JP2855378B2 - Manufacturing method of soft ferrite powder - Google Patents

Manufacturing method of soft ferrite powder

Info

Publication number
JP2855378B2
JP2855378B2 JP22642891A JP22642891A JP2855378B2 JP 2855378 B2 JP2855378 B2 JP 2855378B2 JP 22642891 A JP22642891 A JP 22642891A JP 22642891 A JP22642891 A JP 22642891A JP 2855378 B2 JP2855378 B2 JP 2855378B2
Authority
JP
Japan
Prior art keywords
heating
chlorine
ferrite
oxide
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22642891A
Other languages
Japanese (ja)
Other versions
JPH0543247A (en
Inventor
捷成 松崎
健二 川人
芳隆 山名
昭一 長田
武彦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEMIRAITO KOGYO KK
Nippon Steel Corp
Original Assignee
KEMIRAITO KOGYO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEMIRAITO KOGYO KK, Nippon Steel Corp filed Critical KEMIRAITO KOGYO KK
Priority to JP22642891A priority Critical patent/JP2855378B2/en
Publication of JPH0543247A publication Critical patent/JPH0543247A/en
Application granted granted Critical
Publication of JP2855378B2 publication Critical patent/JP2855378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は噴霧焙焼法によるソフト
フェライト粉末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a soft ferrite powder by a spray roasting method.

【0002】[0002]

【従来の技術】従来、噴霧焙焼法を用い複合酸化物の
製造方法としては、金属の塩化物、硝酸塩などの化合物
の混合水溶液を燃焼火炎中に直接噴霧して熱分解燃焼す
る方法が知られている。しかし、得られた酸化物は、通
常0.4〜2.0重量%の塩素が含まれている。これら
の残存塩素は、フェライト製造工程コアの焼成時に遊
離して焼成炉等の機器の腐食、劣化を促進すると共にフ
ェライトの異常粒成長を生起する等の有害な作用を及ぼ
す。そこで、その低減に関してこれまでに種々の提案が
なされている。特に特開平2−271923号公報が知
られている。この公知例は、有害な塩素の除去を可能に
し、かつプレス成形に好適な範囲の粒度を保持するフェ
ライト用原料酸化物の製造方法であって、その特徴はフ
ェライトを構成する主要金属元素を塩化物の形で混合
し、次いで酸化焙焼処理して酸化物の混合物とし、この
混合酸化物を600〜1000℃の温度範囲に加熱する
ことにより、残留塩素量を500mmp以下にすると共
に、粒子径をプレス成形に最適な0.5〜1.3μmに
調整することで成型密度の向上を図るものである。
2. Description of the Related Art Conventionally, as a method for producing a composite oxide using a spray roasting method, a method of directly spraying a mixed aqueous solution of a compound such as a metal chloride or a nitrate into a combustion flame and subjecting the mixture to pyrolysis combustion is known. Are known. However, the resulting oxide usually contains 0.4 to 2.0% by weight of chlorine. These residual chlorines are liberated when the core is fired in the ferrite production process , and have harmful effects such as accelerating corrosion and deterioration of equipment such as a firing furnace and causing abnormal ferrite grain growth. Therefore, various proposals have been made on the reduction. In particular, JP-A-2-271923 is known. This known example is a method for producing a raw material oxide for ferrite which enables removal of harmful chlorine and maintains a particle size in a range suitable for press molding. And then oxidatively roasted to form a mixture of oxides, and heating the mixed oxide to a temperature range of 600 to 1000 ° C. to reduce the residual chlorine amount to 500 mmp or less and to reduce the particle size. Is adjusted to 0.5 to 1.3 μm, which is optimal for press molding, to improve the molding density.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
特開平2−271923号公報にあっては、高温で高濃
度の塩素系ガスが存在すると、Ni,Cr系耐熱、耐腐
食材料を用いた加熱炉では材料中のNi,Crが塩素分
と反応し製品の粉体中にNi,Crがピックアップされ
て品質上問題となること、及び炉体の腐食が激しく、ラ
ンニングコスト、メンテナンス上問題がある等の欠点が
ある。
However, in the above-mentioned Japanese Patent Application Laid-Open No. 2-271923, when a chlorine-based gas at a high temperature and a high concentration is present, heating using a Ni, Cr-based heat-resistant and corrosion-resistant material is performed. In the furnace, Ni and Cr in the material react with chlorine and Ni and Cr are picked up in the powder of the product, which causes quality problems, and the furnace body is severely corroded, and there are problems in running cost and maintenance. And the like.

【0004】[0004]

【課題を解決するための手段】本発明はこのような従来
技術の欠点を解消し、焙焼粉に混入している塩素分の大
部分は低温加熱でも除去できることを利用して、脱塩素
加熱と結晶粒径制御加熱を独立して行うことで塩素腐食
を低減させる方法を提供せんとするものである。その要
旨とするところは、フェライトを構成する金属塩化物を
混合し、次いで噴霧焙焼によって得られたフェライト用
原料酸化物を、400℃〜600℃の温度範囲で加熱
し、第一次脱塩素処理を行い、引続き600℃〜100
0℃加熱を行って、結晶粒制御及び第二次脱塩素を行う
二段熱処理することを特徴とするソフトフェライト粉末
の製造方法にある。
SUMMARY OF THE INVENTION The present invention overcomes such disadvantages of the prior art and utilizes the fact that most of the chlorine contained in the roasted powder can be removed by low-temperature heating. And a method of reducing chlorine corrosion by independently performing crystal grain size control heating. The point is that the metal chlorides constituting the ferrite are mixed, and the raw material oxide for ferrite obtained by spray roasting is heated in a temperature range of 400 ° C. to 600 ° C. to perform primary dechlorination. After the treatment, continue to 600 ℃ ~ 100
A method for producing a soft ferrite powder characterized by performing a two-stage heat treatment of heating at 0 ° C. to control crystal grains and perform secondary dechlorination.

【0005】[0005]

【作用】以下、本発明について図面に従って詳細に説明
する。図1は酸化物混合体の加熱温度と塩素濃度との関
係を示す図である。すなわち、酸化物混合体を400℃
〜1000℃の温度範囲で熱処理し、空気気流中で20
分間保持した後の残留塩素濃度の変化を示すものであ
る。これによれば、0.4〜2.0%を含んでいる塩素
濃度は600℃に加熱すると0.05〜0.12%と減
少し、特に800℃を超えると、目標塩素濃度である
0.05%以下と極めて低いレベルになることがわか
る。次に、図2は同じく酸化物混合体の加熱温度とN
i,Crなる重金属含有率及び塩素濃度との関係を示す
図である。この図から、塩素濃度は上記のように400
℃から急激に減少し特に800℃で0.05%となり、
1000℃では0.05%以下と減少することがわか
る。これに対して、Ni及びCrなる重金属含有率は4
00℃から800℃と急激に増大し、特に800℃では
Ni、約430ppm,Crは約800ppmという極
めて高い含有値を示す。このことは、酸化物混合体を一
度に600℃から1000℃の温度範囲まで熱処理する
と、塩素濃度は0.05%以下にまで低減できるが、逆
にNi,Crが増大する。従って得られる回収粉からは
高特性のコアを製造することが出来ない。このように高
温処理するとNi,Crが増大する理由は加熱処理する
ために、例えばNi,Cr系耐熱、耐腐食材料を内張り
したロ−タリ−キルンを使用するときに、このNi,C
r系耐熱、耐腐食材料が高温度の、しかも塩素、塩化水
素の残留する条件下では、炉の内張りが腐食され表面か
らNi,Crが発生するものと考えられる。この現象は
塩素分の高い高温条件で特に起り易く、また、現実に発
生する率が極めて高くなることが判明した。このような
状態になると、炉体の腐食が激しくなり、そのためのメ
ンテナンス、ランニングコスト上極めて問題である。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the relationship between the heating temperature of the oxide mixture and the chlorine concentration. That is, the oxide mixture is heated to 400 ° C.
Heat treatment in the temperature range of ~ 1000 ° C
It shows the change in the residual chlorine concentration after holding for one minute. According to this, the chlorine concentration containing 0.4-2.0% decreases to 0.05-0.12% when heated to 600 ° C., and particularly when it exceeds 800 ° C., the target chlorine concentration of 0 It can be seen that the level is as extremely low as 0.05% or less. Next, FIG. 2 also shows the heating temperature of the oxide mixture and N
It is a figure which shows the relationship between the heavy metal content of i, Cr, and chlorine concentration. From this figure, it can be seen that the chlorine concentration is 400
° C, and suddenly decreases to 0.05% at 800 ° C.
It can be seen that at 1000 ° C., it is reduced to 0.05% or less. On the other hand, the content of heavy metals such as Ni and Cr is 4
The temperature rapidly increases from 00 ° C. to 800 ° C., and particularly at 800 ° C., Ni, about 430 ppm, and Cr show extremely high values of about 800 ppm. This means that when the oxide mixture is heat treated at a time to a temperature range of 600 ° C. to 1000 ° C., the chlorine concentration can be reduced to 0.05% or less, but Ni and Cr increase. Therefore, a core having high characteristics cannot be produced from the obtained recovered powder. The reason why Ni and Cr increase when the high temperature treatment is performed is as follows. For example, when a rotary kiln lined with a Ni, Cr heat-resistant and corrosion-resistant material is used, the Ni and C are increased.
Under conditions where the r-based heat-resistant and corrosion-resistant material is at a high temperature and chlorine and hydrogen chloride remain, it is considered that the lining of the furnace is corroded and Ni and Cr are generated from the surface. It has been found that this phenomenon is particularly likely to occur under high temperature conditions with a high chlorine content, and that the rate of actual occurrence is extremely high. In such a state, the furnace body is greatly corroded, which is extremely problematic in terms of maintenance and running costs.

【0006】図3は本発明に係る二次加熱温度と塩素濃
度及びNi,Cr重金属含有率との関係を示す図であ
る。これによれば、第一次加熱として、400℃から6
00℃で低温加熱することによって、塩化物濃度は通常
含まれている0.4%〜2.0%のものが0.1〜0.
15%に低減される。その結果引続き600℃〜100
0℃に加熱しても、第一次加熱によって既に塩化物が除
去(以下脱塩素という)されている関係から、塩素、塩
化水素等によるNi,Cr系耐熱、耐腐食材料に及ぼす
影響は極めて小さく、図3に示すように残塩化物分は
0.05%以下の目標レベルに達成することができ、ま
た、Ni,Crのピックアップによる製品中のNi,C
rの含有率も約100ppm以下と低減し、この値を保
持することができる。すなわち、高温条件下でも第一次
加熱によって既に大部分の脱塩素が行われた後の加熱で
ある故、塩素、塩化水素等は既に低いことからNi,C
r系耐熱、耐腐食材料に及ぼす影響は極めて少なく、従
ってNi,Cr系耐熱、耐腐食材料からのピックアップ
も起らず、製品粉体中のNi,Cr含有率を極めて低レ
ベルに保持することができる。また、金属塩化物から焙
焼されたフェライト用原料酸化物は粒度が細かいため、
加熱処理をして結晶粒径制御加熱を行うものであるが、
そのとき本発明による二段加熱を行っても、結晶粒径は
一回加熱と二回加熱のいずれも変わらないことが判明し
た。従って600℃から1000℃の第二次脱塩素を行
うと同時に結晶粒径制御も同時に行うことが出来る。
FIG. 3 is a graph showing the relationship between the secondary heating temperature, the chlorine concentration and the heavy metal content of Ni and Cr according to the present invention. According to this, as primary heating, from 400 ° C. to 6 ° C.
By heating at a low temperature of 00 ° C., the chloride concentration of 0.4% to 2.0%, which is usually contained, is 0.1 to 0.1%.
Reduced to 15%. As a result, 600 ° C ~ 100
Even if it is heated to 0 ° C., the effect of chlorine, hydrogen chloride, etc. on Ni, Cr-based heat-resistant and corrosion-resistant materials is extremely large because chloride is already removed by primary heating (hereinafter referred to as dechlorination). As shown in FIG. 3, the residual chloride content can reach the target level of 0.05% or less as shown in FIG.
The r content is also reduced to about 100 ppm or less, and this value can be maintained. That is, even under a high temperature condition, the heating is performed after most of the dechlorination has already been performed by the primary heating.
The effect on r-based heat-resistant and corrosion-resistant materials is extremely small. Therefore, the pickup from Ni, Cr-based heat-resistant and corrosion-resistant materials does not occur, and the Ni and Cr content in the product powder is kept at an extremely low level. Can be. In addition, since the raw material oxide for ferrite roasted from metal chloride has a fine particle size,
Heat treatment is performed to control the crystal grain size.
At that time, it was found that even if the two-stage heating according to the present invention was performed, the crystal grain size did not change in either the single heating or the double heating. Therefore, the crystal grain size control can be performed simultaneously with the second dechlorination at 600 ° C. to 1000 ° C.

【0007】[0007]

【実施例】FeCl2,MnCl2及びZnCl2の水溶
液を所定のモル比で混合した後、800℃で噴霧焙焼し
た。得られた酸化物の残留塩化物量は1.0%であっ
た。次にこの酸化物を造粒機で造粒した後Ni,Cr系
耐熱、耐腐食材料で内張りしたロ−タリ−キルンを使用
して400℃から600℃の温度範囲で空気気流中で2
0分間加熱したときの残留塩化物量は0.12%に変化
した。次に、この第一次脱塩素した酸化物を上記同様の
ロ−タリ−キルンを使用して空気気流中で10分間再度
第二段加熱をして600℃から1000℃に加熱した後
の残留塩素量は0.05%と成り、同時にNi,Cr濃
度はそれぞれ80ppm,90ppmと成り、しかも平
均粒径も0.5μm〜1.2μmの範囲に調整された。
これらの粉体を造粒成型し、トロイダル状のコアに成形
した。この成形体を焼結温度1150℃〜1250℃、
3時間、酸素を含む窒素雰囲気で焼結した。焼結コアの
磁気特性について100KHZ,200mTの鉄損失を
測定して評価した結果非常に優れた値が得られた。一
方、従来のように上記同様条件の三元系複合酸化物をN
i,Cr系耐熱、耐腐食材料で内張りしたロ−タリ−キ
ルンを使用して600℃から1000℃に一段加熱を行
った結果、確かに塩素濃度は0.05%以下に成るも、
Ni,Cr濃度はそれぞれ400ppm,800ppm
と極めて高い含有量を示した。この複合酸化物を同様に
造粒成型し、トロイダル状のコアに成形した後焼結コア
の磁気特性について100KHZ,200mTの鉄損失
を測定して評価した結果、この値は極めて高く、従って
磁気特性は本発明に比較して極めて劣るものであった。
EXAMPLE After mixing aqueous solutions of FeCl 2 , MnCl 2 and ZnCl 2 at a predetermined molar ratio, the mixture was spray-roasted at 800 ° C. The residual chloride amount of the obtained oxide was 1.0%. Next, this oxide is granulated by a granulator, and is then dried in an air stream at a temperature range of 400 ° C. to 600 ° C. using a rotary kiln lined with a heat-resistant and corrosion-resistant Ni, Cr-based material.
The amount of residual chloride after heating for 0 minutes changed to 0.12%. Next, the primary dechlorinated oxide is heated again in a second stage for 10 minutes in an air stream using a rotary kiln similar to the above, and after heating from 600 ° C. to 1000 ° C., the residual oxide remains. The chlorine content was 0.05%, the Ni and Cr concentrations were 80 ppm and 90 ppm, respectively, and the average particle size was adjusted in the range of 0.5 μm to 1.2 μm.
These powders were granulated and formed into a toroidal core. This molded body is sintered at a temperature of 1150 ° C to 1250 ° C,
Sintering was performed in a nitrogen atmosphere containing oxygen for 3 hours. As a result of measuring and evaluating the iron loss of the sintered core at 100 KHZ and 200 mT, a very excellent value was obtained. On the other hand, as in the conventional case, the ternary composite oxide under the same
Using a rotary kiln lined with an i, Cr-based heat-resistant and corrosion-resistant material and heating it from 600 ° C to 1000 ° C as a result of one-step heating, the chlorine concentration certainly becomes 0.05% or less.
Ni and Cr concentrations are 400 ppm and 800 ppm, respectively.
And an extremely high content. The composite oxide was similarly granulated and formed into a toroidal core, and the magnetic properties of the sintered core were evaluated by measuring the iron loss at 100 KHZ and 200 mT. As a result, this value was extremely high. Was extremely inferior to the present invention.

【0008】[0008]

【発明の効果】以上述べたように、フェライトを構成す
る主要金属元素の混合塩化物を噴霧焙焼によって得た混
合酸化物に本発明の処理を施すことにより、後工程に有
害な残留塩素分を効率的に目標レベルまで低減させるこ
とができ、同時にNi,Cr系耐熱、耐腐食材料で内張
りした加熱炉にもかかわらず、製品粉体中のNi,Cr
の含有率について目標レベルの約100ppm以下を達
成することが出来、かつ、回収粉の結晶粒径も制御可能
とし、その結果磁気特性の極めて優れたフェライトコア
を安定して製造できる効果を有する。
As described above, by subjecting a mixed oxide obtained by spray roasting to a mixed chloride of the main metal elements constituting ferrite to the treatment of the present invention, the residual chlorine content harmful to the subsequent process is reduced. Can be efficiently reduced to the target level. At the same time, despite the heating furnace lined with Ni, Cr based heat and corrosion resistant materials, Ni, Cr
Can achieve the target level of about 100 ppm or less, and the crystal grain size of the recovered powder can be controlled. As a result, a ferrite core having extremely excellent magnetic properties can be stably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化物混合体の加熱温度と塩素濃度との関係を
示す図、
FIG. 1 is a diagram showing a relationship between a heating temperature of an oxide mixture and a chlorine concentration;

【図2】同、酸化物混合体の加熱温度とNi,Crなる
重金属含有率及び塩素濃度との関係を示す図、
FIG. 2 is a diagram showing the relationship between the heating temperature of the oxide mixture, the content of heavy metals such as Ni and Cr, and the concentration of chlorine,

【図3】本発明に係る二次加熱温度と塩素濃度及びN
i,Crなる重金属含有率との関係を示す図である。
FIG. 3 shows the secondary heating temperature, chlorine concentration and N according to the present invention.
It is a figure which shows the relationship with the heavy metal content of i and Cr.

フロントページの続き (72)発明者 山名 芳隆 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製鐵所内 (72)発明者 長田 昭一 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製鐵所内 (72)発明者 大久保 武彦 東京都中央区銀座7−12−14 ケミライ ト工業株式会社内 (58)調査した分野(Int.Cl.6,DB名) C01G 49/00 - 49/08Continued on the front page (72) Inventor Yoshitaka Yamana 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Inside the Kimitsu Works (72) Inventor Shoichi Nagata 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Inside Kimitsu Works (72) Inventor Takehiko Okubo 7-1-14 Ginza, Chuo-ku, Tokyo Inside Chemi-Rite Industry Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) C01G 49/00-49 / 08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フェライトを構成する金属元素の塩化物
溶液を混合し、次いで噴霧焙焼することによって得られ
たフェライト用原料酸化物を、400℃〜600℃の温
度範囲で加熱し、第一次脱塩素分処理を行い、引続き6
00℃〜1000℃加熱を行って、結晶粒制御及び第二
次脱塩素を行う二段熱処理することを特徴とするソフト
フェライト粉末の製造方法。
1. Chloride of metal element constituting ferrite
The solution was mixed and then the ferrite raw material oxide obtained by spraying roasting, heating in the temperature range of 400 ° C. to 600 ° C., subjected to primary de-chlorine treatment, continued 6
A method for producing a soft ferrite powder, comprising heating at 00 ° C to 1000 ° C and performing a two-step heat treatment for controlling crystal grains and performing secondary dechlorination.
JP22642891A 1991-08-13 1991-08-13 Manufacturing method of soft ferrite powder Expired - Fee Related JP2855378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22642891A JP2855378B2 (en) 1991-08-13 1991-08-13 Manufacturing method of soft ferrite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22642891A JP2855378B2 (en) 1991-08-13 1991-08-13 Manufacturing method of soft ferrite powder

Publications (2)

Publication Number Publication Date
JPH0543247A JPH0543247A (en) 1993-02-23
JP2855378B2 true JP2855378B2 (en) 1999-02-10

Family

ID=16844965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22642891A Expired - Fee Related JP2855378B2 (en) 1991-08-13 1991-08-13 Manufacturing method of soft ferrite powder

Country Status (1)

Country Link
JP (1) JP2855378B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139776A1 (en) * 2017-01-26 2018-08-02 (주) 엘지화학 Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
KR20180088273A (en) * 2017-01-26 2018-08-03 주식회사 엘지화학 Ferrite catalyst for oxidative dehydrogenation, method for preparing the same and method of preparing butadiene using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397421B2 (en) * 1994-01-06 2003-04-14 川崎製鉄株式会社 Method for producing Ni-Zn ferrite raw material oxide
JPH09278533A (en) * 1996-04-09 1997-10-28 Murata Mfg Co Ltd Production of ceramic stock
KR102155406B1 (en) 2017-08-18 2020-09-11 주식회사 엘지화학 Quantitative Analysis Method of Residual Chlorine in Zinc Ferrite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139776A1 (en) * 2017-01-26 2018-08-02 (주) 엘지화학 Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
KR20180088273A (en) * 2017-01-26 2018-08-03 주식회사 엘지화학 Ferrite catalyst for oxidative dehydrogenation, method for preparing the same and method of preparing butadiene using the same
KR102079734B1 (en) * 2017-01-26 2020-02-20 주식회사 엘지화학 Ferrite catalyst for oxidative dehydrogenation, method for preparing the same and method of preparing butadiene using the same
US10843173B2 (en) 2017-01-26 2020-11-24 Lg Chem, Ltd. Ferrite catalyst for oxidative dehydrogenation, method of preparing ferrite catalyst, and method of preparing butadiene using ferrite catalyst

Also Published As

Publication number Publication date
JPH0543247A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JP2855378B2 (en) Manufacturing method of soft ferrite powder
EP0462344B1 (en) Method for producing composite oxides for use ad starting materials for ferrites
JPS60262405A (en) Manufacture of mn-zn ferrite
CN111101051B (en) Method for improving nitrogen content in vanadium-nitrogen alloy production process
JPS60262404A (en) Manufacture of mn-zn ferrite
JP2895723B2 (en) Method for producing Mn-Zn ferrite
JPH05135933A (en) Production of material oxide for soft ferrite
JP6055892B2 (en) Mn-Zn ferrite
JPH07211533A (en) Method of manufacturing oxide magnetic material
JPH05335133A (en) Material oxide for mn-zn ferrite and manufacturing method of mn-zn ferrite using the same
JPH02271923A (en) Production of raw material oxide for ferrite
JPS62185802A (en) Control of oxygen content of flocculated molybdenum powder
JPH0543248A (en) Method for controlling density of raw oxides for ferrite
JPH05198417A (en) Manufacture of soft ferrite powder
JPH07245210A (en) Low loss oxide magnetic material and its preparing method
JPH04187556A (en) Sintered tantalum oxide, its production and use
KR0145951B1 (en) Manufacturing method of ferrite powder
JP3397421B2 (en) Method for producing Ni-Zn ferrite raw material oxide
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JP3653638B2 (en) Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite
JPH04321522A (en) Production of manganese-zinc-based ferrite
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same
JPH0891942A (en) Production of powder for ferrite
JPH0397625A (en) Production of raw oxide for soft ferrite
JPH06314608A (en) Low loss oxide magnetic material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981027

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees