JPH02271681A - Solar cell device - Google Patents

Solar cell device

Info

Publication number
JPH02271681A
JPH02271681A JP1093683A JP9368389A JPH02271681A JP H02271681 A JPH02271681 A JP H02271681A JP 1093683 A JP1093683 A JP 1093683A JP 9368389 A JP9368389 A JP 9368389A JP H02271681 A JPH02271681 A JP H02271681A
Authority
JP
Japan
Prior art keywords
solar cell
semiconductor layer
amorphous semiconductor
cell device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1093683A
Other languages
Japanese (ja)
Inventor
Takuro Ihara
井原 卓郎
Koki Sato
広喜 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1093683A priority Critical patent/JPH02271681A/en
Publication of JPH02271681A publication Critical patent/JPH02271681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain a light transmission type solar cell device transmissible through fine pores and to provide a satisfactory external appearance without remarkably observed linear light shield and a light transmission unit by providing fine pores reaching a transparent electrode through an amorphous semiconductor layer from rear face electrodes at the whole surface. CONSTITUTION:Fine pores 7 passing rear electrodes 41-43 and an amorphous semiconductor layer 33 are dispersed at the whole surface, and fine grooves 6 for dividing the electrodes of unit cells 10, 20 are formed by nonlinearly and irregularly coupling the pores 7. Since the solar cell device passes a light via the through holes, it can be transmissible. However, it does not have a remarkably observed linear part. Thus, it is transmissible, and does not have the remarkably observed linear light transmission part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アモルファスシリコンなどを主成分とする薄
膜半導体を用いた太陽電池のユニットセルを直列接続し
てなり、かつ透視可能の太陽電池装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a transparent solar cell device in which unit cells of a solar cell using a thin film semiconductor mainly composed of amorphous silicon or the like are connected in series. Regarding.

〔従来の技術〕[Conventional technology]

原料ガスのグロー放電分解や光CVDにより形成される
アモルファス半導体薄膜は、気相成長法によって得られ
るために大面積化が容易であり、低コスト太陽電池用材
料として期待されている。
Amorphous semiconductor thin films formed by glow discharge decomposition of raw material gas or photo-CVD can be easily grown into large areas because they are obtained by vapor phase growth, and are expected to be used as materials for low-cost solar cells.

こうしたアモルファス太陽電池から発電した電力を効率
良く取り出すために、太陽電池の装置をユニットセルが
直列に接続されるような構造にすることが良く知られて
いる。第2図に示されるこの構造は、ガラス基板等の透
光性絶縁基板1上に1Toや5nO1などの透明導電材
料からなる透明電極21.22.23・・・を短冊状の
パターンに形成し、その上に光起電力発生部であるアモ
ルファス半導体層31.32.33・・・のパターン、
次いで金属薄膜からなる裏面’ti41,42.43・
・・のパターンを順に積層する。そして、例えば一つの
ユニットセルの透明電極22が隣接するユニットセルの
裏面電極41と一部5が接触する構造となるように画電
極およびアモルファス半導体層のパターンが形成され、
各ユニットセルは接続部5により直列に接続される。裏
面電極は溝6により分割されている。この直列接続型太
陽電池の各層のパターンの形成には、フォトエツチング
法、レーザスクライプ法、メカニカルスクライプ法など
の各種パターニングプロセス技術が用いられる。
In order to efficiently extract electric power generated from such an amorphous solar cell, it is well known to construct a solar cell device in which unit cells are connected in series. In this structure shown in FIG. 2, transparent electrodes 21, 22, 23, etc. made of a transparent conductive material such as 1To or 5nO1 are formed in a rectangular pattern on a transparent insulating substrate 1 such as a glass substrate. , on which a pattern of amorphous semiconductor layers 31, 32, 33, etc., which are photovoltaic force generating parts,
Next, the back surface made of metal thin film 'ti41,42.43・
Stack the patterns in order. Then, the pattern of the picture electrode and the amorphous semiconductor layer is formed such that, for example, the transparent electrode 22 of one unit cell has a part 5 in contact with the back electrode 41 of the adjacent unit cell,
Each unit cell is connected in series by a connection 5. The back electrode is divided by grooves 6. Various patterning process techniques such as photoetching, laser scribing, and mechanical scribing are used to form patterns for each layer of this series-connected solar cell.

近年、アモルファス太陽電池は、種々の一般民生用とし
て利用され、あるいは利用が検討されているが、その中
の一つとして、太陽電池が完全に光を遮断せず、一部の
光を透過させる、言い換えれば太陽電池を通して反対側
が透視できる光透過型の太陽電池が建材用や自動車のサ
ンルーフなどに好適なものとして注目されている。
In recent years, amorphous solar cells have been used or are being considered for use in various general consumer applications, but one of them is that solar cells do not completely block light but allow some light to pass through. In other words, light-transmissive solar cells that allow the opposite side to be seen through the solar cell are attracting attention as suitable for building materials and automobile sunroofs.

このような光透過型太陽電池の構造には、大別して二通
りの方式がある。一つの方式は、裏面電極として金属薄
膜の代わりに透明導電膜を用い、アモルファス半導体層
の厚さを比較的薄くして入射光の一部を裏面に透過させ
るものである。もう一つの方式としては、金属薄膜から
なる裏面電極を有する第2図に示した構造を持つ通常の
太陽電池のアモルファスシリコン層31,32.33・
・・および裏面電極41,42.43を貫通する微小な
孔を多数作り、この微小な孔を通して入射光の一部を透
過させようとするものである。この微小な孔は、通常衣
のような方法で形成される。すなわち、裏面電極層を形
成後、フォトエツチングプロセスにより通常の各ユニッ
トセルに分割した裏面電極のパターンを形成する際に、
同時に裏面電極に微小な孔を多数形成する0次にこの裏
面電極をマスクとしてアモルファス半導体層のエツチン
グを、例えばプラズマエ°ンチングにより行う、この工
程で裏面電極の微小な孔のパターンに連続するアモルフ
ァス半導体層の微小な孔のパターンが形成され、透明電
極に達し光を透過させる貫通孔が形成される。この時、
裏面電極の隣接するユニットセル間を分離するパターン
に対応する部分のアモルファス半導体層もエツチング除
去されることになるが、この部分は各ユニットセルのア
モルファス半s体mの縁部を分離することになるのにす
ぎないため、電気的にはほとんど問題にならない。
The structure of such a light-transmissive solar cell can be roughly divided into two types. One method uses a transparent conductive film instead of a metal thin film as the back electrode, and makes the amorphous semiconductor layer relatively thin to allow part of the incident light to pass through the back surface. Another method is to use amorphous silicon layers 31, 32, 33,
...and a large number of minute holes penetrating the back electrodes 41, 42, 43, and a portion of the incident light is transmitted through these minute holes. These tiny pores are usually formed in a similar way. That is, after forming the back electrode layer, when forming a pattern of the back electrode divided into normal unit cells by a photoetching process,
At the same time, a large number of micro holes are formed in the back electrode.Next, using this back electrode as a mask, the amorphous semiconductor layer is etched, for example, by plasma etching. A pattern of microscopic holes in the layer is formed, forming through-holes that reach the transparent electrode and allow light to pass through. At this time,
The portion of the amorphous semiconductor layer corresponding to the pattern that separates adjacent unit cells of the back electrode will also be removed by etching, but this portion will separate the edges of the amorphous semi-semiconductor m of each unit cell. Since this is just a change in power, there is almost no problem electrically.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

光透過型太陽電池の構造に関する前記二つの従来技術の
うち、前者の裏面電極に透明導電膜を用いる方式には次
のような問題がある。すなわち、入射した光は一部が主
としてアモルファス半導体層に吸収され、残りが裏面へ
透過することになるが、アモルファス半導体層は短波長
光に対する吸収率が長波長光に対する吸収率より大きい
ため、透過光は必然的に長波長成分を多く含むことにな
り、赤色の強い色となる。したがって、透過光が自然光
と大きく異なる色となるため、使用用途が大きく限定さ
れることになる。
Of the two conventional techniques related to the structure of a light-transmissive solar cell, the former method of using a transparent conductive film for the back electrode has the following problems. In other words, part of the incident light is mainly absorbed by the amorphous semiconductor layer, and the rest is transmitted to the back surface. However, since the amorphous semiconductor layer has a higher absorption rate for short wavelength light than for long wavelength light, Light inevitably contains many long wavelength components, giving it a strong red color. Therefore, since the transmitted light has a color significantly different from that of natural light, the applications of the light are greatly limited.

一方後者のアモルファス半導体層および裏面電極に多数
の微小な孔をあける方式では、光がアモルファス半導体
層の中を通過しないで前面側に達するためこのような問
題点はない、しかしながらこのような太陽電池では、第
3図に示すように裏面電極およびアモルファス半導体層
の多数の微小貫通孔7のほかに、ユニットセル10およ
び20を分割する直線状の溝6が存在する。この溝も光
を透過し、しかも両側が直線状の光不透過部にはさまれ
ているためきわ立って見え、電気的には問題なくても外
観を重要視する光透過型の太陽電池装置としては望まし
くない。
On the other hand, the latter method, in which many tiny holes are made in the amorphous semiconductor layer and the back electrode, does not have this problem because the light reaches the front side without passing through the amorphous semiconductor layer. In this case, as shown in FIG. 3, in addition to a large number of minute through-holes 7 in the back electrode and the amorphous semiconductor layer, there are linear grooves 6 that divide the unit cells 10 and 20. This groove also allows light to pass through it, but it stands out because it is sandwiched between linear light-opaque parts on both sides, making it a light-transmissive type solar cell device where appearance is important even if there is no electrical problem. undesirable as such.

本発明の目的は、アモルファス半導体層および裏面電極
を貫通する穴を介して透視可能であり、かつきわ立って
見える直線状の光透過部を有しない太陽電池装置を提供
することにある。
An object of the present invention is to provide a solar cell device that can be seen through a hole penetrating an amorphous semiconductor layer and a back electrode, and does not have a linear light-transmitting part that stands out.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的の達成のために、本発明は、透光性絶縁基板
上に積層される透明電極、アモルファス半導体層、裏面
電極よりなる太陽電池ユニットセルが一つのセルの裏面
電極の延長部が隣接セルの透明電極に接触することによ
り直列接続された太陽電池装置において、裏面電極およ
びアモルファス半導体層を貫通して透明電極に達する微
小孔が全面に多数形成され、裏面電極のユニットセル間
が前記微小孔を非直線的かつ不規則に連結して形成され
る細溝によって電気的に分離されたものとする。
To achieve the above object, the present invention provides a solar cell unit cell consisting of a transparent electrode, an amorphous semiconductor layer, and a back electrode stacked on a transparent insulating substrate, in which an extension of the back electrode of one cell is adjacent to the solar cell unit cell. In a solar cell device that is connected in series by contacting the transparent electrode of the cell, a large number of micropores are formed on the entire surface that penetrate the back electrode and the amorphous semiconductor layer and reach the transparent electrode, and the space between the unit cells of the back electrode is The holes are electrically isolated by a narrow groove formed by non-linearly and irregularly connecting the holes.

〔作用〕[Effect]

上記の太陽電池装置では光を透過する裏面電橿とアモル
ファス半導体層の貫通孔は全面に存在し、その一部が非
直線的かつ不規則に連結されていて直線的できわ立って
認識される光透過部が存在しないため、外観上均一に見
える。
In the above solar cell device, the light-transmitting back cover and the through-holes in the amorphous semiconductor layer are present on the entire surface, and some of them are connected non-linearly and irregularly, making them clearly recognizable as straight lines. Since there is no light transmitting part, it looks uniform in appearance.

〔実施例〕〔Example〕

第1図は本発明の一実施例の太陽電池装置におけるユニ
ットセル間の境界部を示す、裏面電極とアモルファス半
導体層を貫通する微小孔7は全面に分散して設けられ、
ユニットセル10,20の裏面電極を分割する細溝6は
微小貫通孔7を非直線的かつ不規則に連結することによ
り形成されている。
FIG. 1 shows the boundary between unit cells in a solar cell device according to an embodiment of the present invention. Microholes 7 penetrating the back electrode and the amorphous semiconductor layer are distributed over the entire surface.
The narrow grooves 6 that divide the back electrodes of the unit cells 10 and 20 are formed by connecting minute through holes 7 non-linearly and irregularly.

この太陽電池装置は光が貫通孔を通して透過するので透
視可能である。しかし、きわ立って見える直線部分が存
在しない。
This solar cell device can be seen through because light passes through the through hole. However, there are no straight lines that stand out.

第4図(al、(a’)、(bl、(b’)、(cl、
(c’)はコノよウナ太陽電池の製造工程を示すもので
、fal、 (b)、 fc)は平面図、(a’)、 
(b”)、 (c’)はそれぞれに対応する断面図であ
る。先ず、ガラス基板1の上にSnO*膜を3000人
の厚さに形成し、レーザスクライプ法でバターニングし
て透明電極21,22.23・・・に分割する。
Figure 4 (al, (a'), (bl, (b'), (cl,
(c') shows the manufacturing process of Konoyouna solar cell, (b), fc) is a plan view, (a'),
(b") and (c') are cross-sectional views corresponding to each. First, a SnO* film was formed on the glass substrate 1 to a thickness of 3,000 mm, and was patterned using a laser scribing method to make it transparent. It is divided into electrodes 21, 22, 23, .

次いでpln構造のアモルファス半導体層を4000人
の厚さに形成し、同様にレーザスクライブ法でパターニ
ングして各ユニットセルの半導体層領域31.32.3
3・・・に分割する。その上にk13膜からなる金属層
40をスパッタ法により3000人の厚さで形成する。
Next, an amorphous semiconductor layer with a PLN structure is formed to a thickness of 4000 nm, and similarly patterned using the laser scribing method to form semiconductor layer regions 31, 32, 3 of each unit cell.
Divide into 3... A metal layer 40 made of a K13 film is formed thereon to a thickness of 3000 nm by sputtering.

この状態が第4図ta++(a’)である。This state is ta++(a') in FIG.

次の工程では、通常のフォトエツチングプロセスにより
露光、現像、エツチングを行い、金属層40に半径0.
2鶴の円形孔70を円の中心間距離が0.6鶴となるよ
うに形成する。ユニットセルの境界部に存在するこの円
形孔70の一部を細溝6により非直線的かつ不規則に連
結し、隣接するユニットセルの裏面電極41,42.4
3・・・を電気的に分離する溝6を形成する。この状態
を第4図(b)、(b’)に示す。
In the next step, exposure, development, and etching are performed using a normal photoetching process to form the metal layer 40 with a radius of 0.
Two circular holes 70 are formed so that the distance between the centers of the circles is 0.6. A part of this circular hole 70 existing at the boundary of the unit cell is connected non-linearly and irregularly by the narrow groove 6, and the back electrodes 41, 42.4 of the adjacent unit cell are connected non-linearly and irregularly.
A groove 6 is formed to electrically separate the 3... This state is shown in FIGS. 4(b) and 4(b').

このあと、微小円形孔70の明いた裏面電極4142、
43・・・をマスクとし、通常のプラズマエツチング法
により微小円形孔70に連通し、アモルファス半導体層
31,32.33を貫通し、透明電極21,22.23
に達する微小孔7を形成する。この際裏面電極分離溝6
の下のアモルファス半導体層も除去されるが電気的には
問題がない、この状態を第4図(cl、(c’)に示す
After this, a back electrode 4142 with a small circular hole 70,
43 as a mask, the transparent electrodes 21, 22, 23 are connected to the micro circular holes 70 by a normal plasma etching method, penetrate the amorphous semiconductor layers 31, 32, 33, and
Form a micropore 7 that reaches . At this time, the back electrode separation groove 6
Although the amorphous semiconductor layer below is also removed, there is no electrical problem. This state is shown in FIGS. 4(cl) and (c').

〔発明の効果〕 本発明によれば、透光性絶縁基板の反対側にある裏面電
極からアモルファス半導体層を貫通して透明tiに達す
る微小孔を全面に設けることにより微小孔を通して透視
可能の光透過型の太陽電池装置が得られ、しかもユニッ
トセル間の裏面電極の分離溝を前記微小孔を非直線的か
つ不規則に連結して形成するため、きわ立って見える直
線状の遮光部や透光部を持たないため外観良好である。
[Effects of the Invention] According to the present invention, light that can be seen through the microholes is provided throughout the entire surface from the back electrode on the opposite side of the light-transmitting insulating substrate, penetrating the amorphous semiconductor layer and reaching the transparent Ti. A transmission type solar cell device can be obtained, and since the separation groove of the back electrode between the unit cells is formed by connecting the micropores non-linearly and irregularly, there is no noticeable straight light-shielding part or transparent part. It has a good appearance because it does not have a light part.

さらにこの太陽電池は、裏面電極バターニング時のマス
クを変更し、アモルファス半導体層までエツチングする
だけで簡便に製造できるので、製造工数の増加がない。
Furthermore, this solar cell can be simply manufactured by simply changing the mask during back electrode patterning and etching down to the amorphous semiconductor layer, so there is no increase in the number of manufacturing steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の太陽電池装置の要部平面図
、第2図は従来の太陽電池装置の断面図、第3図は従来
の光透過型太陽電池装置の要部平面図、第4図(a)、
(a’)、(bl、(b’)、tel、(c’)は本発
明の一実施例の太陽電池装置の製造工程を示し、fat
山1.(C)は平面図、(a’)、 (b″)、(C”
)は断面図である。 1ニガラス基板、21,22,23 : i3明電極、
31.32゜33:アモルファス半導体層、40:金属
層、41.4243:裏面電極、5:接続部、6:分割
溝、7:微小貫通孔、10,20:ユニットセル。 −′−“4、 代理人卑理士 山 口  巖    、=。 ユニ・、トZJノ 沸16 軍1 7h没1ハ貫通ラム C ′I13図 第2図 ’3121  3222   33231i44図 手続補正書 (自発) 1、事件の表示 λ発明の名称 平成 1年 特許願 第93883号 太陽電池装置
FIG. 1 is a plan view of the main parts of a solar cell device according to an embodiment of the present invention, FIG. 2 is a sectional view of a conventional solar cell device, and FIG. 3 is a plan view of main parts of a conventional light-transmissive solar cell device. , Figure 4(a),
(a'), (bl, (b'), tel, and (c') represent manufacturing steps of a solar cell device according to an embodiment of the present invention;
Mountain 1. (C) is a plan view, (a'), (b''), (C''
) is a cross-sectional view. 1 Ni glass substrate, 21, 22, 23: i3 bright electrode,
31.32° 33: amorphous semiconductor layer, 40: metal layer, 41.4243: back electrode, 5: connection section, 6: dividing groove, 7: minute through hole, 10, 20: unit cell. -'-"4, Agent Hirishi Iwao Yamaguchi, =. Uni., To ZJ No. 16 Army 1 7 hours sunk 1 C Penetration Ram C 'I13 Figure 2' 3121 3222 33231i44 Procedure Amendment (self-motivated) 1. Display of the incident λ Name of the invention 1999 Patent application No. 93883 Solar cell device

Claims (1)

【特許請求の範囲】[Claims] 1)透光性絶縁基板上に積層される透明電極、アモルフ
ァス半導体層、裏面電極よりなる太陽電池ユニットセル
が一つのセルの裏面電極の延長部が隣接セルの透明電極
に接触することにより直列接続されたものにおいて、裏
面電極およびアモルファス半導体層を貫通して透明電極
に達する微小孔が全面に多数形成され、裏面電極のユニ
ットセル間が前記微小孔を非直線的かつ不規則に連結し
て形成される細溝によって電気的に分離されたことを特
徴とする太陽電池装置。
1) Solar cell unit cells consisting of a transparent electrode, an amorphous semiconductor layer, and a back electrode stacked on a transparent insulating substrate are connected in series by an extension of the back electrode of one cell coming into contact with the transparent electrode of an adjacent cell. In this case, a large number of micropores are formed on the entire surface that penetrate the back electrode and the amorphous semiconductor layer and reach the transparent electrode, and the unit cells of the back electrode are formed by connecting the micropores nonlinearly and irregularly. A solar cell device characterized in that the solar cell device is electrically separated by a narrow groove.
JP1093683A 1989-04-13 1989-04-13 Solar cell device Pending JPH02271681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093683A JPH02271681A (en) 1989-04-13 1989-04-13 Solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093683A JPH02271681A (en) 1989-04-13 1989-04-13 Solar cell device

Publications (1)

Publication Number Publication Date
JPH02271681A true JPH02271681A (en) 1990-11-06

Family

ID=14089205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093683A Pending JPH02271681A (en) 1989-04-13 1989-04-13 Solar cell device

Country Status (1)

Country Link
JP (1) JPH02271681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021153A1 (en) * 1991-05-20 1992-11-26 United Solar Systems Corporation Translucent photovoltaic sheet material and panels
WO2009119161A2 (en) * 2008-03-24 2009-10-01 Kabushiki Kaisha Toshiba Solar cell and method for manufacturing metal electrode layer to be used in the solar cell
CN108431966A (en) * 2015-12-16 2018-08-21 太阳伙伴科技公司 For reducing the Optical devices of the visibility of the electrical interconnection in the translucent photovoltaic module of thin layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021153A1 (en) * 1991-05-20 1992-11-26 United Solar Systems Corporation Translucent photovoltaic sheet material and panels
US5176758A (en) * 1991-05-20 1993-01-05 United Solar Systems Corporation Translucent photovoltaic sheet material and panels
WO2009119161A2 (en) * 2008-03-24 2009-10-01 Kabushiki Kaisha Toshiba Solar cell and method for manufacturing metal electrode layer to be used in the solar cell
WO2009119161A3 (en) * 2008-03-24 2010-02-25 Kabushiki Kaisha Toshiba Solar cell and method for manufacturing metal electrode layer to be used in the solar cell
CN108431966A (en) * 2015-12-16 2018-08-21 太阳伙伴科技公司 For reducing the Optical devices of the visibility of the electrical interconnection in the translucent photovoltaic module of thin layer

Similar Documents

Publication Publication Date Title
US4754544A (en) Extremely lightweight, flexible semiconductor device arrays
JP4168413B2 (en) Manufacturing method of solar cell
JPH02271681A (en) Solar cell device
CA2457899C (en) Colour image sensor on transparent substrate and method for making same
CA2457905C (en) Method for making a colour image sensor with recessed contact apertures prior to thinning
EP0189976A2 (en) Extremely lightweight, flexible semiconductor device arrays and method of making same
JP2680582B2 (en) Method for manufacturing photovoltaic device
KR101114217B1 (en) Thin film type Solar Cell, and Method for manufacturing the same
JPH02307278A (en) Manufacture of thin film solar battery
JP2000077690A (en) Photoelectric converter and its manufacture
JPH04348570A (en) Integrated type photovoltaic cell module and manufacture thereof
JPS63143878A (en) Silicon solar cell
JPS61229370A (en) Manufacture of photo sensor element
JP2003279945A (en) Liquid crystal display device
JPH0536280Y2 (en)
JPH06163959A (en) Isolation forming method of transparent conductive
JPH0433379A (en) Manufacture of photovoltaic device
JPS54101687A (en) Solar battery unit
JPS6324677A (en) Solar cell
JPH11214719A (en) Manufacture of solar cell element
JPH03108381A (en) Selective formation of polycrystalline si thin film
JP2000031514A (en) Film solar cell and its manufacture
JPH0228906B2 (en)
JP2002190609A (en) Mirror-type solar cell and its manufacturing method
JPS62147784A (en) Amorphous solar cell and manufacture thereof