JPH02268486A - Printed wiring board material of low permittivity - Google Patents

Printed wiring board material of low permittivity

Info

Publication number
JPH02268486A
JPH02268486A JP8973989A JP8973989A JPH02268486A JP H02268486 A JPH02268486 A JP H02268486A JP 8973989 A JP8973989 A JP 8973989A JP 8973989 A JP8973989 A JP 8973989A JP H02268486 A JPH02268486 A JP H02268486A
Authority
JP
Japan
Prior art keywords
printed wiring
fibers
heat
thermosetting resin
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8973989A
Other languages
Japanese (ja)
Other versions
JP2762544B2 (en
Inventor
Hidenori Kanehara
秀憲 金原
Masakazu Mogi
茂木 雅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP1089739A priority Critical patent/JP2762544B2/en
Publication of JPH02268486A publication Critical patent/JPH02268486A/en
Application granted granted Critical
Publication of JP2762544B2 publication Critical patent/JP2762544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain an object which is excellent in dielectric property and copper foil exfoliation strength by using mixed unwoven fabric consisting of fluororesin and heat-resistant engineering plastic fibers, and getting an insulating layer wherein this is combined with low permittivity thermosetting resin which includes hardening matter of specific permittivity. CONSTITUTION:Fluororesin fibers consisting of polytetrafluoroethylene, tetrafluoroethylene, hexafluoropropylene copolymer, olefin-tetrafluoroethylene copolymer, etc., and heat-resistant engineering plastic fibers such as omniaromatic polyamide, polyphenylene sulfide, etc., are mixed at specified rate and are used as base material of mixed unwoven fabric. It is suitable that an insulating layer, wherein cyanate resin and thermosetting resin with low permittivity of 3.5 or less at 1MHz, wherein high boiling point compounds, wherein 2 to 7 pieces, on an average, of aromatics which are nonsubstituted or substituted for halogen atoms or low-grade alkyl groups are coupled in a straight chain shape, are arranged to the cyanate, are combined, should be used. Material for printed wiring, which is excellent in dielectric property and in which shrinkage in laminate formation is small and which does not bring about exfoliation, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、実質的に低誘電率で、高速演算や高周波回路
に最適なプリント配線板材料であり、特に板厚の薄い多
層プリント配線板用材料として好適なものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a printed wiring board material that has a substantially low dielectric constant and is ideal for high-speed calculations and high-frequency circuits, and is particularly suitable for thin multilayer printed wiring boards. It is suitable as a material for use.

〔従来の技術およびその課題〕[Conventional technology and its problems]

低誘電率多層プリント配線板として、フッ素樹脂/ガラ
ス布補強板がしられている。しかし、350℃以上の高
温で接着させなければならない欠点があった。
A fluororesin/glass cloth reinforcement board is known as a low dielectric constant multilayer printed wiring board. However, it has the disadvantage that it must be bonded at a high temperature of 350° C. or higher.

又、フッ素繊維織布を基材とする熱硬化性樹脂積層板や
多孔質フッ素樹脂シートを基材とする熱硬化性樹脂積層
板が知られているが、高価であるという欠点があり、ま
た、ガラス布を基材としフ・ツ素樹脂粉末を混合した熱
硬化性樹脂組成物を用いる積層板が知られているが金属
箔の接着性に劣る欠点があった。
In addition, thermosetting resin laminates based on fluorocarbon fiber woven fabric and thermosetting resin laminates using porous fluororesin sheets as a base material are known, but they have the drawback of being expensive. A laminated plate using a thermosetting resin composition made of glass cloth as a base material and mixed with a resin powder is known, but it has a drawback of poor adhesion to metal foil.

更に、特開昭63−69106号公報には、フッ素樹脂
不織布を基材とする積層板が示されているが、フッ素樹
脂のみでは、引っ張り強度が弱く、伸びが大きく、又、
熱硬化性樹脂との密着性に劣るという欠点があった。
Further, JP-A No. 63-69106 discloses a laminate using a fluororesin nonwoven fabric as a base material, but fluororesin alone has low tensile strength and high elongation.
It had the disadvantage of poor adhesion to thermosetting resins.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の問題点を解決し、実質的に低誘電率層上
にプリント配線を形成できる方法について鋭意検討した
結果完成したものである。
The present invention was completed as a result of extensive research into a method that solves the above problems and allows printed wiring to be formed substantially on a low dielectric constant layer.

すなわち、本発明は、フッ素樹脂繊維と耐熱性のエンジ
ニアリングプラスチック繊維とからなる混抄不織布を基
材とし、硬化物の誘電率がIMIしで3.5以下の低誘
電率熱硬化性樹脂とを組み合わせてなる絶縁層からなる
低誘電率プリント配線板材料であり、該耐熱性のエンジ
ニアリングプラスチック繊維としては、全芳香族ポリア
ミド、ポリフェニレンサルファイド、ポリエーテルエー
テルケトン、ポリエーテルスルホン、ポリエーテルイミ
ドおよび全芳香族ポリエステルなどで例示される一種或
いは二種以上のプラスチック製の繊維であり、特に全芳
香族ポリアミド繊維を用いた低誘電率プリント配線板材
料である。
That is, the present invention uses a mixed nonwoven fabric made of fluororesin fibers and heat-resistant engineering plastic fibers as a base material, and combines it with a low dielectric constant thermosetting resin whose cured material has a dielectric constant of 3.5 or less at IMI. The heat-resistant engineering plastic fibers include wholly aromatic polyamide, polyphenylene sulfide, polyether ether ketone, polyether sulfone, polyether imide, and wholly aromatic polyamide. It is a fiber made of one or more kinds of plastics such as polyester, and is particularly a low dielectric constant printed wiring board material using wholly aromatic polyamide fiber.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のフッ素樹脂繊維と耐熱性のエンジニアリングプ
ラスチック繊維との混抄不織布とは、モノフィラメント
の直径が10〜40.u、長さが0.1〜10cmの多
孔質或いは非多孔質のフッ素樹脂繊維とモノフィラメン
トの直径が5〜401、長さが0.1〜10c111の
耐熱性のエンジニアリングプラスチック繊維を80:2
0〜20:80の重量比にて乾式法或いは湿式法により
不織布としたものである。厚さは30〜2007.s、
より好適には50〜100pで、重量は厚さ501で2
0〜60g/m”が好ましい。
The mixed nonwoven fabric of fluororesin fiber and heat-resistant engineering plastic fiber of the present invention has a monofilament diameter of 10 to 40. u, a porous or non-porous fluororesin fiber with a length of 0.1 to 10 cm and a heat-resistant engineering plastic fiber with a monofilament diameter of 5 to 40 cm and a length of 0.1 to 10 cm at a ratio of 80:2
A nonwoven fabric is produced by a dry method or a wet method at a weight ratio of 0 to 20:80. The thickness is 30~2007. s,
More preferably, it is 50 to 100p, and the weight is 501 and 2
0 to 60 g/m'' is preferred.

フッ素樹脂繊維用のフッ素樹脂はポリテトラフロロエチ
レン、テトラフロロエチレン・ヘキサフロロプロピレン
共重合体、オレフィン−テトラフロロエチレン共重合体
などが挙げられる。又、耐熱性のエンジニアリングプラ
スチックは、全芳香族ポリアミド (アラミド繊維)、
ポリフェニレンサルファイド、ポリエーテルエーテルケ
トン、ポリエーテルスルホン、ポリエーテルイミドおよ
び全芳香族ポリエステルなどが例示され、特にアラミド
繊維が好適である。
Examples of the fluororesin for fluororesin fibers include polytetrafluoroethylene, tetrafluoroethylene/hexafluoropropylene copolymer, and olefin-tetrafluoroethylene copolymer. In addition, heat-resistant engineering plastics include fully aromatic polyamide (aramid fiber),
Examples include polyphenylene sulfide, polyetheretherketone, polyethersulfone, polyetherimide, and wholly aromatic polyester, with aramid fibers being particularly suitable.

乾式法は、側繊維を所定の比率で混合し、網状物等の上
にランダムに配置し、加熱、その他の手段でフッ素繊維
と耐熱性のエンジニアリングプラスチック繊維とを部分
的に融着させる方法が例示され、融着を促進する目的で
、フッ素樹脂、低誘電率の熱可塑性樹脂、熱硬化性樹脂
などの微粉末や繊維を補助的に使用することも出来る。
The dry method involves mixing side fibers in a predetermined ratio, placing them randomly on a net-like material, etc., and partially fusing the fluorine fibers and heat-resistant engineering plastic fibers by heating or other means. For the purpose of promoting fusion, for example, fine powder or fibers of fluororesin, low dielectric constant thermoplastic resin, thermosetting resin, etc. can also be used auxiliary.

また、湿式法は、側繊維を所定の比率で水等に分散した
後、抄造する方法であり、この分散系にフッ素樹脂微粒
子を懸濁分散させ、繊維間に付着した微粒子を乾燥中又
は乾燥後に溶融して固定する方法などが例示され、また
、補助的に分散工程で変質しない低誘電率の熱可塑性樹
脂やゴムなどを使用することも出来る。
In addition, the wet method is a method in which side fibers are dispersed in water etc. at a predetermined ratio and then paper-formed.Fluororesin fine particles are suspended and dispersed in this dispersion system, and the fine particles attached between the fibers are removed during drying or during drying. Examples include a method in which the material is fixed by melting it later, and a thermoplastic resin or rubber having a low dielectric constant that does not change in quality during the dispersion process may also be used as an auxiliary material.

さらに、抄造に当たって補助的にローガラス、S−ガラ
ス、5ll−ガラス、T−ガラス、石英ガラスなどの低
誘電率ガラスの繊維、その他のセラミックス類などを2
0重量%以下の量で使用することもできる。
Furthermore, during papermaking, fibers of low dielectric constant glasses such as low glass, S-glass, 5ll-glass, T-glass, and quartz glass, and other ceramics are used as supplementary materials.
It can also be used in amounts up to 0% by weight.

不織布は、そのままでも使用可能であるが、熱硬化性樹
脂との密着性を改良する目的で表面処理したものを使用
することが好適であり、この方法としては、プラズマ処
理、シランカップリング剤やチタネートカップリング剤
などのカップリング剤処理、フッ素系界面活性剤などの
ノニオン系の耐熱性界面活性剤処理などが例示され、適
宜組み合わせて使用できる。
The nonwoven fabric can be used as is, but it is preferable to use one that has been surface-treated to improve its adhesion to the thermosetting resin. Examples include treatment with a coupling agent such as a titanate coupling agent, treatment with a nonionic heat-resistant surfactant such as a fluorine-based surfactant, and these can be used in combination as appropriate.

次に、本発明の誘電率が3.5以下の熱硬化製樹脂組成
物とは、シアナト樹脂(特公昭41−1928号、同4
5−11712号、同44−1222号、ドイツ特許第
1190184号、USP−4,578,439等)、
シアン酸エステル−マレイミド樹脂、シアン酸エステル
ーマレイミドーエポキシ樹脂(特公昭54−30440
号等、特公昭52−31279号、ロ5P−41103
64等)、シアン酸エステル−エポキシ樹脂(特公昭4
6−41112号)、シアナト樹脂に無置換又はハロゲ
ン原子や低級アルキル基の置換した芳香核が直鎖状に平
均で2〜7個結合した高沸点化合物を配合してなる組成
物などのシアン酸エステル系樹脂;多官能マレイミドと
ジアミン、エポキシ化合物やイソシアネート化合物など
を主成分とする変性マレイミド樹脂(特公昭48−82
79号など) ;イソシアネート化合物とエポキシ化合
物を主成分とするインシアネート−オキサゾリドン樹脂
(特開昭55−75418号等);ポリフェニレンエー
テルと架橋性モノマー或いはプレポリマーとの組成物な
どの熱硬化性樹脂、並びに、これらの樹脂の硬化剤や硬
化触媒として公知のアミン類、酸無水物類、フェノール
類、有機金属塩類、金属キレート化合物、有機過酸化物
などを配合してなるものであり、好適なものとしてはシ
アナト樹脂及び該シアナト樹脂に無置換又はハロゲン原
子や低級アルキル基の置換した芳香核が直鎮状に平均で
2〜7個結合した高沸点化合物を配合してなる組成物が
挙げられる。
Next, the thermosetting resin composition of the present invention having a dielectric constant of 3.5 or less refers to cyanato resin (Japanese Patent Publication No. 41-1928, No. 4
5-11712, 44-1222, German Patent No. 1190184, USP-4,578,439, etc.),
Cyanate ester-maleimide resin, cyanate ester-maleimide epoxy resin (Special Publication No. 54-30440
No., etc., Special Publication No. 52-31279, Ro 5P-41103
64 etc.), cyanate ester-epoxy resin (Special Publication No. 4)
6-41112), cyanic acid, such as a composition prepared by blending a cyanato resin with a high boiling point compound in which an average of 2 to 7 aromatic nuclei, unsubstituted or substituted with a halogen atom or a lower alkyl group, are bonded in a linear chain. Ester resin; Modified maleimide resin whose main components are polyfunctional maleimide, diamine, epoxy compound, isocyanate compound, etc.
No. 79, etc.); incyanate-oxazolidone resins containing isocyanate compounds and epoxy compounds as main components (JP-A-55-75418, etc.); thermosetting resins such as compositions of polyphenylene ether and crosslinkable monomers or prepolymers , as well as known amines, acid anhydrides, phenols, organic metal salts, metal chelate compounds, organic peroxides, etc. as curing agents and curing catalysts for these resins, and are suitable. Examples include a cyanato resin and a composition formed by blending the cyanato resin with a high boiling point compound in which an average of 2 to 7 aromatic nuclei, unsubstituted or substituted with a halogen atom or a lower alkyl group, are bonded in a straight line. .

また、上記の熱硬化性樹脂組成物には、これらの他に、
可撓性付与、接着性或いは親和性(特に基材繊維との接
着性や親和性)付与、耐燃焼性付与、離型性付与、消泡
などの目的で、シリコーン系化合物、フッ素系化合物、
ノニオン系の耐熱性の界面活性剤、シランカップリング
剤、チタネートカップリング剤、ワックス類、ジエン系
ゴム類、非品性乃至低結晶性の飽和ポリエステル樹脂、
ウレタン樹脂、酢酸ビニル樹脂、ポリエチレン樹脂など
の化合物や樹脂類;粘度調製剤として反応型の低分子量
化合物類(反応性希釈剤)、例えばスチレンなどの芳香
族ビニル化合物、トリメチロールプロパントリ (メタ
)アクリレートなどのアクリレート類、モノグリシジル
エーテルなどを樹脂成分の30重量%未満の量で添加す
ることもできるものであり、カップリング剤類を基材と
の接着性の向上のために用いることは好ましい。
In addition to these, the above thermosetting resin composition also includes:
Silicone-based compounds, fluorine-based compounds,
Nonionic heat-resistant surfactants, silane coupling agents, titanate coupling agents, waxes, diene rubbers, non-grade or low crystallinity saturated polyester resins,
Compounds and resins such as urethane resins, vinyl acetate resins, and polyethylene resins; low molecular weight compounds that are reactive as viscosity modifiers (reactive diluents), such as aromatic vinyl compounds such as styrene, trimethylolpropane tri(meth) Acrylates such as acrylates, monoglycidyl ethers, etc. can be added in an amount of less than 30% by weight of the resin component, and it is preferable to use coupling agents to improve adhesiveness with the base material. .

上記した耐熱性のエンジニアリングプラスチック繊維/
フッ素繊維の不織布に熱硬化性樹脂組成物を含浸・塗布
・付着させてプリプレグを製造する方法は公知の方法で
良い。不織布に付着させる樹脂の量は、プリプレグ全体
積に対して45〜85体積%の範囲が好適である。具体
的な方法としては、熱硬化性樹脂組成物を溶剤に溶解し
たワニスとして不織布に含浸、乾燥とする方法;無溶剤
で常温もしくは加温下に液状の熱硬化性樹脂組成物を得
、これを含浸する方法;熱硬化性樹脂粉体を準備し、こ
れを不織布に均一に配置し、加熱溶融して不織布に固定
する方法などである。これら方法には、適宜、真空、溶
剤溶液、溶剤蒸気、その他の空気を実質的に除去した後
に、含浸する方法を用いる。
The heat-resistant engineering plastic fibers mentioned above/
A known method may be used to produce a prepreg by impregnating, applying, and adhering a thermosetting resin composition to a nonwoven fabric of fluorine fibers. The amount of resin adhered to the nonwoven fabric is preferably in the range of 45 to 85% by volume based on the entire prepreg volume. A specific method is to impregnate a nonwoven fabric with a thermosetting resin composition as a varnish dissolved in a solvent and dry it; obtain a liquid thermosetting resin composition without a solvent at room temperature or under heating; A method of impregnating a thermosetting resin powder; a method of preparing a thermosetting resin powder, distributing it uniformly on a nonwoven fabric, and fixing it on the nonwoven fabric by heating and melting it. These methods may include vacuum, solvent solution, solvent vapor, or other impregnation methods after substantially removing air.

本発明の金属箔とは、通常の金属箔張積層板に使用され
る公知の銅箔、鉄箔、アルミニウム箔1、アルミニウム
/銅箔、その他である。金属箔の片面もしくは両面が表
面処理されていてもよく、又、接着剤付きの金属箔とし
て使用してもよい。
The metal foil of the present invention is a well-known copper foil, iron foil, aluminum foil 1, aluminum/copper foil, or the like used for ordinary metal foil-clad laminates. One or both sides of the metal foil may be surface-treated, or it may be used as a metal foil with adhesive.

本発明のプリント配線板用の積層材料は、以上説明した
プリプレグ、又は該プリプレグと金属箔とを用いて、公
知の方法により積層成形し、一体化することにより製造
される積層板、金属箔張積層板、中間層用のプリント配
線を形成した内層板、およびプリプレグ自体をいう。
The laminated material for a printed wiring board of the present invention is a laminate manufactured by laminating the above-described prepreg or the prepreg and metal foil by a known method and integrating them, a metal foil-clad laminate, etc. Refers to the laminate, the inner layer board with printed wiring for the intermediate layer, and the prepreg itself.

なお、積層成形に当たって、上記のプリプレグ以外のプ
リプレグを一部併用することも当然に可能である。
In addition, it is naturally possible to partially use prepregs other than the above-mentioned prepregs in the lamination molding.

〔実施例〕〔Example〕

以下、実施例によって本発明をさらに具体的に説明する
。尚、実施例中の部、%は特に断らない限り重量基準で
ある。
Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, parts and percentages in the examples are based on weight unless otherwise specified.

実施例1 直径22p1平均長さ30羅のポリテトラフロロエチレ
ン繊維と直径 12−1長さ5Illff+のアラミド
繊維とを重量比50:50で用いて構成された厚さ10
01、重さ45g/m”の不織布をアルゴンプラズマ処
理(0,2Torr、 110kHz、 25kV、 
1分間)した後、エポキシシランカップリング剤処理を
施した。
Example 1 A polytetrafluoroethylene fiber with a diameter of 22p1 and an average length of 30mm and an aramid fiber with a diameter of 12-1 and a length of 5Illff+ were used in a weight ratio of 50:50 to have a thickness of 10mm.
01, Argon plasma treatment (0.2 Torr, 110kHz, 25kV,
1 minute), and then treated with an epoxy silane coupling agent.

2.2−ビス (4−シアナトフェニル)プロパンのプ
レポリマー(数平均分子1i 1,000) 95部、
ビスフェノールA型エポキシ樹脂(エポキシ当量450
〜500) 5部及びアセチルアセトン鉄 0.01部
をメチルエチルケトン(以下、MBKと記す)に溶解し
てワニス(以下、ワニス1と記す)とした。なお、この
樹脂を硬化した後の誘電率は3.3(at 1MHz)
であった。
2.2-bis(4-cyanatophenyl)propane prepolymer (number average molecule 1i 1,000) 95 parts,
Bisphenol A type epoxy resin (epoxy equivalent: 450
~500) and 0.01 part of iron acetylacetonate were dissolved in methyl ethyl ketone (hereinafter referred to as MBK) to prepare a varnish (hereinafter referred to as varnish 1). The dielectric constant after curing this resin is 3.3 (at 1MHz)
Met.

ワニス1に、上記の不織布を含浸し、140℃で6分間
乾燥して樹脂量71%のプリプレグ(以下、CPAIと
記す)を得、該CllAlを8枚重ね、その両面に厚み
18−〇銅箔を重ね、180℃、2時間、20kg/−
で積層成形し、厚み0.8順の両面銅張積層板を製造し
た。
Varnish 1 was impregnated with the above nonwoven fabric and dried at 140°C for 6 minutes to obtain a prepreg with a resin content of 71% (hereinafter referred to as CPAI), and 8 sheets of the CllAl were stacked, and 18-0 copper with a thickness of 18-0 was coated on both sides. Layer foil, 180℃, 2 hours, 20kg/-
A double-sided copper-clad laminate with a thickness of 0.8 was produced by lamination molding.

この積層板の1MHzの誘電率は3.2、誘電正接は0
.0060.280℃のハンダ耐熱性は30秒以上で膨
れなし、銅箔剥離強度1.0kg/Cm (1,8虜銅
箔)であった。
The dielectric constant of this laminate at 1MHz is 3.2, and the dielectric loss tangent is 0.
.. 0060. The solder heat resistance at 280° C. showed no blistering after 30 seconds or more, and the copper foil peel strength was 1.0 kg/Cm (1.8 cm copper foil).

実施例2 直径221、平均長さ30mmのポリテトラフロロエチ
レン繊維55%、テトラフロロエチレン/パーフロロア
ルキルビニルエーテル共重合体の微粉末5%及び直径3
0虜、平均長さ5mmのポリエーテルスルホン繊維とを
重量比で60:40で用いた厚さ100虜、重さ80g
/m’の不織布を実施例1と同様のアルゴンプラズマ処
理した後、アミノシランカップリング剤処理を施した。
Example 2 55% polytetrafluoroethylene fibers with diameter 221 and average length 30 mm, 5% fine powder of tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer and diameter 3
Polyether sulfone fibers with an average length of 5 mm are used at a weight ratio of 60:40, with a thickness of 100 mm and a weight of 80 g.
/m' was treated with argon plasma in the same manner as in Example 1, and then treated with an aminosilane coupling agent.

2.2−ビス (4−シアナトフェニル)プロパンのプ
レポリマー(数平均分子量1.000) 90部、ポリ
エーテルスルフォン 10部及びオクチル酸亜鉛0.0
3部を塩化メチレン(以下、MCと記す)に溶解してワ
ニス(以下、ワニス2と記す)とした。尚、この樹脂を
硬化した後の誘電率は3.4(at 1MHz)であっ
た。
2.2-Bis(4-cyanatophenyl)propane prepolymer (number average molecular weight 1.000) 90 parts, polyethersulfone 10 parts, and zinc octylate 0.0
Three parts were dissolved in methylene chloride (hereinafter referred to as MC) to obtain a varnish (hereinafter referred to as varnish 2). Note that the dielectric constant of this resin after curing was 3.4 (at 1 MHz).

ワニス2に、上記の不織布を含浸し、150℃で6分間
乾燥して樹脂量70%のプリプレグ(以下、CI’ 2
と記す)を得た。
Varnish 2 was impregnated with the above nonwoven fabric and dried at 150°C for 6 minutes to prepare a prepreg with a resin content of 70% (hereinafter referred to as CI' 2
) was obtained.

他方、ワニス2に、厚み100虜のローガラス平織織布
を浸し、140℃で6分間乾繰して樹脂量50%のプリ
プレグ(以下、FGPlと記す)を得、該PGPIを2
枚重ね、その両面に厚み351の両面粗化銅箔を重ね、
さらに保護フィルムを重ねて180℃、2時間、40k
g/cIIllで積層成形し、厚み0.2mIT+の両
面銅張積層板を製造した。この積層板のIMIIzにお
ける誘電率は3.9、誘電圧接は0.0035であった
1)この両面銅張積層板をエツチング加工して所定の中
間配線網などを形成し、内層板とした。
On the other hand, a raw glass plain woven fabric with a thickness of 100 mm was soaked in Varnish 2 and dried at 140°C for 6 minutes to obtain a prepreg with a resin content of 50% (hereinafter referred to as FGPI).
Stack two sheets, and layer 351 thick double-sided roughened copper foil on both sides,
Add a protective film and heat at 180℃ for 2 hours for 40k.
A double-sided copper-clad laminate with a thickness of 0.2 mIT+ was produced by lamination molding at g/cIIll. The dielectric constant of this laminate at IMIIz was 3.9, and the dielectric voltage contact was 0.0035.1) This double-sided copper-clad laminate was etched to form a predetermined intermediate wiring network, and was used as an inner layer board.

この内層板3種及びその両側に厚さ181の銅箔を上記
で製造したCP 2を2枚づつ介して重ねた後、180
℃、2時間、20kg/ciで積層成形し、厚み1.4
謳の6層の内層を有する多層板を得た。
After layering these three types of inner layer plates and copper foil with a thickness of 181 mm on both sides with two sheets of CP 2 manufactured above interposed therebetween,
℃, 2 hours, laminated molding at 20 kg/ci, thickness 1.4
A multilayer board with six inner layers was obtained.

この多層板の内層配線のI M It zにおける実効
誘電率は3,6、誘電正接は0.0040であった。
The effective dielectric constant at I M It z of the inner layer wiring of this multilayer board was 3.6, and the dielectric loss tangent was 0.0040.

また、多層板を半田耐熱試験したが1280℃、30秒
でも、層間剥離等の不良は無かった。
Furthermore, the multilayer board was subjected to a soldering heat resistance test at 1280° C. for 30 seconds without any defects such as delamination.

〔発明の作用および効果〕[Operation and effects of the invention]

以上、詳細な説明、実施例などから明白な如く、本発明
の耐熱性エンジニアリングプラスチック繊維とフッ素繊
維とを抄造してなる不織布を基材とするプリント配線板
用材料は、誘電特性等に優れ、半田耐熱性、銅箔剥離強
度、などのプリント配線板に使用する場合の特性にも優
れたものである。
As is clear from the above detailed description and examples, the printed wiring board material based on a nonwoven fabric made from heat-resistant engineering plastic fibers and fluorine fibers of the present invention has excellent dielectric properties, etc. It also has excellent properties when used in printed wiring boards, such as solder heat resistance and copper foil peel strength.

フッ素繊維のみを使用した不織布は一般に伸びが10%
以上と大きく、樹脂含浸工程で基材々(伸び、得られた
プリプレグを加熱積層成形する際に収縮が大きくなる欠
点がある。これに対して本発明の不織布は伸びが5%以
内と小さく、積層成形時の収縮という欠点が大幅に解消
される。又、フッ素機維のみでは、コロナ放電処理や金
属ナトリウム系表面処理剤による表面処理などを行った
場合でもなお熱硬化性樹脂組成物との密着性が不充分で
あるため、曲げ応力等で樹脂とフッ素基材とが剥離し易
い欠点が生じる。これに対して本発明の混合抄造不織布
は、表面処理によって基材と熱硬化性樹脂、特に耐熱性
エンジニアリングプラスチック繊維との密着強度の著し
い向上により曲げ応力等による樹脂と基材との間の剥離
などが大幅に防止され、プリント配線板としての絶縁性
などの劣化が防止される。
Non-woven fabrics using only fluorine fibers generally have an elongation of 10%.
However, the disadvantage is that the base material elongates during the resin impregnation process, and shrinkage increases when the obtained prepreg is heated and laminated.On the other hand, the nonwoven fabric of the present invention has a small elongation of less than 5%. The drawback of shrinkage during laminated molding is largely eliminated.Furthermore, fluorocarbon fibers alone cannot be used with thermosetting resin compositions even after corona discharge treatment or surface treatment with a metallic sodium surface treatment agent. Due to insufficient adhesion, the resin and the fluorocarbon base material tend to peel off due to bending stress, etc. In contrast, the mixed paper-made nonwoven fabric of the present invention has a bond between the base material and the thermosetting resin by surface treatment. In particular, the remarkable improvement in adhesion strength with heat-resistant engineering plastic fibers greatly prevents peeling between the resin and the base material due to bending stress, etc., and prevents deterioration of insulation properties as a printed wiring board.

従って、本発明のプリント配線板用材料は、高周波回路
用のプリント配線板、多層プリント配線板、接着用プリ
プレグ等に最適なものであることが明白である。
Therefore, it is clear that the printed wiring board material of the present invention is optimal for printed wiring boards for high frequency circuits, multilayer printed wiring boards, adhesive prepregs, and the like.

特許出願人  三菱瓦斯化学株式会社Patent applicant: Mitsubishi Gas Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1 フッ素樹脂繊維と耐熱性のエンジニアリングプラス
チック繊維とからなる混抄不織布を基材とし、硬化物の
誘電率が1MHzで3.5以下の低誘電率熱硬化性樹脂
とを組み合わせてなる絶縁層からなる低誘電率プリント
配線板材料。 2 該耐熱性のエンジニアリングプラスチック繊維が、
全芳香族ポリアミド製である請求項1記載の低誘電率プ
リント配線板材料。
[Claims] 1. A mixed nonwoven fabric made of fluororesin fibers and heat-resistant engineering plastic fibers is used as a base material, and is combined with a low dielectric constant thermosetting resin whose cured material has a dielectric constant of 3.5 or less at 1 MHz. Low dielectric constant printed wiring board material consisting of an insulating layer. 2. The heat-resistant engineering plastic fiber is
The low dielectric constant printed wiring board material according to claim 1, which is made of wholly aromatic polyamide.
JP1089739A 1989-04-11 1989-04-11 Low dielectric constant printed wiring board materials Expired - Fee Related JP2762544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1089739A JP2762544B2 (en) 1989-04-11 1989-04-11 Low dielectric constant printed wiring board materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1089739A JP2762544B2 (en) 1989-04-11 1989-04-11 Low dielectric constant printed wiring board materials

Publications (2)

Publication Number Publication Date
JPH02268486A true JPH02268486A (en) 1990-11-02
JP2762544B2 JP2762544B2 (en) 1998-06-04

Family

ID=13979135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1089739A Expired - Fee Related JP2762544B2 (en) 1989-04-11 1989-04-11 Low dielectric constant printed wiring board materials

Country Status (1)

Country Link
JP (1) JP2762544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059083B2 (en) 2015-03-23 2018-08-28 Tatsuta Electric Wire & Cable Co., Ltd. Method of manufacturing resin impregnated material, composite material and copper-clad laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290808A (en) * 1985-02-26 1987-04-25 ダブリユ− エル ゴア アンド アソシエイツ インコ−ポレ−テツド Dielectric material and manufacture of the same
JPS6369106A (en) * 1986-09-11 1988-03-29 松下電工株式会社 Laminate plate for electricity and printed wiring board using the same
JPS63159442A (en) * 1986-12-23 1988-07-02 Sumitomo Bakelite Co Ltd Thermosetting resin laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290808A (en) * 1985-02-26 1987-04-25 ダブリユ− エル ゴア アンド アソシエイツ インコ−ポレ−テツド Dielectric material and manufacture of the same
JPS6369106A (en) * 1986-09-11 1988-03-29 松下電工株式会社 Laminate plate for electricity and printed wiring board using the same
JPS63159442A (en) * 1986-12-23 1988-07-02 Sumitomo Bakelite Co Ltd Thermosetting resin laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059083B2 (en) 2015-03-23 2018-08-28 Tatsuta Electric Wire & Cable Co., Ltd. Method of manufacturing resin impregnated material, composite material and copper-clad laminate

Also Published As

Publication number Publication date
JP2762544B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
CN113614172B (en) Resin composition and use thereof
US8636868B2 (en) Method for manufacturing laminated board, and laminated board
KR970003990B1 (en) Laminating material for printed circuit board of low dielectric constant
WO2006112474A2 (en) Fiber-resin composite material, multilayer body, printed wiring board, amd method for manufacturing printed wiring board
JP2004025835A (en) Resin coated metal foil, metal-clad laminate, printed wiring board using the same, and its manufacturing process
JP3178925B2 (en) Curable resin composition
JPH06507758A (en) Printed wiring board and its manufacturing method
JP2004123870A (en) Prepreg manufacturing process and transfer sheet
JP7012505B2 (en) Glass cloth, prepreg, and printed wiring board
KR20220009342A (en) Composite and copper clad laminate made therefrom
WO2020045112A1 (en) Multilayer body, metal foil-clad laminate, multilayer body with patterned metal foil, multilayer body having buildup structure, printed wiring board, multilayer coreless substrate and method for producing same
JPH02268486A (en) Printed wiring board material of low permittivity
JPH02268485A (en) Printed wiring board material of low permittivity
JPH08157621A (en) Prepreg, printed board using the same and cover lay film
JP2004269590A (en) Resin composition, prepreg and laminate
JPH09307203A (en) Printed circuit board and its manufacture
JP2004324007A (en) Treating agent for polyimide fiber, polyimide fiber treated therewith, nonwoven fabric and composite material
JPH01139629A (en) Production of thermosetting resin laminated board having low dielectric constant
JPH01306238A (en) Low permittivity laminate with mixed fiber woven cloth as base
JP2661123B2 (en) Low permittivity laminates based on composite twisted woven fabric
JPS63145022A (en) Manufacture of multilayer printed wiring board
JPH01307290A (en) Laminating material for multilayer printed wiring board
JP2661137B2 (en) Low permittivity laminates based on composite twisted woven fabric
JPH01166595A (en) Laminated plate with low dielectric constant using composite yarn cloth as base material
JPS583299A (en) Method of producing flash circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees