt% ratio) was obtained. The amount of residual chlorine is 2430. , the average particle size was 0.69 pm. After treatment according to the invention at 850'C for 30 minutes, 13.7% by weight of ZnO and Cab after sintering using an attritor.

Singで1500及び130〇−相当になるCaC1
z及びSIO。
CaC1 equivalent to 1500 and 1300- in Sing
z and SIO.

む)末を添加し混合した0本発明による処理後の平均粒
径は1.13μm、残留塩素量は75騨となった。続い
て乾燥・造粒後トロイダルコアに成形して1300’C
2時間の焼成を行った。この時、成形密度は処理材で2
.70g/cd、比較材として受は入れのまま材を使っ
た場合は2.58g/c−であり、また体積収縮率はそ
れぞれ42%、45%であった。jA結ココア初透磁率
は本発明材で410、比較材で290と本発明材の方が
優れていた。
After the treatment according to the present invention, the average particle size was 1.13 μm and the amount of residual chlorine was 75 μm. Subsequently, after drying and granulation, it is formed into a toroidal core and heated at 1300'C.
Firing was performed for 2 hours. At this time, the molding density is 2 for the treated material.
.. 70 g/c-, and 2.58 g/c- when the material with the receiver in place was used as a comparison material, and the volume shrinkage was 42% and 45%, respectively. The initial magnetic permeability of jA-bound cocoa was 410 for the present invention material and 290 for the comparative material, indicating that the present invention material was superior.

〈発明の効果〉 前述したところから明らかなように、フェライトを構成
する主要金属元素の混合塩化物を酸化焙焼によって得た
混合酸化物に本発明の処理を施すことにより、後工程に
有害な残留塩素量を効率的に低減させることができ、同
時に特別に仮焼・粉砕工程を経なくても十分高い成形密
度を得られる粉体粒度が得られ、これらのことを通じて
焼成時の体積収縮率が少なく、寸法精度及び磁気特性の
優れたフェライトコアを安定して製造できる効果を有す
る。
<Effects of the Invention> As is clear from the foregoing, by applying the treatment of the present invention to the mixed oxide obtained by oxidative roasting of the mixed chloride of the main metal elements constituting ferrite, it is possible to eliminate harmful substances in subsequent processes. It is possible to efficiently reduce the amount of residual chlorine, and at the same time, it is possible to obtain a powder particle size that allows a sufficiently high compact density to be obtained without special calcination and pulverization processes, and through these factors, the volume shrinkage rate during firing can be improved. This has the effect of stably producing ferrite cores with low dimensional accuracy and excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、加熱温度と残留塩素量の関係を示すグラフ、
第2図は、加熱処理後の酸化物原料の平均粒径と成形密
度の関係を示すグラフ、第3図は、フェライトコア焼成
時の加熱中の相比率の変化を示すグラフ、第4図は、加
熱処理後の平均粒径と焼成時の体積収縮率の関係を示す
グラフである。 第1図 処理温度(”C)
Figure 1 is a graph showing the relationship between heating temperature and residual chlorine amount.
Figure 2 is a graph showing the relationship between the average particle size of the oxide raw material and compacted density after heat treatment, Figure 3 is a graph showing the change in phase ratio during heating during ferrite core firing, and Figure 4 is , is a graph showing the relationship between the average particle diameter after heat treatment and the volumetric shrinkage rate during firing. Figure 1 Processing temperature ("C)

Claims (1)

【特許請求の範囲】[Claims] フェライトを構成する主要金属元素を塩化物の形で混合
し、ついで酸化焙焼処理して酸化物の混合体とし、つい
で該混合体を600〜1000℃の温度範囲に加熱する
ことを特徴とするフェライト用原料酸化物の製造方法。
It is characterized by mixing the main metal elements constituting ferrite in the form of chlorides, then performing oxidative roasting treatment to form an oxide mixture, and then heating the mixture to a temperature range of 600 to 1000°C. A method for producing a raw material oxide for ferrite.
JP1091893A 1989-04-13 1989-04-13 Production of raw material oxide for ferrite Pending JPH02271923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091893A JPH02271923A (en) 1989-04-13 1989-04-13 Production of raw material oxide for ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091893A JPH02271923A (en) 1989-04-13 1989-04-13 Production of raw material oxide for ferrite

Publications (1)

Publication Number Publication Date
JPH02271923A true JPH02271923A (en) 1990-11-06

Family

ID=14039243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091893A Pending JPH02271923A (en) 1989-04-13 1989-04-13 Production of raw material oxide for ferrite

Country Status (1)

Country Link
JP (1) JPH02271923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1090884A1 (en) * 1999-10-08 2001-04-11 Sumitomo Special Metals Co., Ltd. Method of making ferrite material powder by spray pyrolysis process and method of producing ferrite magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1090884A1 (en) * 1999-10-08 2001-04-11 Sumitomo Special Metals Co., Ltd. Method of making ferrite material powder by spray pyrolysis process and method of producing ferrite magnet
US6630084B1 (en) 1999-10-08 2003-10-07 Sumitomo Special Metals Co., Ltd. Method of making ferrite material powder by spray pyrolysis process and method of producing ferrite magnet

Similar Documents

Publication Publication Date Title
JPH0826731A (en) Production of ferrite material
JPS632815A (en) Iron oxide black pigment
CA2031796C (en) Method for producing composite oxides for use as starting materials for ferrites
SU1011527A1 (en) Process for producing tin dioxide
US3948785A (en) Process of manufacturing ferrite materials with improved magnetic and mechanical properties
JPH02271923A (en) Production of raw material oxide for ferrite
JPS58140324A (en) Manufacture of ferrite as starting material
US3623838A (en) Process for the production of lead oxides
JPS63248719A (en) Production of powder as starting material for multicomponent ceramic
JP2855378B2 (en) Manufacturing method of soft ferrite powder
WO1994019283A1 (en) Soft ferrite raw material powder and sintered body thereof, and method for producing the same
JP2852151B2 (en) Method for producing raw material oxide for soft ferrite
JP2019073434A (en) FERRITE POWDER AND MnZn FERRITE AND METHOD FOR PRODUCING THE SAME
JPH0891942A (en) Production of powder for ferrite
JPH05335134A (en) Manufacturing method of material oxide for soft ferrite
JP2846147B2 (en) Method for producing raw material oxide for soft ferrite
JPH0453207A (en) Manufacture of raw material oxide for soft ferrite
JP2846149B2 (en) Production method of raw material oxide for ferrite
JPH07211533A (en) Method of manufacturing oxide magnetic material
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same
JPS6146403B2 (en)
JP2669010B2 (en) Desiliconization method in metal salt solution
JPH05335133A (en) Material oxide for mn-zn ferrite and manufacturing method of mn-zn ferrite using the same
JPH06144838A (en) Production of raw material oxide for mn-zn ferrite
JPH05279045A (en) Production of source material for soft ferrite