JP2846147B2 - Method for producing raw material oxide for soft ferrite - Google Patents
Method for producing raw material oxide for soft ferriteInfo
- Publication number
- JP2846147B2 JP2846147B2 JP3147074A JP14707491A JP2846147B2 JP 2846147 B2 JP2846147 B2 JP 2846147B2 JP 3147074 A JP3147074 A JP 3147074A JP 14707491 A JP14707491 A JP 14707491A JP 2846147 B2 JP2846147 B2 JP 2846147B2
- Authority
- JP
- Japan
- Prior art keywords
- chloride
- roasting
- raw material
- composition
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ソフトフェライト用原
料酸化物の製造方法に関する。The present invention relates to a method for producing a raw material oxide for soft ferrite.
【0002】[0002]
【従来の技術】MnZnフェライトの製造工程は、通
常、図3に示すように、鉄、マンガン、ニッケル、マグ
ネシウム、亜鉛の個々の酸化物又は加熱により容易に酸
化物に変化する炭酸塩等の化合物を所定のモル比率で混
合した後に、800〜1000℃の温度で仮焼し、粉
砕、造粒、焼成することにより、構成される。しかしこ
の方法においては次の問題点がある。 (1) 0.1〜1μmの粒径の原料酸化物を混合分散
させるために、組成の均一混合性が不充分となり製品の
磁気特性を劣化させる。 (2) 800〜1000℃という高温での仮焼工程を
経るためにコスト高になる。 (3) 仮焼工程で磁粉が2〜10μmと粒成長を起こ
し、次工程である粉砕工程において1μm程度に粉砕す
る際に、粉砕に長時間を要する上に、不純物による汚染
や組成のずれが避けられない。2. Description of the Related Art As shown in FIG. 3, a process for producing MnZn ferrite is usually carried out by using individual oxides of iron, manganese, nickel, magnesium and zinc or compounds such as carbonates which can be easily converted into oxides by heating. Are mixed at a predetermined molar ratio, and then calcined at a temperature of 800 to 1000 ° C., followed by pulverization, granulation, and firing. However, this method has the following problems. (1) In order to mix and disperse a raw material oxide having a particle diameter of 0.1 to 1 μm, uniform mixing of the composition becomes insufficient and the magnetic properties of the product deteriorate. (2) The cost increases because the calcination process is performed at a high temperature of 800 to 1000 ° C. (3) In the calcination step, the magnetic powder grows to a particle size of 2 to 10 μm, and in the next pulverization step, when pulverizing to about 1 μm, it takes a long time to pulverize, and contamination and deviation in composition due to impurities are caused. Unavoidable.
【0003】[0003]
【発明が解決しようとする課題】そこで従来技術の問題
点である上記の(2)及び(3)を改善するソフトフェ
ライト製造方法として、図4に示すような、フェライト
を構成する金属元素の塩化物混合水溶液を出発原料とし
て、これを酸化焙焼する製造方法が提案されている(特
公昭63−17776号公報)。しかしこの方法によっ
ても、ソフトフェライトを構成する金属元素のうち、そ
の塩化物の蒸気圧が高い亜鉛は同時に酸化焙焼すること
ができず、そのため後工程において酸化物の形態にて混
合する必要があった。つまり、亜鉛成分に付いては0.
1〜1μmの粒径の酸化物を後工程において混合しなけ
ればならず、このためこの亜鉛成分については原料の均
一混合性が十分でなく、組成の不均一を招き、製品の磁
気特性を劣化させるという上記(1)の問題点は解決さ
れていなかった。Therefore, as a method of manufacturing a soft ferrite which solves the above-mentioned problems (2) and (3) of the prior art, as shown in FIG. A production method has been proposed in which a mixed aqueous solution is used as a starting material to oxidize and roast it (Japanese Patent Publication No. 63-17776). However, according to this method, among the metal elements constituting soft ferrite, zinc having a high vapor pressure of chloride cannot be simultaneously oxidized and roasted. Therefore, it is necessary to mix zinc in the form of an oxide in a later step. there were. In other words, for the zinc component, 0.1.
An oxide having a particle size of 1 to 1 μm must be mixed in a subsequent step, and therefore the zinc component is not sufficiently mixed uniformly in the raw material, resulting in a non-uniform composition and deteriorating the magnetic properties of the product. The problem (1) described above was not solved.
【0004】本発明は、上記問題点を解決し、低コスト
で特性の優れたソフトフェライトを製造することができ
る原料酸化物の製造方法を提供することを目的とし、本
発明者による鋭意研究の結果、混合塩化物を温度を代え
て複数回酸化焙焼することにより、原料の成分の均一性
が良好で、製品の磁気特性も良好なソフトフェライト原
料酸化物が製造可能であることが見出され、以下の発明
が完成されるに至った。An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a raw material oxide capable of producing a soft ferrite having excellent characteristics at low cost. As a result, it was found that by oxidizing and roasting the mixed chloride a plurality of times at different temperatures, it is possible to produce a soft ferrite raw material oxide having good uniformity of the components of the raw material and good magnetic properties of the product. As a result, the following invention has been completed.
【0005】[0005]
【課題を解決するための手段】すなわち本発明は、鉄の
塩化物と、マンガン、ニッケル、マグネシウムの塩化物
のうち1種以上と、塩化亜鉛との混合塩化物を600℃
以下の第1の温度にて酸化焙焼を行い、その後に前記第
1の温度よりも高い第2の温度で酸化焙焼を行うことを
特徴とするソフトフェライト用原料酸化物の製造方法で
ある。That is, according to the present invention, a mixed chloride of iron chloride, one or more of manganese, nickel and magnesium chloride and zinc chloride is heated to 600 ° C.
A method for producing a raw material oxide for soft ferrite, comprising performing oxidative roasting at a first temperature described below, and thereafter performing oxidative roasting at a second temperature higher than the first temperature. .
【0006】ここで、上記混合塩化物は、乾燥した混合
物粉体又は固体であってもよく、水又は有機溶媒に溶解
した液体であってもよい。Here, the mixed chloride may be a dry mixed powder or solid, or a liquid dissolved in water or an organic solvent.
【0007】[0007]
【作用】ソフトフェライト原料酸化物の製造において、
組成の均一性を向上するには、主原料である鉄の塩化物
と、マンガン、ニッケル、マグネシウムの塩化物のうち
1種以上を含む塩化物の混合物と、塩化亜鉛とを同時に
酸化焙焼することが最も効果的な方法の1つと考えられ
る。すなわち溶液の形態にて所定の金属イオンを均一分
散混合した後に熱分解することにより、原子レベルで成
分元素が混合した酸化物原料が製造できる。または溶液
から均一分散混合のまま塩化物の乾燥物とした後に、酸
化焙焼することも考えられる。[Function] In the production of soft ferrite raw material oxide,
In order to improve the uniformity of the composition, iron chloride, which is a main raw material, a mixture of chlorides containing at least one of manganese, nickel and magnesium chloride, and zinc chloride are simultaneously oxidized and roasted. Is considered one of the most effective methods. That is, by uniformly dispersing and mixing predetermined metal ions in the form of a solution and then thermally decomposing, an oxide raw material in which the component elements are mixed at the atomic level can be produced. Alternatively, it is also conceivable to oxidize and roast after making a chloride dried product from the solution with uniform dispersion and mixing.
【0008】しかし、塩化亜鉛は蒸気圧が高いために、
従来技術では熱分解過程において蒸発、揮散してしま
い、このため組成ずれと組成の不均一性を招いてしまう
という問題点があった。しかし、酸化焙焼温度を制御
し、第1段目の酸化焙焼において、塩化亜鉛が蒸発する
前に蒸気圧の低い酸化物へと変化させ、その後に第2段
目の酸化焙焼を行って残留する他の塩化物を酸化焙焼す
るという複数回の焙焼工程を採ることにより、鉄の塩化
物と、マンガン、ニッケル、マグネシウムの塩化物のう
ち1種以上を含む塩化物と、塩化亜鉛とを同時に酸化焙
焼することが可能となることがわかった。However, zinc chloride has a high vapor pressure,
In the prior art, there has been a problem that evaporation and volatilization occur during the thermal decomposition process, thereby causing a composition deviation and a non-uniform composition. However, the oxidative roasting temperature is controlled, and in the first-stage oxidative roasting, the zinc chloride is changed to an oxide having a low vapor pressure before evaporating, and then the second-stage oxidative roasting is performed. By oxidizing and roasting other remaining chlorides, the iron chloride and the chloride containing at least one of manganese, nickel and magnesium chlorides, It has been found that zinc can be simultaneously oxidized and roasted.
【0009】第1段目の焙焼温度の上限は、種々の条件
で実験を重ねた結果、塩化亜鉛の蒸発が起こらずに酸化
物又は亜鉛を含有する酸化物に変化できる温度にすれば
良く、高温にする必要はない。実施例1から明らかなよ
うに600℃以下が望ましい。また下限は、塩化亜鉛が
酸化物に変化する反応開始温度以上であればよく、塩化
マンガンを使用する時は250℃が望ましい。The upper limit of the roasting temperature in the first stage may be set to a temperature that can be changed to an oxide or an oxide containing zinc without evaporation of zinc chloride as a result of repeated experiments under various conditions. No need to heat up. As is apparent from the first embodiment, the temperature is desirably 600 ° C. or lower. The lower limit may be at least the reaction start temperature at which zinc chloride changes to an oxide, and when manganese chloride is used, 250 ° C. is desirable.
【0010】酸化焙焼の方法としては、2段焙焼が可能
でさえあれば良く、量産的には2連式ロータリーキル
ン、2連式噴霧焙焼炉、ロータリーキルンと噴霧焙焼炉
の組合せ等の既存の焙焼炉を工程上連続させる方法でも
よいし、1機の焙焼炉内に試料の入口から出口にかけて
温度分布を形成させて、2段階焙焼を行ってもよい。ま
たやや量産性は劣るが、バッチ炉で温度制御をして2段
階焙焼を行ってもよい。The method of oxidative roasting is only required to be capable of performing two-stage roasting. For mass production, a double rotary kiln, a double spray roasting furnace, a combination of a rotary kiln and a spray roasting furnace, or the like is used. A method in which an existing roasting furnace is continuously used in the process may be used, or a two-stage roasting may be performed by forming a temperature distribution from the inlet to the outlet of a sample in one roasting furnace. Although the mass productivity is somewhat inferior, two-stage roasting may be performed by controlling the temperature in a batch furnace.
【0011】酸化焙焼する原料の形態については、鉄の
塩化物とマンガン、ニッケル、マグネシウムの塩化物の
うち1種以上と塩化亜鉛との混合塩化物が乾燥した混合
塩化物粉体又は固体であってもよいし、混合塩化物が水
又は有機溶媒に溶解した液体であってもよい。Regarding the form of the raw material to be oxidized and roasted, a mixed chloride powder of iron chloride and at least one of manganese, nickel and magnesium chloride and zinc chloride is a dried mixed chloride powder or solid. Or a liquid in which a mixed chloride is dissolved in water or an organic solvent.
【0012】[0012]
【実施例】以下に実施例にて本発明を具体的に説明す
る。 〔実施例1〕試薬特級の塩化鉄、塩化マンガン、塩化亜
鉛をFe,Mn,Znの組成比で3:1:0.4の重量
比率になるように混合し、純水に溶解した。この塩化物
溶液の水分を蒸発させ、乾燥塩化物を得た。この塩化物
を窒素雰囲気中でアルミナ乳鉢にて解砕した。EXAMPLES The present invention will be specifically described below with reference to examples. [Example 1] Reagent grade iron chloride, manganese chloride, and zinc chloride were mixed at a composition ratio of Fe, Mn, and Zn at a weight ratio of 3: 1: 0.4, and dissolved in pure water. The water content of this chloride solution was evaporated to obtain a dry chloride. This chloride was crushed in an alumina mortar in a nitrogen atmosphere.
【0013】上記の粉末を所定の温度に保持した横型管
状炉中に挿入し酸化焙焼した。酸化焙焼時の酸化焙焼温
度を変えて生成酸化物の結晶構造と組成分析を行った。
組成はFe、Mn、Zn重量%が100%になるように
求め、組成ずれの有無を示した。結晶構造は、X線回折
定性分析にて調べた。表1にその結果を示した。酸化焙
焼温度が250℃未満では塩化亜鉛が残留している。一
方酸化焙焼温度が600℃を越えると組成のずれが生じ
ている。従って、第一段目の酸化焙焼温度としては、2
50℃以上で600℃以下とすることが必要である。The above powder was inserted into a horizontal tubular furnace maintained at a predetermined temperature and oxidized and roasted. The crystal structure and composition analysis of the generated oxide were performed by changing the oxidation roasting temperature during the oxidation roasting.
The composition was determined so that the weight percentages of Fe, Mn, and Zn became 100%, and the presence or absence of a composition deviation was shown. The crystal structure was examined by X-ray diffraction qualitative analysis. Table 1 shows the results. If the oxidation roasting temperature is lower than 250 ° C., zinc chloride remains. On the other hand, if the oxidizing roasting temperature exceeds 600 ° C., the composition shifts. Therefore, the first stage oxidation roasting temperature is 2
It is necessary to set the temperature between 50 ° C and 600 ° C.
【0014】400℃にて第一段目の酸化焙焼行った試
料について、840℃の温度に保持した横型管状炉中で
第二段目の酸化焙焼を行った。得られた酸化焙焼につい
て、化学分析によりFe、Mn、Znの組成を求めた。
組成はFe、Mn、Znの全濃度が100重量%となる
ように求めた。Fe、Mn、Znの組成は、表2に示し
たとおりであり、組成のずれを生じることなくソフトフ
ェライト原料酸化物が得られていることがわかる。The sample subjected to the first-stage oxidation roasting at 400 ° C. was subjected to the second-stage oxidation roasting in a horizontal tubular furnace maintained at a temperature of 840 ° C. About the obtained oxidation roasting, the composition of Fe, Mn, and Zn was calculated | required by the chemical analysis.
The composition was determined such that the total concentration of Fe, Mn, and Zn was 100% by weight. The compositions of Fe, Mn, and Zn are as shown in Table 2, and it can be seen that a soft ferrite raw material oxide was obtained without causing a composition shift.
【0015】この原料酸化物にSiO2 を0.01重量
%、CaCO3 を0.1重量%加え、純水を加えて、ア
トライターにて混合を行った。混合後にスラリーを乾燥
し、この乾燥粉末にバインダーとしてPVAを添加し、
造粒後、外径36mm、内径24mm、高さ10mmの
トロイダル形状に成形し、1320℃にて1%の酸素を
含む窒素雰囲気中で焼成した。To this raw material oxide, 0.01% by weight of SiO 2 and 0.1% by weight of CaCO 3 were added, and pure water was added, followed by mixing with an attritor. After mixing, the slurry is dried, and PVA is added as a binder to the dried powder,
After granulation, it was formed into a toroidal shape having an outer diameter of 36 mm, an inner diameter of 24 mm, and a height of 10 mm, and fired at 1320 ° C. in a nitrogen atmosphere containing 1% oxygen.
【0016】得られた焼結コアの磁気特性として、10
0kHz、200mT,100℃でのコアロスを測定し
たところ、表3に示したように270mW/cm3 とい
う良好な磁気特性が得られた。 〔実施例2〕鋼板の塩酸酸洗廃液を100mリットル中
に30gの鉄を含有する濃度まで濃縮し、この濃縮液2
50リットルに金属マンガン25kgと金属亜鉛10.
0kgを投入し、80℃に加熱して完全に溶解させた。The magnetic properties of the obtained sintered core are 10
When core loss was measured at 0 kHz, 200 mT, and 100 ° C., good magnetic properties of 270 mW / cm 3 were obtained as shown in Table 3. [Example 2] A hydrochloric acid pickling waste liquid of a steel sheet was concentrated to a concentration containing 30 g of iron in 100 ml.
25 kg of metallic manganese and metallic zinc in 50 liters.
Then, 0 kg was charged and the mixture was heated to 80 ° C. to completely dissolve.
【0017】この塩化物混合溶液にPVAを消泡剤と共
に混合分散させ、スプレードライアーにて造粒した。こ
の造粒粉1を図1に示したような酸化焙焼温度450℃
に保持したロータリーキルン2に供給し、このロータリ
ーキルン2で第1段階の酸化焙焼し、引き続いて840
℃に保持したロータリーキルン3で第2段階の酸化焙焼
を行った。In this chloride mixed solution, PVA was mixed and dispersed together with an antifoaming agent, and granulated by a spray dryer. This granulated powder 1 was oxidized and roasted at a temperature of 450 ° C. as shown in FIG.
To the rotary kiln 2, which is oxidized and roasted in the first stage by the rotary kiln 2,
The second stage of oxidative roasting was carried out in a rotary kiln 3 kept at a temperature of ° C.
【0018】ロータリーキルン3の出口より得た生成粉
末4のX線回折定性分析による生成相の分析をおこなっ
たところ、Fe2 O3 、Mn2 O3 、スピネルであっ
た。化学分析によりFe、Mn、Znの組成を求めた。
組成はFe、Mn、Znが全濃度が100重量%となる
ように求めた。Fe、Mn、Znの組成は、表2に示し
たとおりであり、組成のずれを生じることなくソフトフ
ェライト原料酸化物が得られていることがわかる。The product phase obtained from the outlet of the rotary kiln 3 was analyzed by X-ray diffraction qualitative analysis to find that the product phase was Fe 2 O 3 , Mn 2 O 3 , and spinel. The composition of Fe, Mn, and Zn was determined by chemical analysis.
The composition was determined such that the total concentration of Fe, Mn, and Zn was 100% by weight. The compositions of Fe, Mn, and Zn are as shown in Table 2, and it can be seen that a soft ferrite raw material oxide was obtained without causing a composition shift.
【0019】この原料酸化物にSiO2 を0.01重量
%、CaCO3 を0.1重量%加え、純水を加えて、ア
トライターにて混合を行った。混合後に、スラリーを乾
燥し、この乾燥粉末にバインダーとしてPVAを添加
し、造粒後、外径36mm、内径24mm、高さ10m
mのトロイダル形状に成形し、1340℃にて1%の酸
素を含む窒素雰囲気中で焼成した。To this raw material oxide, 0.01% by weight of SiO 2 and 0.1% by weight of CaCO 3 were added, pure water was added, and the mixture was mixed with an attritor. After mixing, the slurry was dried, PVA was added as a binder to the dried powder, and after granulation, the outer diameter was 36 mm, the inner diameter was 24 mm, and the height was 10 m.
m, and fired at 1340 ° C. in a nitrogen atmosphere containing 1% oxygen.
【0020】得られた焼結コアの磁気特性として、10
0kHz、200mT、100℃でのコアロスを測定し
たところ、表3に示したように275mW/cm3 とい
う良好な磁気特性が得られた。 〔実施例3〕鋼板の塩酸酸洗廃液を100mリットル中
に30gの鉄を含有する濃度まで濃縮し、この濃縮液2
50リットルに金属マンガン25kgと金属亜鉛10.
0kgを投入し、80℃に加熱して完全に溶解させた。As the magnetic properties of the obtained sintered core, 10
When core loss was measured at 0 kHz, 200 mT, and 100 ° C., good magnetic properties of 275 mW / cm 3 were obtained as shown in Table 3. [Example 3] A hydrochloric acid pickling waste liquid of a steel sheet was concentrated to a concentration containing 30 g of iron in 100 ml.
25 kg of metallic manganese and metallic zinc in 50 liters.
Then, 0 kg was charged and the mixture was heated to 80 ° C. to completely dissolve.
【0021】この塩化物混合溶液にPVAを消泡剤と共
に混合分散させ、スプレードライアーにて造粒した。こ
の造粒粉1を図2に示したような酸化焙焼温度400℃
に保持したロータリーキルン5で酸化焙焼し、出口より
生成粉末6を得た。ロータリキルン5の出口より得た粉
末6を、図2に示したような850℃に保持した縦型噴
射炉8中に噴射装置7により噴射し、炉底より生成粉末
9を得た。X線回折定性分析を行ったところ、生成粉末
の生成相はFe2 O3 、Mn2 O3、スピネル構造であ
った。In this chloride mixed solution, PVA was mixed and dispersed together with an antifoaming agent, and granulated by a spray dryer. This granulated powder 1 was oxidized and roasted at a temperature of 400 ° C. as shown in FIG.
Was oxidized and roasted by a rotary kiln 5 held in the above-mentioned manner, and a produced powder 6 was obtained from an outlet. The powder 6 obtained from the outlet of the rotary kiln 5 was injected by an injection device 7 into a vertical injection furnace 8 maintained at 850 ° C. as shown in FIG. X-ray diffraction qualitative analysis revealed that the formed phases of the formed powder were Fe 2 O 3 , Mn 2 O 3 , and a spinel structure.
【0022】化学分析によりFe、Mn、Znの組成を
求めた。組成はFe、Mn、Zn全濃度が100重量%
となるようにもとめた。Fe、Mn、Znの組成は表2
に示したとおりであり、組成のずれを生じることなくソ
フトフェライト原料酸化物が得られていることがわか
る。この原料酸化物にSiO2 を0.01重量%、Ca
CO3 を0.1重量%加え、純水を混ぜ、アトライター
にて混合を行った。混合後に、スラリーを乾燥し、この
乾燥粉末にバインダーとしてPVAを添加し、造粒後、
外径36mm、内径24mm、高さ10mmのトロイダ
ル形状に形成し、1340℃にて1%の酸素を含む窒素
雰囲気中で焼成した。The compositions of Fe, Mn, and Zn were determined by chemical analysis. The composition is 100% by weight of the total concentration of Fe, Mn and Zn.
I decided to be. Table 2 shows the composition of Fe, Mn, and Zn.
As can be seen from the graph, a soft ferrite raw material oxide was obtained without causing a composition shift. 0.01% by weight of SiO 2 was added to this raw material oxide,
0.1% by weight of CO 3 was added, pure water was mixed, and mixing was performed with an attritor. After mixing, the slurry is dried, PVA is added as a binder to this dry powder, and after granulation,
It was formed into a toroidal shape having an outer diameter of 36 mm, an inner diameter of 24 mm, and a height of 10 mm, and was fired at 1340 ° C. in a nitrogen atmosphere containing 1% oxygen.
【0023】得られた焼結コアの磁気特性として、10
0kHz、200mT、100℃でのコアロスを測定し
たところ、表3に示したように280mW/cm3 とい
う良好な磁気特性が得られた。 〔実施例4〕試薬の塩化鉄をエチルアルコールに溶解し
て100mリットル中に30gの鉄を含有する濃度と
し、更に塩化マンガンと塩化亜鉛を投入した。鉄とマン
ガンと亜鉛の成分比は3:1:0.4とした。As the magnetic properties of the obtained sintered core, 10
When core loss was measured at 0 kHz, 200 mT, and 100 ° C., good magnetic properties of 280 mW / cm 3 were obtained as shown in Table 3. Example 4 Iron chloride as a reagent was dissolved in ethyl alcohol to a concentration containing 30 g of iron in 100 ml, and manganese chloride and zinc chloride were further added. The component ratio of iron, manganese, and zinc was 3: 1: 0.4.
【0024】この塩化物混合溶液を酸化焙焼温度400
℃に保持した噴霧焙焼炉内で酸化焙焼し、出口より生成
粉末を得た。出口より得た粉末を、850℃に保持した
縦型噴射炉中に噴射し、炉底より生成粉末を得た。X線
回折定性分析を行ったところ、この生成粉末の生成相は
Fe 2 O3 、Mn2 O3 、スピネル構造であった。The chloride mixed solution is oxidized and roasted at a temperature of 400.
Oxidation roasting in spray roasting furnace maintained at ℃, generated from outlet
A powder was obtained. The powder obtained from the outlet was kept at 850 ° C.
The powder was injected into a vertical injection furnace, and the resulting powder was obtained from the furnace bottom. X-ray
When the diffraction qualitative analysis was performed, the product phase of this product powder was
Fe Two OThree , MnTwo OThree And a spinel structure.
【0025】化学分析によりFe、Mn、Znの組成を
求めた。組成はFe、Mn、Znが全濃度が100重量
%となるように求めた。Fe、Mn、Znの組成は、表
2に示したとおりであり、組成のずれを生じることなく
ソフトフェライト原料酸化物が得られていることがわか
る。この原料酸化物にSiO2 を0.01重量%、Ca
CO3 を0.1重量%加え、純水を混ぜ、アトライター
にて混合を行った。混合後に、スラリーを乾燥し、この
乾燥粉末にバインダーとしてPVAを添加し、造粒後、
外径36mm、内径24mm、高さ10mmのトロイダ
ル形状に成形し、1340℃にて1%の酸素を含む窒素
雰囲気中で焼成した。The compositions of Fe, Mn, and Zn were determined by chemical analysis. The composition was determined such that the total concentration of Fe, Mn, and Zn was 100% by weight. The compositions of Fe, Mn, and Zn are as shown in Table 2, and it can be seen that a soft ferrite raw material oxide was obtained without causing a composition shift. 0.01% by weight of SiO 2 was added to this raw material oxide,
0.1% by weight of CO 3 was added, pure water was mixed, and mixing was performed with an attritor. After mixing, the slurry is dried, PVA is added as a binder to this dry powder, and after granulation,
It was formed into a toroidal shape having an outer diameter of 36 mm, an inner diameter of 24 mm, and a height of 10 mm, and was fired at 1340 ° C. in a nitrogen atmosphere containing 1% of oxygen.
【0026】得られた焼結コアの磁気特性として、10
0kHz、200mT、100℃でのコアロスを測定し
たところ、表3に示したように265mW/cm3 とい
う良好な磁気特性が得られた。 〔比較例1〕実施例2にて生成した造粒粉1を、ロータ
リーキルン5を通さずに図2に示したような酸化焙焼温
度840℃に保持した噴霧焙焼炉の炉頂より噴霧してこ
の造粒粉1を酸化焙焼し、炉底に酸化焙焼生成物を得
た。As magnetic properties of the obtained sintered core, 10
When core loss was measured at 0 kHz, 200 mT, and 100 ° C., good magnetic properties of 265 mW / cm 3 were obtained as shown in Table 3. [Comparative Example 1] The granulated powder 1 produced in Example 2 was sprayed from the top of a spray roasting furnace maintained at an oxidation roasting temperature of 840 ° C as shown in Fig. 2 without passing through a rotary kiln 5. The granulated powder 1 was oxidized and roasted to obtain an oxidized roasted product on the furnace bottom.
【0027】X線回折定性分析を行ったところ、この生
成物はFe2 O3 、Mn2 O3 、スピネルであり、塩化
物は確認できなかった。化学分析によりFe、Mn、Z
nの組成を求めた。組成はFe、Mn、Zn全濃度が1
00重量%となるように求めた。Fe、Mn、Znの組
成は、表2に示した通りであり、亜鉛の組成が大幅に減
少し、相対的に鉄とマンガンの組成が増加している。X-ray diffraction qualitative analysis revealed that the product was Fe 2 O 3 , Mn 2 O 3 , and spinel, and no chloride could be confirmed. Fe, Mn, Z by chemical analysis
The composition of n was determined. The composition is such that the total concentration of Fe, Mn and Zn is 1
It was determined to be 00% by weight. The compositions of Fe, Mn, and Zn are as shown in Table 2. The composition of zinc is greatly reduced, and the compositions of iron and manganese are relatively increased.
【0028】この生成物に実施例2の組成と同じになる
ように酸化亜鉛を加えて組成の調整をした後に、更にS
iO2 を0.01重量%、CaCO3 を0.1重量%加
え、純水を混ぜ、アトライターにて混合を行った。混合
後に、スラリーを乾燥し、この乾燥粉末にバインダーと
してPVAを添加し、造粒後、外径36mm、内径24
mm、高さ10mmのトライダル形状に成形し、134
0℃にて1%の酸素を含む窒素雰囲気中で焼成した。After adjusting the composition by adding zinc oxide to this product so as to have the same composition as that of Example 2,
0.01% by weight of iO 2 and 0.1% by weight of CaCO 3 were added, mixed with pure water, and mixed with an attritor. After mixing, the slurry was dried, PVA was added as a binder to the dried powder, and after granulation, the outer diameter was 36 mm and the inner diameter was 24.
mm, 10mm height to form a tridal, 134
Calcination was performed at 0 ° C. in a nitrogen atmosphere containing 1% of oxygen.
【0029】得られた焼結コアの磁気特性として、10
0kHz、200mT、100℃でのコアロスを測定し
たところ、表3に示したように900mW/cm3 とい
う磁気特性を得た。 実施例1、2、3、4と比較例1より明らかなように、
本発明によれば、亜鉛の組成ずれを伴うことなく分散性
の良好な鉄、マンガン、亜鉛のソフトフェライト原料酸
化物を製造することが可能となり、その結果、磁気特性
の良好な製品を製造することが可能になった。As the magnetic properties of the obtained sintered core, 10
When the core loss at 0 kHz, 200 mT, and 100 ° C. was measured, a magnetic characteristic of 900 mW / cm 3 was obtained as shown in Table 3. As is clear from Examples 1, 2, 3, 4 and Comparative Example 1,
According to the present invention, it is possible to produce a soft ferrite raw material oxide of iron, manganese, and zinc with good dispersibility without accompanying a composition deviation of zinc, and as a result, produce a product having good magnetic properties. It became possible.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 ─────────────────────────────────── 分析結果(重量%) Fe Mn Zn 実施例1の焙焼後の組成 68.4 22.7 8.9 実施例2の焙焼後の組成 68.6 22.7 8.7 実施例3の焙焼後の組成 67.3 22.8 8.9 実施例4の焙焼後の組成 67.6 22.6 8.8 比較例1の焙焼後の組成 74.9 24.8 0.3 ───────────────────────────────────Table 2 結果 Analysis results (% by weight) Fe Mn Zn Examples Composition after roasting of 1 68.4 22.7 8.9 Composition after roasting of Example 2 68.6 22.7 8.7 Composition after roasting of Example 3 67.3 22.8 8 8.9 Composition after roasting of Example 4 67.6 22.6 8.8 Composition after roasting of Comparative Example 1 74.9 24.8 0.3 ───────────────────────
【0032】[0032]
【表3】 ─────────────────────────────────── コアロス(100kHz,0.2T,100℃) 実施例1 270mW/cm3 実施例2 275mW/cm3 実施例3 280mW/cm3 実施例4 265mW/cm3 比較例2 900mW/cm3 ───────────────────────────────────[Table 3] Core loss (100kHz, 0.2T, 100 ℃) Example 1 270 mW / cm 3 Example 2 275 mW / cm 3 Example 3 280 mW / cm 3 Example 4 265 mW / cm 3 Comparative Example 2 900 mW / cm 3 } ────────────────────
【0033】[0033]
【発明の効果】以上述べたように、本発明は、先ず60
0℃以下の第1の温度にて酸化焙焼を行い、次にこの第
1の温度よりも高い第2の温度にて酸化焙焼を行うもの
であるため、ソフトフェライトを構成する金属元素のう
ち塩化物として蒸気圧の低い鉄、マンガン(あるいはニ
ッケル、マグネシウム等)の混合塩化物と塩化亜鉛とを
酸化焙焼することが可能になった。このようにソフトフ
ェライトを構成する金属元素を同時に反応させることに
より、(1)仮焼工程が省略され低コストであり、
(2)焙焼後の後工程にて酸化物の形態にて亜鉛を混合
せず、一度に鉄とマンガン(あるいはニッケル、マグネ
シウム等)と亜鉛の酸化物を焙焼炉内で製造するため
に、均一分散性が向上した。その結果、焼結コアの磁気
特性も向上したソフトフェライト用原料酸化物の製造が
可能になった。As described above, according to the present invention, 60
Oxidizing roasting is performed at a first temperature of 0 ° C. or lower and then oxidizing roasting at a second temperature higher than the first temperature. Of these, it has become possible to oxidize and roast zinc chloride and a mixed chloride of iron and manganese (or nickel, magnesium, etc.) having low vapor pressures as chlorides. By simultaneously reacting the metal elements constituting the soft ferrite as described above, (1) the calcination step is omitted, and the cost is reduced.
(2) In order to produce oxides of iron, manganese (or nickel, magnesium, etc.) and zinc at once in a roasting furnace without mixing zinc in the form of oxides in the post-process after roasting And the uniform dispersibility was improved. As a result, it became possible to produce a raw material oxide for soft ferrite in which the magnetic properties of the sintered core were also improved.
【図1】実施例2にて使用したソフトフェライト用原料
酸化物の2段階酸化焙焼炉の模式図である。FIG. 1 is a schematic view of a two-stage oxidizing roasting furnace for a raw material oxide for soft ferrite used in Example 2.
【図2】実施例3にて使用したソフトフェライト用原料
酸化物の2段階酸化焙焼炉の模式図である。FIG. 2 is a schematic view of a two-stage oxidizing and roasting furnace for a raw material oxide for soft ferrite used in Example 3.
【図3】従来方法によるソフトフェライト製造プロセス
を示す図である。FIG. 3 is a view showing a soft ferrite manufacturing process according to a conventional method.
【図4】従来の他の方法によるソフトフェライト製造プ
ロセスを示す図である。FIG. 4 is a view showing a soft ferrite manufacturing process according to another conventional method.
1 混合塩化物造粒粉 2 第1段階酸化焙焼用ロータリーキルン 3 第2段階酸化焙焼用ロータリーキルン 4 生成粉末 5 第1段階酸化焙焼用ロータリーキルン 6 第1段階酸化焙焼用ロータリーキルン出口の生成
粉末 7 噴射装置 8 噴射焙焼炉 9 生成酸化物粉体REFERENCE SIGNS LIST 1 mixed chloride granulated powder 2 rotary kiln for first stage oxidation roasting 3 rotary kiln for second stage oxidation roasting 4 generated powder 5 rotary kiln for first stage oxidation roasting 6 powder generated at rotary kiln outlet for first stage oxidation roasting 7 Injection device 8 Injection roasting furnace 9 Generated oxide powder
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 1/34 H01F 1/36──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 1/34 H01F 1/36
Claims (3)
グネシウムの塩化物のうち1種以上と、塩化亜鉛との混
合塩化物を600℃以下の第1の温度にて酸化焙焼を行
い、その後に前記第1の温度よりも高い第2の温度にて
酸化焙焼を行うことを特徴とするソフトフェライト用原
料酸化物の製造方法。Claims 1. An oxidative roasting of a mixed chloride of iron chloride, one or more of manganese, nickel and magnesium chloride and zinc chloride at a first temperature of 600 ° C or less, Thereafter, oxidizing and roasting is performed at a second temperature higher than the first temperature.
又は固体であることを特徴とする請求項1記載のソフト
フェライト用原料酸化物の製造方法。2. The method for producing a raw material oxide for soft ferrite according to claim 1, wherein the mixed chloride is a dried mixture powder or solid.
解した液体であることを特徴とする請求項1記載のソフ
トフェライト用原料酸化物の製造方法。3. The method for producing a raw material oxide for soft ferrite according to claim 1, wherein the mixed chloride is a liquid dissolved in water or an organic solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3147074A JP2846147B2 (en) | 1991-06-19 | 1991-06-19 | Method for producing raw material oxide for soft ferrite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3147074A JP2846147B2 (en) | 1991-06-19 | 1991-06-19 | Method for producing raw material oxide for soft ferrite |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04369805A JPH04369805A (en) | 1992-12-22 |
JP2846147B2 true JP2846147B2 (en) | 1999-01-13 |
Family
ID=15421885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3147074A Expired - Fee Related JP2846147B2 (en) | 1991-06-19 | 1991-06-19 | Method for producing raw material oxide for soft ferrite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2846147B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3397421B2 (en) * | 1994-01-06 | 2003-04-14 | 川崎製鉄株式会社 | Method for producing Ni-Zn ferrite raw material oxide |
-
1991
- 1991-06-19 JP JP3147074A patent/JP2846147B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04369805A (en) | 1992-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5190740A (en) | Method producing composite oxides for use as starting materials for producing ferrites | |
JP2846147B2 (en) | Method for producing raw material oxide for soft ferrite | |
EP0122055B1 (en) | Production of fine ferrimagnetic spinels | |
JP3032098B2 (en) | Soft ferrite raw material powder and method and apparatus for producing the same | |
RU2704990C1 (en) | Lanthanum and calcium complex lithium tantalate producing method | |
JPS6317776B2 (en) | ||
JP2849207B2 (en) | Method for producing raw material oxide for soft ferrite | |
RU2803302C1 (en) | Method for obtaining complex oxide of niobium and strontium | |
JP3397421B2 (en) | Method for producing Ni-Zn ferrite raw material oxide | |
US5626788A (en) | Production of magnetic oxide powder | |
JPH02120214A (en) | Production of aluminum nitride powder | |
JPH0328109A (en) | Production of compound oxide powder | |
JP3078626B2 (en) | Method for producing raw material oxide for soft ferrite | |
JPS6131601B2 (en) | ||
JPH05135933A (en) | Production of material oxide for soft ferrite | |
JP2746736B2 (en) | Method for producing composite oxide for ferrite raw material | |
JPH0594911A (en) | Manufacture of raw oxide for ferrite | |
JPS58194305A (en) | Manufacture of oxide permanent magnet | |
JP3016242B2 (en) | Oxide magnetic material and method for producing the same | |
JP2846149B2 (en) | Production method of raw material oxide for ferrite | |
JPH04219321A (en) | Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same | |
JPH0453207A (en) | Manufacture of raw material oxide for soft ferrite | |
JPH06144838A (en) | Production of raw material oxide for mn-zn ferrite | |
JPH07211533A (en) | Method of manufacturing oxide magnetic material | |
JPH05335134A (en) | Manufacturing method of material oxide for soft ferrite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981013 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101030 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |