JPH0228906B2 - - Google Patents

Info

Publication number
JPH0228906B2
JPH0228906B2 JP54027802A JP2780279A JPH0228906B2 JP H0228906 B2 JPH0228906 B2 JP H0228906B2 JP 54027802 A JP54027802 A JP 54027802A JP 2780279 A JP2780279 A JP 2780279A JP H0228906 B2 JPH0228906 B2 JP H0228906B2
Authority
JP
Japan
Prior art keywords
power generation
semiconductor layer
electrode
layer
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54027802A
Other languages
Japanese (ja)
Other versions
JPS55120181A (en
Inventor
Yukinori Kuwano
Terutoyo Imai
Masakazu Umetani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2780279A priority Critical patent/JPS55120181A/en
Publication of JPS55120181A publication Critical patent/JPS55120181A/en
Publication of JPH0228906B2 publication Critical patent/JPH0228906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光起電力装置の製造方法に関する。 太陽電池や光検出器のような光起電力装置は太
陽光線を直接電気エネルギに変換することができ
るが、この種装置の最大の問題として、他の電気
エネルギ発生手段と比較して発電費用が極めて大
きいことが言われている。その主な原因は、装置
の主体を構成する半導体材料の利用効率が低いこ
と、更に斯る材料を製造するに要するエネルギが
多いことにある。 ところが、最近、この様な欠点を一挙に解決す
る技術として、上記半導体材料に非晶質シリコン
を使用することが提案された。即ち非晶質シリコ
ンはシランやフロルシリコンなどのシリコン化合
物雰囲気中でのグロー放電(即ち、これにより雰
囲気はプラズマ状態となる)によつて安価かつ大
量に形成することができ、その場合の非晶質シリ
コン(以下GD−aSiと略記する)では、禁止帯
の幅中の平均局在状態密度が1017cm-3以下と小さ
く、結晶シリコンと同じ様にP型、N型の不純物
制御が可能となるものである。 第1図は、GD−aSiを用いた典型的な従来の
太陽電池を示し、1は可視光を透過するガラス基
板、2は該基板上に形成された透明電極、3,4
及び5は夫々透明電極2上に順次形成されたGD
−aSiのP型層、GD−aSiのノンドープ(不純物
無添加)層及びGD−aSiのN型層であり、6は
該N型層上に設けられたオーミツクコンタクト用
電極である。 上記太陽電池において、ガラス基板1及び透明
電極2を介してGD−aSiからなるP型層3、ノ
ンドープ層4及びN型層5に入ると、主にノンド
ープ層4において自由状態の電子及び又は正孔が
発生し、これらは上記各層の作るPIN接合電界に
より引かれて移動した後透明電極2やオーミツク
コンタクト用電極6に集められた両電極間に電圧
が発生する。 ところで、斯る太陽電池にあつては、その光起
電圧は約0.8V程度であるため、より大きな電源
電圧を必要とする機器の電源としては上記太陽電
池はそのまゝ使用できない。 第2図は上記の点に鑑み既に提案された光起電
力装置を示し、7は可視光透過可能なガラスなど
からなる平坦な絶縁基板、8,9,10は該絶縁
基板上に膜状に形成された第1、第2、第3の発
電区域である。該発電区域の各々はGD−aSi層
11と該層を挾んで対向する第1電極12及び第
2電極13から構成されている。 GD−aSi層1は図示していないが第1図の構
造と同様に基板7側から順次堆積されたP型層、
ノンドープ層及びN型層の3層からなり、斯る
GD−aSi層11は第1〜第3の発電区域に連続
して延びている。GD−aSi層11を構成する上
記各層において、P型層は膜厚40〜1000Å、ドー
プ量0.01〜1%、ノンドープ層は膜厚0.5〜2μm、
N型層は膜厚200〜1000Å、ドープ量0.1〜3%で
あり、各層の形成温度は200〜400℃である。 第1電極12は可視光透過性を有し、酸化錫、
酸化インジウム、酸化イジウム・錫(In2O3
xSnO2、x≦0.1)などで構成することができる
が、酸化インジウム・錫が特に好ましい。第2電
極13はアルミニウム、クロムなどで構成され
る。 第1〜第3発電区域8〜10の夫々の第1電極
12及び第2電極13は基板7上において夫々の
発電区域の外へ延びる延長部14及び15を有
し、第1発電区域8の第2電極13の延長部14
と第2発電区域2の第1電極12の延長部14と
が、又第2発電区域9の第2電極13の延長部1
5と第3発電区域10の第1電極12の延長部1
4とが夫々互いに重畳して電気的に接続されてい
る。即ち、隣接する第1〜第3発電区域8〜10
は、第1・第2電極12,13の延長部14,1
5を介して各発電区域8〜10の隣接間隔部を除
くGD−aSi層11の外で互いに電気的に直列関
係になるべく接続されている。又第1発電区域8
の第1電極12の延長部14には第2電極13と
同材料からなる接続部16が重畳被着されてい
る。 上記装置の製造方法を簡単に説明すると、その
第1工程で基板7上に延長部14を含んだ第1電
極12の各々が選択エツチング手法又は選択スパ
ツタ付着手法により形成され、第2工程で第1〜
第3発電区域に連続してGD−aSi層11が形成
される。このとき、該層は上記延長部14,15
に存在してはならないので、基板7上全面に上記
3層からなるGD−aSi層を形成した後、選択エ
ツチング手法による不要部を除去するか、あるい
は不要部を覆うマスクを用いることにより所望部
のみに上記3層からなるGD−aSiが形成される。
続く最終工程いおいて延長部15を含む第2電極
13及び接続部16が選択蒸着手法などにより形
成される。 上記装置において、基板7及び第1電極12を
介して光がGD−aSi層11に入ると、第1〜第
3発電区域8〜10の夫々において第1図の場合
と同様に起電圧が生じ、各区域の第1、第2電極
12,13はその延長部において交互に接続され
ているので各区域の起電圧は直列的に相加され、
第1発電区域8に連なる接続部16を+極、第3
発電区域10の第2電極13に連なる延長部15
を一極として両極の間に上記の如く相加された電
圧が発生する。 尚上記装置において第1電極12に連なる延長
部14には電極材料の性質により外部リード線を
超音波ボンデイングなどにより接続するのが困難
であるが、接続部16の存在はこれを容易になす
ものである。 上記装置によれば、非晶質シリコンを用い、同
一基板上にて複数の発電区域を直列接続したもの
であつて、小型にしてかつ任意の起電圧を発生す
る装置が得られ、又斯る装置は非晶質シリコンを
用いたが故に実現されたものであり、その製造に
際しても第1図に示す従来の製造工程とほとんど
変ることなく簡単な膜形成工程のみで製造するこ
とができ、量産的にも極めて優れたものである。 ところで、上記装置において、各発電区域の隣
接間隔が小さいと、隣り合う区域の第1電極12
どうし、あるいは第2電極13どうしの間で直接
電流が流れる現象、即ち漏れ電流の発生が認めら
れるが、本発明は斯る漏れ電流を実質的に抑止し
得る構造を量産性良く得る方法を提供するもので
ある。 以下本発明製造方法の実施例を、相隣合う発電
区域の隣接間隔部を拡大した第3図A,B及び要
部工程別断面図を参照して詳述する。尚、第2図
と同一部分には同一番号が付されている。 第3図Aは第1工程を示し、基板7上に第1電
極12とGD−aSi層11が順次形成される。即
ち、一表面に選択エツチング手法又は選択スパツ
タ付着手法による複数の第1電極12,12……
が予め分割配置された基板7を用意し、この基板
7をグロー放電装置内に配置してシリコン化合物
ガスを供給すると共に、グロー放電を励起する。
供給するガスはシランやフロルシリコンなどのシ
リコン化合物ガスであり、本実施例の如く基板7
の表面側から見てPIN接合を有する場合、更にP
型不純物ガスが添加されて先ずP型層3が形成さ
れる。その後、不純物ガス無添加の条件でノンド
ープ層4が形成され、最後にN型不純物ガス添加
によりN型量5が積層被着される。 この様に斯るP型層3、ノンドープ層4及びN
型層5の積層構造からなるGD−aSi層11は、
上記複数の第1電極12,12……上及びその隣
接間隔部に於いて露出した基板7の表面上に一
様、即りPIN接合を有した状態で連続的に形成さ
れる。 第3図Bは第2工程を示し、各発電区域の間に
ある上記GD−aSi層11の少なくとも一部を該
GD−aSi層11の表面から除去し、溝20が形
成される。この溝形成の好適な実施例は直前に形
成されるGD−aSi層11の形成工程と同種のプ
ラズマ雰囲気中で施される。 斯るプラズマ雰囲気中で施される溝形成の具体
例は逆スパツタ法を用いることである。即ち、第
3図Aに示す如く、複数の発電区域8,9,10
に予定箇所に対して一様に跨つて連続形成された
GD−aSi層11を備えた基板7を、アルゴン雰
囲気の高周波電界内に配置しグロー放電を励起す
ると、上記雰囲気がプラズマ状態となり、そのイ
オン化アルゴン原子が上記GD−aSi層11の露
出面を攻撃する。従つて予め、隣り合う発電区域
の間のみを露出するマスク、例えばモリブデンマ
スクを上記GD−aSi層11上に位置決めして載
置しておくことにより、露出せるGD−aSi層1
1のみがスパツタされ、その表面より除去されて
溝20が形成される。 上記溝20を形成すべきGD−aSi層11の逆
スパツタ条件を下記に示す。 記 ・高周波周波数 13.56MHz ・高周波出力 1KW ・雰囲気ガス アルゴン ・標準ガス流量比 40sccm ・ガス圧 3×10-3Torr ・基板温度 100℃ この逆スパツタ条件に於けるGD−aSi層11
の除去される速度(エツチングレート)は約500
Å/minであり、所望の溝20の深さを得るべく
時間制御する。 プラズマ雰囲気中で施される溝形成の他の具体
例はプラズマエツチ法を用いることである。即
ち、第3図Aの如く表面にGD−aSi層11が複
数の発電区域8,9,10の予定箇所に対して一
様に跨つて連続形成された基板7をフロロカーボ
ン雰囲気内に配置すると共に高周波電場印加等に
より上記雰囲気をプラズマ状態になすと活性なイ
オン化フツ素が発生し、従つて上記逆スパツタの
場合の同様のマスクを予め載置しておくことによ
り、上記イオン化フツ素が露出せるGD−aSi層
をその表面よりエツチング除去し、溝20が形成
される。 下記に斯るプラズマエツチ法の基本条件を記
す。 記 ・高周波周波数 13.56MHz ・高周波出力 300W ・雰囲気ガス CF4+5%O2 ・標準ガス流量比 100sccm ・ガス圧 10-1Torr ・基板温度 60℃ ・エツチングレート 2000Å/min 第3図Bに示す如き各発電区域8,9,10の
隣接区間に形成された溝20の深さは必要に応じ
て決められ、その所定の深さの溝20を得るべく
上記エツチングレートに基づくスパツタ時間やエ
ツチ時間が設定される。上記溝20の深さは場合
によつては基板7に達する深さとなしても良い
が、GD−aSi層11を形成するN型層5の不純
物濃度を高く、換言すると抵抗値が低く、従つて
該N型層5を断ち切る深さであつても、後に残る
のは不純物がドープされていない極めて高抵抗な
ノンドープ層4と不純物濃度が低く肉薄なP型層
3であるために十分有効である。 第3図Cは最終工程を示し、第1電極12と対
向せる第2電極13が選択蒸着手法などにより被
着形成される。 尚、第3図A〜Cは溝20が形成される一つの
隣接間隔部を拡大して示しているために、同図C
に於いて分割配置された第2電極13と隣接する
発電区域9,10の第1電極12との電気的な接
続形態は明記されていないが、第2図の如く両電
極12,13が発電区域8,9,10から隣接間
隔部以外の側縁に夫々延び、その箇所に於いて重
畳することによつて互いに隣接せる発電区域8,
9,10は直列的に接続されている。 この様にして本発明製造方法により製造された
各発電区域8,9,10の隣接間隔部に溝20を
有する光起電力装置と、溝20が存在しない従来
の光起電力装置と、を比較するために漏れ電流値
を測定したところ、従来1.5nAの漏れ電流値に対
し、本発明光起電力装置にあつては13nA以下と
1/100以下に減少することが確認された。斯る比
較に供せられたGD−aSi層11の共通仕様は以
下の通りである。
The present invention relates to a method for manufacturing a photovoltaic device. Photovoltaic devices such as solar cells and photodetectors can directly convert sunlight into electrical energy, but the biggest problem with these devices is that they are expensive compared to other means of generating electrical energy. It is said to be extremely large. The main reasons for this are the low utilization efficiency of semiconductor materials that constitute the main body of the device, and the large amount of energy required to manufacture such materials. However, recently, the use of amorphous silicon as the semiconductor material has been proposed as a technique to solve these drawbacks all at once. In other words, amorphous silicon can be formed cheaply and in large quantities by glow discharge in an atmosphere of silicon compounds such as silane or fluorosilicon (that is, the atmosphere becomes a plasma state). In crystalline silicon (hereinafter abbreviated as GD-aSi), the average localized state density within the width of the forbidden band is as small as 10 17 cm -3 or less, making it possible to control P-type and N-type impurities in the same way as crystalline silicon. This is the result. FIG. 1 shows a typical conventional solar cell using GD-aSi, in which 1 is a glass substrate that transmits visible light, 2 is a transparent electrode formed on the substrate, 3 and 4 are
and 5 are GDs formed sequentially on the transparent electrode 2, respectively.
-aSi P-type layer, GD-aSi non-doped (no impurity added) layer, and GD-aSi N-type layer, and 6 is an ohmic contact electrode provided on the N-type layer. In the above solar cell, when entering the P-type layer 3, non-doped layer 4 and N-type layer 5 made of GD-aSi via the glass substrate 1 and transparent electrode 2, free state electrons and/or positive electrons mainly exist in the non-doped layer 4. Holes are generated, and after these are attracted and moved by the PIN junction electric field created by the above-mentioned layers, a voltage is generated between the two electrodes collected on the transparent electrode 2 and the ohmic contact electrode 6. By the way, since the photovoltaic voltage of such a solar cell is about 0.8 V, the solar cell cannot be used as is as a power source for equipment that requires a larger power supply voltage. Fig. 2 shows a photovoltaic device that has already been proposed in view of the above points, where 7 is a flat insulating substrate made of glass or the like that can transmit visible light, and 8, 9, and 10 are films on the insulating substrate. These are the first, second, and third power generation areas formed. Each of the power generation areas is composed of a GD-aSi layer 11 and a first electrode 12 and a second electrode 13 facing each other with the layer sandwiched therebetween. Although the GD-aSi layer 1 is not shown, it is a P-type layer deposited sequentially from the substrate 7 side, similar to the structure shown in FIG.
It consists of three layers: a non-doped layer and an N-type layer.
The GD-aSi layer 11 extends continuously from the first to third power generation areas. In each of the above layers constituting the GD-aSi layer 11, the P-type layer has a thickness of 40 to 1000 Å and a doping amount of 0.01 to 1%, the non-doped layer has a thickness of 0.5 to 2 μm,
The N-type layer has a thickness of 200 to 1000 Å, a doping amount of 0.1 to 3%, and the formation temperature of each layer is 200 to 400°C. The first electrode 12 has visible light transmittance and is made of tin oxide,
Indium oxide, Idium oxide/tin oxide (In 2 O 3 +
xSnO 2 , x≦0.1), etc., but indium tin oxide is particularly preferable. The second electrode 13 is made of aluminum, chromium, or the like. The first electrode 12 and the second electrode 13 of each of the first to third power generation zones 8 to 10 have extensions 14 and 15 extending outside the respective power generation zones on the substrate 7, Extension portion 14 of second electrode 13
and the extension 14 of the first electrode 12 of the second power generation zone 2, and the extension 1 of the second electrode 13 of the second power generation zone 9.
5 and an extension 1 of the first electrode 12 of the third power generation zone 10
4 are overlapped and electrically connected to each other. That is, the adjacent first to third power generation areas 8 to 10
are the extensions 14, 1 of the first and second electrodes 12, 13.
5 are electrically connected to each other in a series relationship outside the GD-aSi layer 11 except for the adjacent spacing portions of each of the power generating zones 8 to 10. Also, the first power generation area 8
A connecting portion 16 made of the same material as the second electrode 13 is superimposed on the extension portion 14 of the first electrode 12 . Briefly explaining the manufacturing method of the above device, in the first step each of the first electrodes 12 including the extension portions 14 are formed on the substrate 7 by selective etching or selective sputter deposition, and in the second step the first electrodes 12 are formed on the substrate 7 by selective etching or selective sputter deposition. 1~
A GD-aSi layer 11 is formed continuously in the third power generation area. At this time, the layer is
Therefore, after forming the GD-aSi layer consisting of the above three layers on the entire surface of the substrate 7, the desired portions are removed by selective etching or by using a mask to cover the unnecessary portions. GD-aSi consisting of the above three layers is formed only on the surface.
In the subsequent final step, the second electrode 13 including the extension portion 15 and the connection portion 16 are formed by selective vapor deposition or the like. In the above device, when light enters the GD-aSi layer 11 via the substrate 7 and the first electrode 12, an electromotive voltage is generated in each of the first to third power generation areas 8 to 10 as in the case of FIG. , the first and second electrodes 12 and 13 in each area are connected alternately at their extensions, so the electromotive force in each area is added in series,
The connection part 16 connected to the first power generation area 8 is connected to the + pole, and the third
An extension 15 connected to the second electrode 13 of the power generation area 10
An added voltage is generated between the two poles as described above. In the above device, it is difficult to connect an external lead wire to the extension part 14 connected to the first electrode 12 by ultrasonic bonding or the like due to the properties of the electrode material, but the existence of the connection part 16 makes this easy. It is. According to the above-described device, a plurality of power generation areas are connected in series on the same substrate using amorphous silicon, and a device can be made compact and generate any desired electromotive voltage. The device was realized because it uses amorphous silicon, and its manufacturing process is almost the same as the conventional manufacturing process shown in Figure 1, with only a simple film formation process, making mass production possible. It is also extremely excellent. By the way, in the above device, if the adjacent intervals between the respective power generation areas are small, the first electrodes 12 of the adjacent areas
Although it is recognized that a current flows directly between the second electrodes 13 or between the second electrodes 13, that is, the occurrence of leakage current, the present invention provides a method for obtaining a structure that can substantially suppress such leakage current with high productivity. It is something to do. Embodiments of the manufacturing method of the present invention will be described below in detail with reference to FIGS. 3A and 3B, which are enlarged views of adjacent intervals between adjacent power generation areas, and cross-sectional views of main parts according to steps. Note that the same parts as in FIG. 2 are given the same numbers. FIG. 3A shows the first step, in which the first electrode 12 and the GD-aSi layer 11 are sequentially formed on the substrate 7. That is, a plurality of first electrodes 12, 12, . . . are formed on one surface by a selective etching method or a selective sputter deposition method.
A substrate 7 on which are dividedly arranged in advance is prepared, and this substrate 7 is placed in a glow discharge device, a silicon compound gas is supplied, and a glow discharge is excited.
The gas to be supplied is a silicon compound gas such as silane or fluorosilicone, and as in this embodiment, the gas is
If there is a PIN junction when viewed from the surface side, the P
First, a P-type layer 3 is formed by adding a type impurity gas. Thereafter, a non-doped layer 4 is formed without adding an impurity gas, and finally an N-type layer 5 is deposited by adding an N-type impurity gas. In this way, the P type layer 3, the non-doped layer 4 and the N
The GD-aSi layer 11 consisting of a laminated structure of the mold layer 5 is
The plurality of first electrodes 12, 12, . . . are formed uniformly, ie, continuously, on the exposed surface of the substrate 7 at intervals adjacent to the first electrodes 12, 12, . FIG. 3B shows the second step, in which at least a part of the GD-aSi layer 11 between each power generation area is covered.
Grooves 20 are formed by removing from the surface of the GD-aSi layer 11. A preferred embodiment of this groove formation is performed in the same type of plasma atmosphere as the immediately preceding formation step of the GD-aSi layer 11. A specific example of groove formation carried out in such a plasma atmosphere is to use a reverse sputtering method. That is, as shown in FIG. 3A, a plurality of power generation areas 8, 9, 10
was formed continuously and uniformly across the planned location.
When the substrate 7 provided with the GD-aSi layer 11 is placed in a high-frequency electric field in an argon atmosphere and a glow discharge is excited, the atmosphere becomes a plasma state, and the ionized argon atoms attack the exposed surface of the GD-aSi layer 11. do. Therefore, by positioning and placing a mask, for example a molybdenum mask, on the GD-aSi layer 11 in advance to expose only between adjacent power generation areas, the GD-aSi layer 1 to be exposed can be removed.
1 is sputtered and removed from its surface to form grooves 20. The conditions for reverse sputtering of the GD-aSi layer 11 in which the grooves 20 are to be formed are shown below. -High frequency frequency: 13.56MHz -High frequency output: 1KW -Atmosphere gas: Argon -Standard gas flow rate ratio: 40sccm -Gas pressure: 3×10 -3 Torr -Substrate temperature: 100℃ GD-aSi layer 11 under these reverse sputtering conditions
The removal rate (etching rate) is approximately 500
Å/min, and the time is controlled to obtain the desired depth of the groove 20. Another example of groove formation performed in a plasma atmosphere is to use a plasma etch method. That is, as shown in FIG. 3A, a substrate 7 on which a GD-aSi layer 11 is continuously formed uniformly over the planned locations of a plurality of power generation areas 8, 9, and 10 is placed in a fluorocarbon atmosphere. Active ionized fluorine is generated when the atmosphere is made into a plasma state by applying a high frequency electric field, etc. Therefore, by placing a mask similar to the one used in the case of reverse sputtering in advance, the ionized fluorine can be exposed. The GD-aSi layer is etched away from its surface to form grooves 20. The basic conditions of the plasma etching method are described below. -High frequency frequency: 13.56MHz -High frequency output: 300W -Atmosphere gas: CF 4 +5% O2 -Standard gas flow rate ratio: 100sccm -Gas pressure: 10 -1 Torr -Substrate temperature: 60℃ -Etching rate: 2000Å/min As shown in Figure 3B The depth of the grooves 20 formed in the sections adjacent to each of the power generation areas 8, 9, and 10 is determined as necessary, and the sputtering time and etching time based on the above-mentioned etching rate are required to obtain the grooves 20 of the predetermined depth. Set. The depth of the groove 20 may be set to reach the substrate 7 depending on the case, but the impurity concentration of the N-type layer 5 forming the GD-aSi layer 11 is high, in other words, the resistance value is low, and the Even if the depth is such that the N-type layer 5 is cut off, what remains is a non-doped layer 4 which is not doped with impurities and has an extremely high resistance, and a thin P-type layer 3 with a low impurity concentration, so it is not sufficiently effective. be. FIG. 3C shows the final step, in which a second electrode 13 facing the first electrode 12 is deposited by selective vapor deposition or the like. Note that since FIGS. 3A to 3C show an enlarged view of one adjacent gap where the groove 20 is formed, FIGS.
Although the form of electrical connection between the divided second electrode 13 and the first electrode 12 of the adjacent power generation areas 9 and 10 is not specified, as shown in FIG. power generation areas 8, which extend from the areas 8, 9, and 10 to the side edges other than the adjacent spacing portions, and are adjacent to each other by overlapping at those points;
9 and 10 are connected in series. A comparison is made between a photovoltaic device having grooves 20 at adjacent intervals of each power generation area 8, 9, and 10 manufactured by the manufacturing method of the present invention in this manner and a conventional photovoltaic device having no grooves 20. When the leakage current value was measured for this purpose, it was confirmed that the leakage current value of the conventional photovoltaic device was 13nA or less, which was 1/100th of the conventional value of 1.5nA. The common specifications of the GD-aSi layer 11 used for such comparison are as follows.

【表】 上記共通仕様以外に本発明光起電力装置にあつ
ては隣接間隔部に於いてN型層5を貫通しノンド
ープ層4に達する溝20が形成されている。 本発明製造方法は以上の説明から明らかな如
く、複数の発電区域の隣接間隔部に位置した半導
体層の少なくとも一部をその表面から除去せしめ
たので、任意の起電圧が得られるにも拘わず、漏
れ電流を有効に抑えることができ、発電効果を向
上せしめ得る。また、半導体層をプラズマ雰囲気
中にて複数の発電区域に連続して形成した後、隣
接間隔部の半導体層をプラズマ雰囲気にて除去す
れば、この様にプラズマ雰囲気使用の工程は直前
の上記半導体層形成工程と同種のものであるから
両工程を一貫して実施することができ、従つて極
めて量産的かつ精度良く各発電区域間の漏れ電流
抑止構造を得ることができる。
[Table] In addition to the above-mentioned common specifications, in the photovoltaic device of the present invention, grooves 20 are formed that penetrate the N-type layer 5 and reach the non-doped layer 4 at adjacent intervals. As is clear from the above description, in the manufacturing method of the present invention, at least a portion of the semiconductor layer located at adjacent intervals between a plurality of power generation areas is removed from the surface thereof, so that an arbitrary electromotive voltage can be obtained. First, leakage current can be effectively suppressed, and the power generation effect can be improved. In addition, if the semiconductor layer is successively formed in a plurality of power generation areas in a plasma atmosphere, and then the semiconductor layer in the adjacent spaced areas is removed in the plasma atmosphere, the process of using the plasma atmosphere can be removed from the previous semiconductor layer. Since this process is the same as the layer forming process, both processes can be carried out consistently, and therefore a leakage current suppression structure between each power generation area can be obtained with extremely high mass production and precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置を示す側面図、第2図Aは既
に提案された装置を示す平面図、第2図B及びC
は夫々第2図AにおけるB−B及びC−C断面
図、第3図は本発明実施例方法を示す工程別要部
断面図である。 7……絶縁基板、8,9,10……第1、第
2、第3発電区域、11……非晶質シリコン層。
Fig. 1 is a side view showing a conventional device, Fig. 2 A is a plan view showing an already proposed device, Fig. 2 B and C
2A are sectional views taken along lines BB and CC in FIG. 2A, respectively, and FIG. 3 is a sectional view showing a main part of each step showing a method according to an embodiment of the present invention. 7... Insulating substrate, 8, 9, 10... First, second, third power generation areas, 11... Amorphous silicon layer.

Claims (1)

【特許請求の範囲】 1 絶縁基板上に、光照射により発電に寄与する
電子及び又は正孔を発生する非晶質シリコンを含
む半導体層と、該半導体層を挾んで対向する上記
基板側の第1電極及び表面側の第2電極と、から
成る複数の膜状発電区域を備え、隣接する複数の
膜状発電区域の第1・第2電極が各発電区域の隣
接間隔部を除く上記半導体層の外で互いに電気的
に直列関係になるべく接続されている光起電力装
置の製造方法であつて、基板表面に複数の第1電
極を分割配置する工程と、上記半導体層を上記分
割配置された複数の第1電極及びその隣接間隔部
に於いて露出した絶縁基板上に一様に連続的に形
成する工程と、上記隣接間隔部に被着形成した半
導体層の少なくとも一部を該半導体層の表面から
除去する工程と、上記隣接間隔部以外の箇所で互
いに隣接する膜状発電区域を電気的に接続すべく
第2電極を分割配置する工程と、を有することを
特徴とした光起電力装置の製造方法。 2 上記半導体層形成工程はプラズマ雰囲気中で
行なわれると共に、上記隣接間隔部の半導体層の
除去工程は上記半導体層形成工程に続いて同じプ
ラズマ雰囲気中で施されることを特徴とした特許
請求の範囲第1項記載の光起電力装置の製造方
法。
[Scope of Claims] 1. A semiconductor layer on an insulating substrate that includes amorphous silicon that generates electrons and/or holes that contribute to power generation when irradiated with light, and a semiconductor layer on the substrate side that faces the semiconductor layer with the semiconductor layer in between. the semiconductor layer, comprising a plurality of membrane-like power generation areas consisting of one electrode and a second electrode on the front side, wherein the first and second electrodes of the plurality of adjacent membrane-like power generation areas exclude the adjacent interval portions of each power generation area; A method for manufacturing a photovoltaic device in which a plurality of first electrodes are electrically connected to each other in series outside the substrate, the method comprising: dividing and arranging a plurality of first electrodes on a surface of a substrate; a step of uniformly and continuously forming a plurality of first electrodes and their adjacent spaces on the exposed insulating substrate; A photovoltaic device comprising the steps of removing the second electrode from the surface, and dividing and arranging the second electrode to electrically connect adjacent membrane power generation areas at locations other than the adjacent spacing. manufacturing method. 2. The semiconductor layer forming step is performed in a plasma atmosphere, and the semiconductor layer removal step in the adjacent space portion is performed in the same plasma atmosphere following the semiconductor layer forming step. A method for manufacturing a photovoltaic device according to scope 1.
JP2780279A 1979-03-09 1979-03-09 Fabricating method of photovoltaic device Granted JPS55120181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2780279A JPS55120181A (en) 1979-03-09 1979-03-09 Fabricating method of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2780279A JPS55120181A (en) 1979-03-09 1979-03-09 Fabricating method of photovoltaic device

Publications (2)

Publication Number Publication Date
JPS55120181A JPS55120181A (en) 1980-09-16
JPH0228906B2 true JPH0228906B2 (en) 1990-06-27

Family

ID=12231099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2780279A Granted JPS55120181A (en) 1979-03-09 1979-03-09 Fabricating method of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS55120181A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155770A (en) * 1982-03-10 1983-09-16 Matsushita Electric Ind Co Ltd Substrate for amorphous silicon solar cell
WO2011001842A1 (en) * 2009-07-03 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US9437758B2 (en) 2011-02-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042418A (en) * 1976-08-02 1977-08-16 Westinghouse Electric Corporation Photovoltaic device and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042418A (en) * 1976-08-02 1977-08-16 Westinghouse Electric Corporation Photovoltaic device and method of making same

Also Published As

Publication number Publication date
JPS55120181A (en) 1980-09-16

Similar Documents

Publication Publication Date Title
JP3349308B2 (en) Photovoltaic element
JPS6325515B2 (en)
WO2019105085A1 (en) Heterojunction solar cell and method for fabrication thereof
EP0217405B1 (en) Transparent conductive film and method of fabricating the same
JPH02143468A (en) Solar cell
JP2001274447A (en) Method of manufacturing integrated thin film solar battery
JPS5821827B2 (en) photovoltaic device
JPH0228906B2 (en)
JP2000133828A (en) Thin-film solar cell and manufacture thereof
JPS5910593B2 (en) Method of manufacturing photovoltaic device
JP4127994B2 (en) Photovoltaic device manufacturing method
JPS6024078A (en) Photovoltaic device
JP4220014B2 (en) Method for forming thin film solar cell
JP3655027B2 (en) Integrated thin film photoelectric converter
JPS60216585A (en) Solar cell element
JP2001068709A (en) Thin-film solar battery
JP2975751B2 (en) Photovoltaic device
JPH0376165A (en) Manufacture of continuous solar cells
JPH06177408A (en) Thin film solar battery and its manufacture
JPS5997514A (en) Manufacture of amorphous silicon film
JPS62128572A (en) Solar battery
JPH055194B2 (en)
JPH04120773A (en) Element structure for thin film solar cell
JP2664377B2 (en) Manufacturing method of light receiving device
JPS6356712B2 (en)