JP3653638B2 - Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite - Google Patents

Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite Download PDF

Info

Publication number
JP3653638B2
JP3653638B2 JP21954293A JP21954293A JP3653638B2 JP 3653638 B2 JP3653638 B2 JP 3653638B2 JP 21954293 A JP21954293 A JP 21954293A JP 21954293 A JP21954293 A JP 21954293A JP 3653638 B2 JP3653638 B2 JP 3653638B2
Authority
JP
Japan
Prior art keywords
iron oxide
oxide powder
soft ferrite
average particle
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21954293A
Other languages
Japanese (ja)
Other versions
JPH0774016A (en
Inventor
田 禎 公 清
村 由紀子 中
英 明 小日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP21954293A priority Critical patent/JP3653638B2/en
Publication of JPH0774016A publication Critical patent/JPH0774016A/en
Application granted granted Critical
Publication of JP3653638B2 publication Critical patent/JP3653638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ソフトフェライト製造用原料酸化鉄粉およびソフトフェライトの製造方法に関するものである。
【0002】
【従来の技術】
ソフトフェライトは高周波軟磁性材料として広く利用されている。その製造方法としては、Fe、Mn、Znなどの酸化物粉末を機械的に混合し、熱処理(仮焼とも言う)した後、粉砕と同時に微量添加物を混合し、成形の後、焼成する方法が一般的である。主原料である酸化物粉末としては、70wt%程度のFe2 3 、15〜30wt%程度のMn3 4 および15wt%以下程度のZnOが最も一般的に使用されている。
【0003】
一方その原料酸化物は何れも高純度のものが要求される。原料酸化鉄としては、精製した高純度の塩化鉄溶液を噴霧加熱して製造されるのが一般的であり、その粉体特性などは周知の通りである(例えば特開昭62−59532号)。特に、0.08〜0.15μmのBET法による1次粒径を持つ酸化鉄が原料として使用され(仮焼することなしに成形焼成され)る場合もある(特開昭62−219903号)が、必ずしも優れた磁気特性が得られてはいない。また、ソフトフェライト用として、ヘマタイト法と呼ばれる方法で得られる空気透過法による平均粒径0.5〜1.2μmの酸化鉄も既知である(特開昭59−21527号)。
【0004】
しかし、従来、ソフトフェライトの磁気特性を向上させるために、酸化鉄を、高純度化する以外に、いかに改良すべきか十分に検討されていなかった。そのため、得られるソフトフェライトの磁気特性も必ずしも満足のいくものではなかった。
【0005】
【発明が解決しようとする課題】
以上の実情に鑑みて、本発明は、原料酸化鉄の改良によって高水準の磁気特性をもつソフトフェライトの製法およびその原料酸化鉄粉を提供することを目的とする。
【0006】
【課題を解決するための手段】
すなわち、本発明は、塩化鉄水溶液の噴霧焙焼で得た酸化鉄粉末であって、空気透過法による平均粒径が0.1〜0.4μmで、BET法による平均粒径が0.01〜0.075μmであるソフトフェライト製造用原料酸化鉄粉を提供するものである。
ここで、酸化鉄粉は、鉄濃度80〜320g/lの塩化鉄水溶液を5〜50μmの平均径をもつ液滴として噴霧し、焙焼して得たものが好適である。
【0007】
また、本発明は、Fe、Mn、Znなどの酸化物粉を粉砕混合して主原料混合酸化物粉を得、仮焼後、粉砕と同時に微量添加物を混合し、成形後焼成するソフトフェライトの製造方法において、上記酸化鉄粉を原料酸化鉄粉として用いるソフトフェライトの製造方法を提供する。
【0008】
【作用】
以下、本発明についてさらに詳細に説明する。
Fe塩化物水溶液を噴霧加熱することで得られる本発明のソフトフェライト用の原料酸化鉄粉は、前記本発明の目的を達成するために、空気透過法による平均粒径が0.1〜0.4μmであり、かつBET法による平均粒径が0.01〜0.075μmであることが必要である。
【0009】
優れた磁気特性を達成するためには、最終焼成コアの結晶内のマトリックスは、均一な化学組成をもつことが必要である。本発明者らは、微細な粉末を利用することが、最終的に均一な結晶内のマトリックスを得る手段として有望であり、それによって磁気特性向上が可能だという予想のもと、詳細な実験を行った。その結果、空気透過法による平均粒径(粉末の2次粒径を反映する)およびBET法による平均粒径(粉末の1次粒径を反映する)は同様に磁気特性を支配する要因であり、これらは重要であることを知った。すなわち、原料酸化物が小さいほど、他の酸化物との混合工程の終了段階において高い均質性が達成され、その結果として、仮焼、焼成の後に均質で高磁気特性のソフトフェライトが得られる。
【0010】
また、混合工程では、酸化鉄は2次粒径で示される凝集として振る舞う傾向が強く、2次粒径の方が1次粒径よりも支配的である。しかし、1次粒径および2次粒径が重要な因子である。すなわち、1次粒径および2次粒径が特定の各範囲内にあるとき特別な効果が発揮されることが明らかになった。
【0011】
空気透過法による平均粒径が0.4μmを超えるか、BET法による平均粒径が0.075μmを超えると磁気特性が劣化する。したがって、空気透過法による平均粒径は0.4μm以下であり、かつBET法による平均粒径は0.075μm以下であることが必要である。
【0012】
一方、平均粒径を微細化することによる磁気特性改善の効果は、ある一定値以下では飽和する傾向にある。ところが、平均粒径が小さいほど、焼成時に結晶粒の異常成長が発生しやすく、また、粉末が嵩高くなり、ハンドリングが著しく困難となる。空気透過法による平均粒径が0.1μmを下回るか、BET法による平均粒径が0.01μmを下回ると、磁気特性向上の効果が飽和すると同時に焼成時に異常結晶成長が起こりやすくなる。したがって、空気透過法による平均粒径は0.1μm以上であり、BET法による平均粒径が0.01μm以上であることが必要である。
【0013】
以上、本発明の原料酸化鉄粉の形態について説明したが、その製造方法は、以下の通りである。
原料溶液としては、Fe塩化物水溶液を用意する。特に、原料溶液としては、製鉄所で多量に発生する鋼板の酸洗いの廃液を高純度化したものが経済的に好ましく使用できる。
【0014】
原料溶液は、加熱雰囲気の中に噴霧する。噴霧することで、熱効率よく酸化鉄粉末が得られる。加熱雰囲気は、酸素含有雰囲気であればよいが、加熱を経済的に行うために、炭化水素などを含有する燃料を燃焼させて製造した酸素を含有する高温ガスを利用するのが好ましい。加熱は、塩化物を効率的に酸化鉄にするために、300〜1000℃で行うのが好ましい。
【0015】
上述した本発明のソフトフェライト製造用酸化鉄粉は塩化鉄水溶液の噴霧焙焼により製造するのが好ましいのであるが、そのときの噴霧焙焼条件は塩化鉄水溶液の鉄濃度が80〜320g/l、噴霧液滴の平均径が5〜50μmであるのが好ましい。鉄濃度が80g/l未満では、生産効率が低すぎるので経済的に問題である。一方、320g/lを超えると、塩化鉄が溶液中に析出する危険が高まると同時に、液粘性が上がりすぎ安定噴霧が困難となるためである。また、噴霧液滴径が5μm未満では、得られる酸化鉄粉が微細になりすぎ、本発明に使用する酸化鉄が得られない。一方、液滴径が50μmを超えると、得られる酸化鉄が粗大になりすぎ、本発明に使用する酸化鉄が得られなくなるためである。
【0016】
次に、本発明の原料酸化鉄粉を使用したソフトフェライトの好ましい製造方法について説明する。
本発明の原料酸化鉄粉は、最終的に所望するソフトフェライトの組成となるように、Mn、Zn、Ni、Mg、Cuなどの金属酸化物と粉砕混合する。通常、70wt%の酸化鉄と15〜30wt%のMn、Ni、Mg、Cu酸化物および15wt%以下のZnOよりなる。この混合は、機械的に行うものであり、通常、乾式あるいは湿式のボールミルやアトライターなどが好ましく使用できる。
【0017】
これらの粉砕混合を終えた混合酸化物は、空気、窒素、あるいはそれらの混合ガス、又は、炭化水素燃料の燃焼排ガスなどの雰囲気中、最高700〜1100℃で加熱することで仮焼する。仮焼には、ロータリーキルンなどが好ましく使用できる。
【0018】
仮焼した混合酸化物は、粉砕と同時に微量添加物を混合し、さらに、成形の後焼成する。
この混合時、磁気特性向上のために、SiO2 、CaO、TiO2 およびNb 25 などの酸化物粉末を微量添加する。これら、微量添加物の添加量は、周知の通り、各々、0.3wt%以下、0.5wt%以下、0.5wt%以下および0.7wt%以下程度であり、所望する磁気特性によって添加量は異なる。その他、V、Bi、In、Ta、Zr、Mo、Na、Sn、Cr、Co、Al、Mgの酸化物が使用される。こうして得られた混合粉砕粉は、通常、0.3〜2μm程度の平均粒径をもつ。
【0019】
混合粉砕粉末には、通常、0.1〜1wt%程度のPVAに代表される成形助剤や0.01〜1wt%程度のステアリン酸亜鉛に代表される潤滑剤を混合し、−30mesh程度に造粒を行い、成形原料とする。
【0020】
成形原料は、通常、0.1〜2t/cm2 程度の圧力で所望の形状に金型成形する。
成形体は、通常、大気または窒素、あるいはそれらの混合ガス中で、最高1200〜1350℃程度で保持して焼成する。
【0021】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。
(実施例)
塩化鉄を水道水に溶解し、塩化鉄水溶液を用意した。
この溶液を1リットル/hの供給速度で、800℃に保持した噴霧焙焼炉に噴霧した。噴霧ノズルとしては、霧吹きと同一原理(空気を噴射することで、溶液を液滴化する)の2流体ノズルを使用した。噴霧液口径は1.5mmのものを使用した。溶液濃度および噴霧ガス圧力を制御することで表1に示す液滴径となるようにした。得られた酸化鉄粉を空気分級により微調整して、最終的に平均粒径の異なる数種の酸化鉄粉を製造した。噴霧焙焼条件および酸化鉄粉の平均粒径を表1に整理した。
【0022】
次に、酸化鉄粉に、ソフトフェライト用に通常使用されるMnおよびZn酸化物粉末を添加し、焼成後の組成が、ZnO、MnO、TiO2 およびFe2 3 に換算して、各々、8.4wt%、21.2wt%、0.075wt%および残部となるように配合した。この配合品に、酸化鉄粉末に対して3倍の重量の水を加え、アトライタ中、220rpmの回転数で70分処理し、脱水、乾燥後、大気中、900℃で3時間保持して、仮焼粉を準備した。仮焼粉には、焼成後に含まれるCaO、SiO2 およびNb2 5 換算でCa、SiおよびNb源を各々650、25および220ppm添加し、粉末に対して3倍の重量の水を加え、アトライタ中、200rpmの回転数で45分処理して、本発明および比較例の原料粉末を準備した。
【0023】
本発明および比較例の原料粉末100gに対し、4wt%のPVA水溶液を10g添加し、42meshの篩を通過させることで造粒粉を作製した。造粒粉を、1.2t/cm2 の圧力で、外径36、内径24、高さ8mmのトロイダルリング試験片に成形した。成形体は、管型焼成炉を使用して、窒素、空気の混合ガス中、最高1310℃で240分保持することで焼成を完了した。得られた焼成コアについて、鉄損(100kHz、0.2T)を100℃で測定した。表1に特性を整理した。
【0024】
【表1】

Figure 0003653638
【0025】
表1から明らかなように、酸化鉄粉の空気透過法による平均粒径が0.4μmを超える従来のコア(比較例1)やBET法による平均粒径が0.8μmを超える従来のコア(比較例2)に比較して、空気透過法による平均粒径が0.1〜0.4μmで、BET法による平均粒径が0.01〜0.075μmの酸化鉄粉を使用した本発明のコア(本発明例1〜6)によって、非常に優れた磁気特性(鉄損)が得られる。これは、酸化鉄粉が微細なため、混合工程において酸化物原料を均一に混合することができ、最終焼結コアの結晶粒内のマトリックスを均一にすることができたためである。一方、平均粒径が0.1μmを下回る場合は、焼成時に結晶粒の異常成長が発生し、その結果として、磁気特性が著しく劣化した。
以上のように、本発明の酸化物の1次および2次の平均粒径を特定することによって初めて優れた磁気特性が得られる。
【0026】
一方、本発明の酸化鉄を製造するためには、噴霧する液滴の平均粒径を制御することが不可欠である。平均液滴径が50μmを超える場合(比較例1、2)は、BET法および/または空気透過法による平均粒径を本発明の上限値以下にすることができず、平均液滴径が5μmを下回る場合(比較例3)は、BET法および/または空気透過法による平均粒径を本発明の下限値以上にすることができず、本発明のように、平均液滴径を5〜50μmの範囲内にすることで、初めてBET法および/または空気透過法による平均粒径を本発明の範囲内にすることができる。液滴径を変化させることは、実施例に使用した霧吹き型(2流体)ノズルの場合、噴霧エア圧力を調整することで可能であり、実施例に使用した噴霧液口径1.5mmのノズルの場合、1.5〜7.0kg/cm2 の範囲が適切であった。
【0027】
さらに、溶液Fe濃度は最終製品酸化鉄の平均粒径に多少影響し、濃度が高いほど大粒径の酸化物が、濃度が低いほど小粒径の酸化物が得られる。ただし、溶液Fe濃度が80g/lを下回る場合(比較例3)は、酸化物の平均粒径を本発明の範囲にするのが困難なばかりでなく、生産性を低下させるので好ましくない。一方、溶液Fe濃度が320g/lを上回る場合(比較例1)は、酸化物の平均粒径を本発明の範囲にするのが困難なばかりでなく、塩化鉄の溶解限度に近づくため、場合によっては塩化鉄が析出し噴霧ノズルを閉塞させるなどの操業上の問題が生じる。したがって、溶液の鉄濃度は80〜320g/lの範囲が好ましい。
【0028】
【発明の効果】
Fe塩化物水溶液を噴霧加熱することで得られる空気透過法による平均粒径が0.1〜0.4μmであり、かつBET法による平均粒径が0.01〜0.075μmである本発明のソフトフェライトの原料酸化鉄によって、従来にない高水準の磁気特性のソフトフェライトが得られる。[0001]
[Industrial application fields]
The present invention relates to a raw material iron oxide powder for producing soft ferrite and a method for producing soft ferrite.
[0002]
[Prior art]
Soft ferrite is widely used as a high-frequency soft magnetic material. The manufacturing method is a method in which oxide powders such as Fe, Mn, and Zn are mechanically mixed, heat-treated (also referred to as calcination), then mixed with a trace amount of additives at the same time as pulverized, and then fired after molding. Is common. As the oxide powder as the main material, Fe 2 O 3 of about 70 wt%, Mn 3 O 4 of about 15 to 30 wt% and ZnO of about 15 wt% or less are most commonly used.
[0003]
On the other hand, the raw material oxide is required to have high purity. The raw iron oxide is generally manufactured by spray heating a purified high-purity iron chloride solution, and its powder characteristics are well known (for example, JP-A-62-59532). . In particular, iron oxide having a primary particle size by the BET method of 0.08 to 0.15 μm may be used as a raw material (molded and fired without calcining) (Japanese Patent Laid-Open No. 62-219903). However, excellent magnetic properties are not always obtained. For soft ferrite, iron oxide having an average particle size of 0.5 to 1.2 μm by an air permeation method obtained by a method called a hematite method is also known (Japanese Patent Laid-Open No. 59-21527).
[0004]
However, in the past, in order to improve the magnetic properties of soft ferrite, it has not been sufficiently studied how to improve the iron oxide other than high purity. For this reason, the magnetic properties of the obtained soft ferrite were not always satisfactory.
[0005]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a method for producing soft ferrite having a high level of magnetic properties by improving raw iron oxide and the raw iron oxide powder.
[0006]
[Means for Solving the Problems]
That is, the present invention is an iron oxide powder obtained by spray roasting of an aqueous iron chloride solution, having an average particle size of 0.1 to 0.4 μm by the air permeation method and an average particle size of 0.01 by the BET method. The raw material iron oxide powder for soft ferrite manufacture which is -0.075 micrometer is provided.
Here, the iron oxide powder is preferably obtained by spraying and roasting an iron chloride aqueous solution having an iron concentration of 80 to 320 g / l as droplets having an average diameter of 5 to 50 μm.
[0007]
In addition, the present invention provides a soft ferrite in which oxide powders such as Fe, Mn, and Zn are pulverized and mixed to obtain a main raw material mixed oxide powder, calcined, mixed with a trace amount of additives simultaneously with pulverization, and fired after molding In this manufacturing method, the manufacturing method of the soft ferrite which uses the said iron oxide powder as raw material iron oxide powder is provided.
[0008]
[Action]
Hereinafter, the present invention will be described in more detail.
In order to achieve the object of the present invention, the raw iron oxide powder for soft ferrite of the present invention obtained by spray heating an Fe chloride aqueous solution has an average particle size of 0.1 to 0. It is necessary that the average particle size is 4 μm and the average particle size by the BET method is 0.01 to 0.075 μm.
[0009]
In order to achieve excellent magnetic properties, the matrix within the crystals of the final fired core must have a uniform chemical composition. The inventors have conducted detailed experiments with the expectation that the use of fine powders is promising as a means to finally obtain a matrix in a uniform crystal, thereby improving magnetic properties. went. As a result, the average particle size by the air permeation method (reflecting the secondary particle size of the powder) and the average particle size by the BET method (reflecting the primary particle size of the powder) are also factors that govern the magnetic properties. Knew that these are important. That is, the smaller the raw material oxide, the higher the homogeneity is achieved at the end of the mixing step with other oxides. As a result, a soft ferrite having a homogeneous and high magnetic property is obtained after calcination and firing.
[0010]
Further, in the mixing step, iron oxide tends to behave as an agglomeration indicated by the secondary particle size, and the secondary particle size is more dominant than the primary particle size. However, the primary particle size and the secondary particle size are important factors. That is, it has been clarified that a special effect is exhibited when the primary particle size and the secondary particle size are in specific ranges.
[0011]
When the average particle size by the air permeation method exceeds 0.4 μm or the average particle size by the BET method exceeds 0.075 μm, the magnetic properties deteriorate. Therefore, it is necessary that the average particle diameter by the air permeation method is 0.4 μm or less and the average particle diameter by the BET method is 0.075 μm or less.
[0012]
On the other hand, the effect of improving magnetic characteristics by reducing the average particle size tends to saturate below a certain value. However, the smaller the average particle size, the easier the abnormal growth of crystal grains occurs during firing, and the powder becomes bulky and handling becomes extremely difficult. If the average particle size by the air permeation method is less than 0.1 μm or the average particle size by the BET method is less than 0.01 μm, the effect of improving the magnetic properties is saturated and abnormal crystal growth is likely to occur during firing. Therefore, it is necessary that the average particle diameter by the air permeation method is 0.1 μm or more, and the average particle diameter by the BET method is 0.01 μm or more.
[0013]
As mentioned above, although the form of the raw material iron oxide powder of this invention was demonstrated, the manufacturing method is as follows.
An Fe chloride aqueous solution is prepared as a raw material solution. In particular, as the raw material solution, a highly purified waste solution for pickling steel sheets generated in large quantities at steelworks can be preferably used economically.
[0014]
The raw material solution is sprayed in a heated atmosphere. By spraying, iron oxide powder can be obtained with high thermal efficiency. The heating atmosphere may be an oxygen-containing atmosphere, but in order to perform heating economically, it is preferable to use a high-temperature gas containing oxygen produced by burning a fuel containing hydrocarbon or the like. Heating is preferably performed at 300 to 1000 ° C. in order to efficiently convert the chloride into iron oxide.
[0015]
The above-described iron oxide powder for producing soft ferrite of the present invention is preferably produced by spray roasting of an aqueous iron chloride solution. The spray roasting conditions at that time are such that the iron concentration of the aqueous iron chloride solution is 80 to 320 g / l. The average diameter of the spray droplets is preferably 5 to 50 μm. If the iron concentration is less than 80 g / l, the production efficiency is too low, which is economically problematic. On the other hand, if it exceeds 320 g / l, there is an increased risk that iron chloride will precipitate in the solution, and at the same time, the liquid viscosity will increase so that stable spraying becomes difficult. On the other hand, when the spray droplet diameter is less than 5 μm, the obtained iron oxide powder becomes too fine, and the iron oxide used in the present invention cannot be obtained. On the other hand, when the droplet diameter exceeds 50 μm, the obtained iron oxide becomes too coarse, and the iron oxide used in the present invention cannot be obtained.
[0016]
Next, a preferred method for producing soft ferrite using the raw iron oxide powder of the present invention will be described.
The raw iron oxide powder of the present invention is pulverized and mixed with a metal oxide such as Mn, Zn, Ni, Mg, or Cu so as to finally have a desired soft ferrite composition. Usually, it consists of 70 wt% iron oxide and 15-30 wt% Mn, Ni, Mg, Cu oxide and 15 wt% or less ZnO. This mixing is performed mechanically, and usually a dry or wet ball mill or attritor can be preferably used.
[0017]
The mixed oxide that has been pulverized and mixed is calcined by heating at a maximum of 700 to 1100 ° C. in an atmosphere of air, nitrogen, a mixed gas thereof, or combustion exhaust gas of hydrocarbon fuel. A rotary kiln or the like can be preferably used for calcination.
[0018]
The calcined mixed oxide is mixed with a trace amount of additive simultaneously with pulverization, and further fired after molding.
At the time of mixing, a small amount of oxide powder such as SiO 2 , CaO, TiO 2 and Nb 2 O 5 is added to improve the magnetic characteristics. As is well known, the addition amount of these trace additives is about 0.3 wt% or less, 0.5 wt% or less, 0.5 wt% or less, and 0.7 wt% or less, respectively, depending on the desired magnetic characteristics. Is different. In addition, oxides of V, Bi, In, Ta, Zr, Mo, Na, Sn, Cr, Co, Al, and Mg are used. The mixed and pulverized powder thus obtained usually has an average particle size of about 0.3 to 2 μm.
[0019]
Usually, the mixed pulverized powder is mixed with a molding aid typified by about 0.1 to 1 wt% of PVA and a lubricant represented by about 0.01 to 1 wt% of zinc stearate, and is about -30 mesh. Granulate into molding raw materials.
[0020]
The molding raw material is usually molded into a desired shape by a pressure of about 0.1 to 2 t / cm 2 .
The molded body is usually fired in the atmosphere or nitrogen or a mixed gas thereof at a maximum of about 1200 to 1350 ° C.
[0021]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
(Example)
Iron chloride was dissolved in tap water to prepare an aqueous iron chloride solution.
This solution was sprayed in a spray roasting furnace maintained at 800 ° C. at a feed rate of 1 liter / h. As the spray nozzle, a two-fluid nozzle having the same principle as spraying (spraying the solution by jetting air) was used. A spray liquid having a diameter of 1.5 mm was used. By controlling the solution concentration and the spray gas pressure, the droplet diameters shown in Table 1 were obtained. The obtained iron oxide powder was finely adjusted by air classification to finally produce several types of iron oxide powders having different average particle diameters. Table 1 shows the spray roasting conditions and the average particle diameter of the iron oxide powder.
[0022]
Next, Mn and Zn oxide powders commonly used for soft ferrite are added to the iron oxide powder, and the composition after firing is converted into ZnO, MnO, TiO 2 and Fe 2 O 3 , respectively. It compounded so that it might become 8.4 wt%, 21.2 wt%, 0.075 wt%, and the remainder. To this blended product, water three times the weight of iron oxide powder was added, treated in an attritor for 70 minutes at a rotational speed of 220 rpm, dehydrated, dried, and held in the atmosphere at 900 ° C. for 3 hours. A calcined powder was prepared. To the calcined powder, 650, 25 and 220 ppm of Ca, Si and Nb sources are added in terms of CaO, SiO 2 and Nb 2 O 5 contained after firing, respectively, and 3 times the weight of water is added to the powder. The raw material powder of this invention and the comparative example was prepared for 45 minutes by the rotation speed of 200 rpm in an attritor.
[0023]
10 g of 4 wt% PVA aqueous solution was added to 100 g of the raw material powder of the present invention and the comparative example, and granulated powder was prepared by passing through a 42 mesh sieve. The granulated powder was molded into a toroidal ring test piece having an outer diameter of 36, an inner diameter of 24, and a height of 8 mm at a pressure of 1.2 t / cm 2 . The molded body was fired by holding it at a maximum of 1310 ° C. for 240 minutes in a mixed gas of nitrogen and air using a tube firing furnace. About the obtained baked core, the iron loss (100 kHz, 0.2T) was measured at 100 degreeC. Table 1 summarizes the characteristics.
[0024]
[Table 1]
Figure 0003653638
[0025]
As is apparent from Table 1, a conventional core (Comparative Example 1) in which the average particle diameter by the air permeation method of iron oxide powder exceeds 0.4 μm or a conventional core in which the average particle diameter by the BET method exceeds 0.8 μm ( Compared to Comparative Example 2), the iron oxide powder having an average particle diameter of 0.1 to 0.4 μm by the air permeation method and an average particle diameter of 0.01 to 0.075 μm by the BET method is used. With the core (Invention Examples 1 to 6), very excellent magnetic properties (iron loss) can be obtained. This is because the oxide raw material can be uniformly mixed in the mixing process because the iron oxide powder is fine, and the matrix in the crystal grains of the final sintered core can be made uniform. On the other hand, when the average particle size was less than 0.1 μm, abnormal growth of crystal grains occurred during firing, and as a result, the magnetic properties were significantly deteriorated.
As described above, excellent magnetic characteristics can be obtained only by specifying the primary and secondary average particle diameters of the oxide of the present invention.
[0026]
On the other hand, in order to produce the iron oxide of the present invention, it is essential to control the average particle diameter of the droplets to be sprayed. When the average droplet diameter exceeds 50 μm (Comparative Examples 1 and 2), the average particle diameter by the BET method and / or the air permeation method cannot be made lower than the upper limit of the present invention, and the average droplet diameter is 5 μm. (Comparative Example 3), the average particle size by the BET method and / or the air permeation method cannot be made to be equal to or greater than the lower limit of the present invention, and the average droplet diameter is 5 to 50 μm as in the present invention. For the first time, the average particle diameter by the BET method and / or the air permeation method can be made within the range of the present invention. In the case of the atomizing type (two fluid) nozzle used in the example, the droplet diameter can be changed by adjusting the atomizing air pressure. The nozzle diameter of the nozzle used in the example is 1.5 mm. In this case, a range of 1.5 to 7.0 kg / cm 2 was appropriate.
[0027]
Furthermore, the concentration of the solution Fe has some influence on the average particle size of the final product iron oxide. The higher the concentration, the larger the particle size oxide, and the lower the concentration, the smaller the particle size oxide. However, when the solution Fe concentration is less than 80 g / l (Comparative Example 3), it is not only difficult to make the average particle diameter of the oxide within the range of the present invention, but also the productivity is lowered, which is not preferable. On the other hand, when the solution Fe concentration exceeds 320 g / l (Comparative Example 1), the average particle size of the oxide is not only difficult to be within the range of the present invention, but also approaches the solubility limit of iron chloride. Depending on the operation, iron chloride may precipitate, causing operational problems such as blocking the spray nozzle. Therefore, the iron concentration of the solution is preferably in the range of 80 to 320 g / l.
[0028]
【The invention's effect】
The average particle diameter by the air permeation method obtained by spray heating the Fe chloride aqueous solution is 0.1 to 0.4 μm, and the average particle diameter by the BET method is 0.01 to 0.075 μm. Soft ferrite, which is a raw material for soft ferrite, can provide soft ferrite with a high level of magnetic properties that has never been seen before.

Claims (3)

塩化鉄水溶液の噴霧焙焼で得た酸化鉄粉末であって、空気透過法による平均粒径が0.1〜0.4μmで、BET法による平均粒径が0.01〜0.075μmであるソフトフェライト製造用原料酸化鉄粉。An iron oxide powder obtained by spray roasting of an aqueous iron chloride solution having an average particle size of 0.1 to 0.4 μm by the air permeation method and an average particle size of 0.01 to 0.075 μm by the BET method Raw material iron oxide powder for soft ferrite production. 請求項1に記載の酸化鉄粉は、鉄濃度80〜320g/lの塩化鉄水溶液を平均径5〜50μmの液滴として噴霧し、焙焼して得たものである請求項1に記載のソフトフェライト製造用原料酸化鉄粉。The iron oxide powder according to claim 1 is obtained by spraying and roasting an iron chloride aqueous solution having an iron concentration of 80 to 320 g / l as droplets having an average diameter of 5 to 50 μm. Raw material iron oxide powder for soft ferrite production. Fe、Mn、Znなどの酸化物粉を粉砕混合して主原料混合酸化物粉を得、仮焼後、粉砕と同時に微量添加物を混合し、成形後焼成するソフトフェライトの製造方法において、請求項1または2に記載の酸化鉄粉を原料酸化鉄粉として用いることを特徴とするソフトフェライトの製造方法。In the method for producing soft ferrite, which is obtained by pulverizing and mixing oxide powders such as Fe, Mn, and Zn to obtain main raw material mixed oxide powder, calcining, mixing a trace amount of additives simultaneously with pulverization, and firing after molding. Item 3. A method for producing soft ferrite, comprising using the iron oxide powder according to item 1 or 2 as a raw iron oxide powder.
JP21954293A 1993-09-03 1993-09-03 Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite Expired - Lifetime JP3653638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21954293A JP3653638B2 (en) 1993-09-03 1993-09-03 Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21954293A JP3653638B2 (en) 1993-09-03 1993-09-03 Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite

Publications (2)

Publication Number Publication Date
JPH0774016A JPH0774016A (en) 1995-03-17
JP3653638B2 true JP3653638B2 (en) 2005-06-02

Family

ID=16737131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21954293A Expired - Lifetime JP3653638B2 (en) 1993-09-03 1993-09-03 Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite

Country Status (1)

Country Link
JP (1) JP3653638B2 (en)

Also Published As

Publication number Publication date
JPH0774016A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
KR100733158B1 (en) The method of manufacturing Ferrite raw material powder and Ferrite magnet by spray thermo decomposing method
CN113087516B (en) Low-temperature sintering method for preparing manganese-zinc ferrite by using industrial wastes
CN113698192A (en) Method for preparing permanent magnetic ferrite by taking ultrapure magnetite concentrate as raw material
JP2002068750A (en) Method of producing tricobalt tetraoxide
JPH05254830A (en) Finely divided particles of rare earth oxides excellent in dispersibility and production process thereof
CN112624750A (en) Preparation method of Z-shaped hexaferrite material
JP3653638B2 (en) Raw material iron oxide powder for soft ferrite production and method for producing soft ferrite
RU2768724C1 (en) Method of producing nanostructured powder of lithium-zinc-manganese ferrite
JP3032098B2 (en) Soft ferrite raw material powder and method and apparatus for producing the same
JPS58115027A (en) Oxide magnetic material and preparation thereof
JP3919546B2 (en) Iron oxide powder
US5626788A (en) Production of magnetic oxide powder
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same
KR0144224B1 (en) Soft ferrite raw material powder its sintered body and their production method and apparatus
JP3397421B2 (en) Method for producing Ni-Zn ferrite raw material oxide
JPH05335133A (en) Material oxide for mn-zn ferrite and manufacturing method of mn-zn ferrite using the same
JP2849207B2 (en) Method for producing raw material oxide for soft ferrite
JPH05135933A (en) Production of material oxide for soft ferrite
JP2895723B2 (en) Method for producing Mn-Zn ferrite
JP2846149B2 (en) Production method of raw material oxide for ferrite
JP4053230B2 (en) Iron oxide and method for producing the same
JPH07211534A (en) Method of manufacturing low loss oxide magnetic material
JPH06349625A (en) High-magnetic permeability oxide magnetic material and manufacure thereof
CN112489957A (en) Transformer based on ferrite material
JPH06333723A (en) Manufacture of low-loss oxide magnetic material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8