JP2004269590A - Resin composition, prepreg and laminate - Google Patents

Resin composition, prepreg and laminate Download PDF

Info

Publication number
JP2004269590A
JP2004269590A JP2003059288A JP2003059288A JP2004269590A JP 2004269590 A JP2004269590 A JP 2004269590A JP 2003059288 A JP2003059288 A JP 2003059288A JP 2003059288 A JP2003059288 A JP 2003059288A JP 2004269590 A JP2004269590 A JP 2004269590A
Authority
JP
Japan
Prior art keywords
resin
resin composition
weight
prepreg
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059288A
Other languages
Japanese (ja)
Other versions
JP4159902B2 (en
Inventor
Tadasuke Endo
忠相 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003059288A priority Critical patent/JP4159902B2/en
Publication of JP2004269590A publication Critical patent/JP2004269590A/en
Application granted granted Critical
Publication of JP4159902B2 publication Critical patent/JP4159902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition, a prepreg and a laminate which are excellent in dielectric characteristics at a high frequency and heat resistance. <P>SOLUTION: The resin composition is used for forming a prepreg in the form of a sheet by impregnating a base material therewith. It contains a phenylaralkylmaleimide resin and a cyanate resin. The prepreg is obtained by impregnating a base material with the resin composition. The laminate is obtained by laminating one or more plies of the prepreg. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂組成物、プリプレグおよび積層板に関する。
【0002】
【従来の技術】
近年ノート型パーソナルコンピューターや携帯電話等の情報処理用機器は高速化が要求されておりCPUクロック周波数が高くなっている。そのため信号伝搬速度の高速化が要求されている。このため高周波領域で誘電率、誘電正接の低いプリント板であることが必要とされる。
【0003】
誘電特性に優れるプリント板を提供する方法として、1分子中に2個以上のシアナト基を含有するシアネート樹脂と、エポキシ樹脂等とを含むプリント板が開示されている(特許文献1参照)。
しかし、高周波における誘電特性に更なる改善が求められていた。
【0004】
【特許文献1】
特開平11―279375号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、高周波での誘電特性、耐熱性に優れた樹脂組成物、プリプレグ及び積層板を提供することである。
【0006】
【課題を解決するための手段】
このような目的は、下記(1)〜(8)に記載の本発明により達成される。
(1)基材に含浸させてシート状のプリプレグを形成するために用いる樹脂組成物であって、フェニルアラルキルマレイミド樹脂と、シアネート樹脂とを含むことを特徴とする樹脂組成物。
(2)さらにエポキシ樹脂を含むものである上記(1)に記載の樹脂組成物。
(3)前記フェニルアラルキルマレイミド樹脂は、下記式(I)で表されるものである上記(1)または(2)に記載の樹脂組成物。
【化2】

Figure 2004269590
(4)前記フェニルアラルキルマレイミド樹脂の含有量は、樹脂組成物全体の20〜50重量%である上記(1)ないし(3)のいずれかに記載の樹脂組成物。
(5)前記シアネート樹脂は、ノボラック型シアネート樹脂である上記(1)ないし(4)のいずれかに記載の樹脂組成物。
(6)前記シアネート樹脂の含有量は、樹脂組成物全体の30〜60重量%である上記(1)ないし(5)のいずれかに記載の樹脂組成物。
(7)上記(1)ないし(6)のいずれかに記載の樹脂組成物を基材に含浸させてなることを特徴とするプリプレグ。
(8)上記(7)に記載のプリプレグを1枚以上成形してなることを特徴とする積層板。
【0007】
【発明の実施の形態】
以下、本発明の樹脂組成物、プリプレグおよび積層板について、詳細に説明する。
本発明の樹脂組成物は、基材に含浸させてシート状のプリプレグを形成するために用いる樹脂組成物であって、フェニルアラルキルマレイミド樹脂と、シアネート樹脂とを含むことを特徴とするものである。
また、本発明のプリプレグは、上述の樹脂組成物を基材に含浸させてなることを特徴とするものである。
また、本発明の積層板は、上述のプリプレグ1枚以上を成形してなることを特徴とするものである。
【0008】
以下、本発明の樹脂組成物について説明する。
本発明の樹脂組成物では、基材に含浸させてシート状のプリプレグを形成するために用いるものである。
本発明の樹脂組成物では、フェニルアラルキルマレイミド樹脂を含む。これにより、特に1GHz〜10GHzのような高周波帯での誘電特性を向上することができる。
前記フェニルアラルキルマレイミド樹脂としては、例えば下記一般式(I)で表されるフェニルアラルキルマレイミド樹脂を挙げることができる。
【化3】
Figure 2004269590
前記一般式(I)において繰り返し単位nは、特に限定されないが、1〜10が好ましく、2〜7が好ましい。nが前記下限値未満であると耐熱性が低下する場合があり、前記上限値を超えると他成分との相溶性が低下する場合がある。
【0009】
前記フェニルアラルキルマレイミド樹脂の含有量は、特に限定されないが、樹脂組成物全体の20〜50重量%が好ましく、特に30〜40重量%が好ましい。含有量が前記下限値未満であると高周波での誘電特性を向上する効果が低下する場合があり、前記上限値を越えると密着性が低下する場合がある。
【0010】
本発明の樹脂組成物では、シアネート樹脂を含む。これにより、樹脂組成物の耐熱性、誘電特性を向上させることができる。
前記シアネート樹脂としては、例えばノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができる。前記シアネート樹脂は、例えばハロゲン化シアン化合物とフェノール類とを反応させて得られる。
【0011】
これらの中でも特に、ノボラック型シアネート樹脂が好ましい。これにより、特に樹脂組成物の線膨張率を低下することができ、それによって積層板の信頼性を向上することができる。
ノボラック型シアネート樹脂としては、下記(II)式で表されるものが特に好ましい。
【化4】
Figure 2004269590
前記一般式(II)において繰り返し単位nは、特に限定されないが、1〜10が好ましく、2〜7が好ましい。nが前記下限値未満であるとノボラック型シアネート樹脂が結晶化しやすくなり、汎用溶媒に対する溶解性の低下により作業性が低下する場合あり、前記上限値を超えると他成分との相溶性が低下する場合がある。
【0012】
前記シアネート樹脂の含有量は、特に限定されないが、樹脂組成物全体の30〜60重量%が好ましく、特に40〜50重量%が好ましい。含有量が前記下限値未満であると耐熱性を向上する効果が低下する場合があり、前記上限値を超えると密着性が低下する場合がある。
【0013】
前記フェニルアラルキルマレイミド樹脂と、シアネート樹脂(特にノボラック型シアネート樹脂)とを併用することで、低吸水性、半田耐熱性を達成でき、さらに、フェニルアラルキルマレイミド樹脂以外のマレイミド樹脂を用いた樹脂組成物では得られなかった低誘電率、低誘電正接を達成することができる。
【0014】
また、特にノボラック型シアネート樹脂は硬化反応によってトリアジン環を生じるが、トリアジン環は対称性に優れているため分極が小さく誘電特性が優れている。また架橋密度が高いため、ガラス転移温度が高く耐熱性に優れている。
しかし、ノボラック型シアネート樹脂は、架橋密度が高いため硬化時にひずみを生じ、未反応シアネート基が残存し高周波での誘電特性が劣る欠点がある。そこで、ノボラック型シアネート樹脂にフェニルアラルキルマレイミド樹脂を併用すると、マレイミドの二重結合はシアネート基と反応するため樹脂骨格中にとりこむことができ、未反応のシアネート基を完全に反応させることができる。本発明では、より高周波での誘電特性に優れたフェニルアラルキルマレイミド樹脂を用いる。これにより広い周波数帯域で誘電特性に優れた樹脂組成物を得ることができる。
【0015】
本発明の樹脂組成物では、特に限定されないが、さらにエポキシ樹脂を含むことが好ましい。これにより、密着性を向上することができる。
前記エポキシ樹脂としては、例えばビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニルアラルキルエポキシ樹脂等のビフェニル型エポキシ樹脂、フェノキシ樹脂等が挙げられる。これらの中でもビスフェノール型エポキシ樹脂とビフェニルアラルキルエポキシ樹脂を併用することが好ましい。これにより、特に密着性および耐燃性、吸水性を向上することができる。
【0016】
前記エポキシ樹脂の含有量は、特に限定されないが、樹脂組成物全体の5〜40重量%が好ましく、特に10〜30重量%が好ましい。含有量が前記範囲内であると、特に誘電特性を損なうことなく密着性を向上することができる。
【0017】
本発明の樹脂組成物は、上述したフェニルアラルキルマレイミド樹脂とシアネート樹脂とを必須成分として含有するが、本発明の目的に反しない範囲において、その他の樹脂、硬化促進剤、カップリング剤、難燃剤、その他の成分を添加することは差し支えない。
【0018】
次に、プリプレグについて説明する。
本発明のプリプレグは、上述の樹脂組成物を基材に含浸させてなるものである。これにより、耐熱性、誘電特性(特に高周波帯での誘電特性)に優れたプリプレグを得ることができる。
本発明で用いる基材としては、ガラス繊布、ガラス不繊布等のガラス繊維基材、あるいはガラス以外の無機化合物を成分とする繊布又は不繊布等の無機繊維基材、芳香族ポリアミド樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、ポリエステル樹脂、ポリイミド樹脂、フッ素樹脂等の有機繊維で構成される有機繊維基材等が挙げられる。これら基材の中でも強度、吸水率の点でガラス織布に代表されるガラス繊維基材が好ましい。
【0019】
本発明で得られる樹脂組成物を基材に含浸させる方法には、例えば基材を樹脂ワニスに含浸する方法、各種コーターによる塗布する方法、スプレーによる吹き付ける方法等が挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、基材に対する樹脂組成物の含浸性を向上することができる。なお、基材を樹脂ワニスに含浸する場合、通常の含浸塗布設備を使用することができる。
【0020】
前記樹脂ワニスに用いられる溶媒は、前記樹脂組成物に対して良好な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶媒としては、例えばメチルエチルケトン、ジメチルホルムアミド等が挙げられる。
前記樹脂ワニスの固形分は、特に限定されないが、前記樹脂組成物の固形分40〜80重量部が好ましく、特に50〜65重量部が好ましい。これにより、樹脂ワニスの基材への含浸性を更に向上できる。
前記基材に前記樹脂組成物を含浸させ、所定温度、例えば80〜200℃等で乾燥させることによりプリプレグを得ることができる。
【0021】
次に積層板について説明する。
本発明の積層板は、上述のプリプレグ1枚以上を成形してなるものである。これにより、耐熱性および誘電特性(特に高周波帯での誘電特性)に優れた積層板を得ることができる。
プリプレグ1枚のときはその上下もしくは片面に金属箔あるいはフィルムを重ねる。また、プリプレグ2枚以上を積層することもできる。プリプレグ2枚以上を積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔あるいはフィルムを重ねる。
前記金属箔を構成する金属としては、例えば銅または銅系合金、鉄または鉄系合金、アルミまたはアルミ系合金等が挙げられる。
【0022】
次に、プリプレグと金属箔を重ねたものを加熱、加圧することで積層板を得ることができる。前記加熱する温度は、特に限定されないが、120〜220℃が好ましく、特に150〜200℃が好ましい。また前記加熱する圧力は、特に限定されないが、2.0〜5.0MPaが好ましく、特に2.5〜4.0MPaが好ましい。
【0023】
【実施例】
以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
▲1▼樹脂ワニスの調製
ノボラック型シアネート樹脂(ロンザ社製PT−60、重量平均分子量2,300)50重量%と、フェニルアラルキルマレイミド樹脂(三井化学ファイン社製ANILIX−MI、重量平均分子量650)30重量%と、ビフェニルアラルキルエポキシ樹脂(日本化薬社製NC−3000S−H)10重量%と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製1016FH)10重量%と、樹脂成分100重量部に対してコバルトアセチルアセトナート0.05重量部とをジメチルホルムアミドに加え、不揮発分濃度55重量%となるようにワニスを調整した。
【0024】
▲2▼プリプレグの作製
上述のワニスを用いて、ガラス繊布(厚さ0.088mm、日東紡績社製)100重量部にワニス固形分で160重量部含浸させて、150℃の乾燥機炉で5分乾燥させ、樹脂含有量62%のプリプレグを作製した。
【0025】
▲3▼積層板の作製
上記プリプレグを3枚重ね、上下に厚さ18μmの電解銅箔を重ねて、圧力40kgf/cm 、温度200℃で120分、220℃で60分加熱加圧成形を行い、厚さ0.5mmの両面銅張積層板を得た。
【0026】
(実施例2)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
ノボラック型シアネート樹脂(ロンザ社製PT−60)55重量%と、フェニルアラルキルマレイミド樹脂(三井化学ファイン社製ANILIX−MI)30重量%と、ビフェニルアラルキルエポキシ樹脂(日本化薬社製NC−3000S−H)10重量%と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製1016FH)10重量%と、樹脂成分100重量部に対してコバルトアセチルアセトナート0.05重量部とした。
【0027】
(実施例3)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
ノボラック型シアネート樹脂(ロンザ社製PT−60)35重量%と、フェニルアラルキルマレイミド樹脂(三井化学ファイン社製ANILIX−MI)40重量%と、ビフェニルアラルキルエポキシ樹脂(日本化薬社製NC−3000S−H)15重量%と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製1016FH)10重量%と、樹脂成分100重量部に対してコバルトアセチルアセトナート0.05重量部とした。
【0028】
(実施例4)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
ノボラック型シアネート樹脂(ロンザ社製PT−60)50重量%と、フェニルアラルキルマレイミド樹脂(三井化学ファイン社製ANILIX−MI)25重量%と、ビフェニルアラルキルエポキシ樹脂(日本化薬社製NC−3000S−H)15重量%と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製1016FH)10重量%と、樹脂成分100重量部に対してコバルトアセチルアセトナート0.05重量部とした。
【0029】
(実施例5)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
ノボラック型シアネート樹脂(ロンザ社製PT−60)40重量%と、フェニルアラルキルマレイミド樹脂(三井化学ファイン社製ANILIX−MI)45重量%と、ビフェニルアラルキルエポキシ樹脂(日本化薬社製NC−3000S−H)10重量%と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製1016FH)10重量%と、樹脂成分100重量部に対してコバルトアセチルアセトナート0.05重量部とした。
【0030】
(実施例6)
シアネート樹脂として、ビスフェノール型シアネート樹脂を用いた以外は、実施例1と同様にした。
ノボラック型シアネート樹脂に変えて、ビスフェノールA型シアネート樹脂(プレポリマー化:3量化率40%、商品名:チバガイギー社製B−40)を用いた。
【0031】
(比較例1)
フェニルアラルキルマレイミド樹脂の代わりに、ビスマレイミド化合物(ケイ・アイ化成社製BMI−80)を用いた以外は、実施例1と同様にした。
【0032】
各実施例および比較例により、得られた積層板について次の評価を行った。評価項目を方法と共に示す。得られた結果を表1に示す。
▲1▼ガラス転移温度
サンプルは、1.2mmの積層板を用いて、ガラス転移点はレオメトリックス製 RDS−7700を用いて、昇温速度3℃/min、周波数1Hzで測定した。
【0033】
▲2▼誘電特性
周波誘電率、誘電正接の測定は、1MHzではJIS C 6481に準じて行い、周波数1MHzの静電容量を測定して求めた。
また、周波数1GHzでの誘電率、誘電正接の測定はアジレントテクノロジー製 ネットワークアナライザHP8510を用いてトリプレート線路共振器法で測定した。
【0034】
▲3▼半田耐熱性
半田耐熱性は、JISC6481に準じて測定した。測定は煮沸2時間の吸湿処理を行った後、260℃の半田槽に120秒浸漬した後の外観の異常の有無を調べた。
【0035】
▲4▼吸水率
吸水率は、130℃で2時間乾燥後の重量と煮沸2時間の吸湿処理を行った後の重量から測定した。
【0036】
▲5▼ピール強度
ピール強度は、JIS C 6481に準じて測定した。
【0037】
【表1】
Figure 2004269590
表の注
(1)ノボラック型シアネート樹脂(軟化点60℃ロンザ社製PT−60)
(2)ビスフェノールA型シアネート樹脂(プレポリマー化:3量化率40%、商品名:チバガイギー社製B−40)
(3)フェニルアラルキルマレイミド樹脂(三井化学ファイン社製ANILIX−MI)
(4)ビスマレイミド化合物(ケイ・アイ化成社製BMI−80)
(5)ビフェニルアラルキルエポキシ樹脂(エポキシ当量290日本化薬社製NC−3000S−H)
(6)ビスフェノールA型エポキシ樹脂(エポキシ当量1425ジャパンエポキシレジン社製1016FH)
【0038】
表1から明らかなように、実施例1〜6は、1GHzおよび10GHzのような高周波帯域での誘電特性に優れ、かつ半田耐熱性にも優れていた。
また、実施例1〜6は、ピール強度にも優れ、密着性にも優れていることが示された。
また、実施例1、3および6は、吸水率も低くなっていた。
【0039】
【発明の効果】
本発明によれば、高周波での誘電特性および耐熱性に優れた樹脂組成物、プリプレグおよび積層板を提供することができる。
また、さらにエポキシ樹脂を含有することにより、密着性を向上することができる。
さらに、ノボラック型シアネート樹脂を含有する場合、特に耐熱性に優れた樹脂組成物を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin composition, a prepreg, and a laminate.
[0002]
[Prior art]
In recent years, information processing devices such as notebook personal computers and mobile phones have been required to operate at higher speeds, and the CPU clock frequency has been increasing. Therefore, a higher signal propagation speed is required. For this reason, a printed board having a low dielectric constant and a low dielectric loss tangent in a high frequency region is required.
[0003]
As a method for providing a printed board having excellent dielectric properties, a printed board including a cyanate resin containing two or more cyanato groups in one molecule, an epoxy resin, and the like is disclosed (see Patent Document 1).
However, further improvement in dielectric properties at high frequencies has been required.
[0004]
[Patent Document 1]
JP-A-11-279375
[Problems to be solved by the invention]
An object of the present invention is to provide a resin composition, a prepreg, and a laminate having excellent dielectric characteristics and heat resistance at high frequencies.
[0006]
[Means for Solving the Problems]
Such an object is achieved by the present invention described in the following (1) to (8).
(1) A resin composition used to form a sheet-shaped prepreg by impregnating a base material, the resin composition comprising a phenylaralkylmaleimide resin and a cyanate resin.
(2) The resin composition according to the above (1), further comprising an epoxy resin.
(3) The resin composition according to the above (1) or (2), wherein the phenylaralkylmaleimide resin is represented by the following formula (I).
Embedded image
Figure 2004269590
(4) The resin composition according to any one of the above (1) to (3), wherein the content of the phenylaralkylmaleimide resin is 20 to 50% by weight of the entire resin composition.
(5) The resin composition according to any one of (1) to (4), wherein the cyanate resin is a novolak-type cyanate resin.
(6) The resin composition according to any one of the above (1) to (5), wherein the content of the cyanate resin is 30 to 60% by weight of the entire resin composition.
(7) A prepreg comprising a substrate impregnated with the resin composition according to any one of (1) to (6).
(8) A laminated plate obtained by molding at least one prepreg according to (7).
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the resin composition, prepreg, and laminate of the present invention will be described in detail.
The resin composition of the present invention is a resin composition used to form a sheet-shaped prepreg by impregnating a base material, and includes a phenylaralkylmaleimide resin and a cyanate resin. .
Further, a prepreg of the present invention is characterized in that a base material is impregnated with the above resin composition.
Further, the laminated board of the present invention is characterized by being formed by molding one or more prepregs described above.
[0008]
Hereinafter, the resin composition of the present invention will be described.
The resin composition of the present invention is used for forming a sheet-shaped prepreg by impregnating a base material.
The resin composition of the present invention contains a phenylaralkyl maleimide resin. This can improve the dielectric characteristics particularly in a high frequency band such as 1 GHz to 10 GHz.
Examples of the phenylaralkyl maleimide resin include a phenylaralkyl maleimide resin represented by the following general formula (I).
Embedded image
Figure 2004269590
In the general formula (I), the repeating unit n is not particularly limited, but is preferably 1 to 10, and more preferably 2 to 7. When n is less than the lower limit, the heat resistance may decrease, and when n exceeds the upper limit, the compatibility with other components may decrease.
[0009]
The content of the phenylaralkyl maleimide resin is not particularly limited, but is preferably 20 to 50% by weight, and particularly preferably 30 to 40% by weight of the whole resin composition. If the content is less than the lower limit, the effect of improving the dielectric properties at high frequencies may decrease, and if the content exceeds the upper limit, the adhesion may decrease.
[0010]
The resin composition of the present invention contains a cyanate resin. Thereby, heat resistance and dielectric properties of the resin composition can be improved.
Examples of the cyanate resin include a novolak type cyanate resin, a bisphenol A type cyanate resin, a bisphenol E type cyanate resin, and a bisphenol type cyanate resin such as a tetramethyl bisphenol F type cyanate resin. The cyanate resin is obtained, for example, by reacting a cyanogen halide compound with a phenol.
[0011]
Among these, a novolak type cyanate resin is particularly preferable. As a result, the coefficient of linear expansion of the resin composition can be particularly reduced, thereby improving the reliability of the laminate.
As the novolak type cyanate resin, those represented by the following formula (II) are particularly preferable.
Embedded image
Figure 2004269590
In the general formula (II), the repeating unit n is not particularly limited, but is preferably 1 to 10, and more preferably 2 to 7. When n is less than the lower limit, the novolak type cyanate resin is easily crystallized, and the workability may be reduced due to a decrease in solubility in a general-purpose solvent, and if it exceeds the upper limit, the compatibility with other components is reduced. There are cases.
[0012]
The content of the cyanate resin is not particularly limited, but is preferably 30 to 60% by weight, and particularly preferably 40 to 50% by weight of the whole resin composition. If the content is less than the lower limit, the effect of improving heat resistance may decrease, and if it exceeds the upper limit, the adhesion may decrease.
[0013]
By using the phenylaralkyl maleimide resin in combination with a cyanate resin (particularly a novolak type cyanate resin), low water absorption and solder heat resistance can be achieved, and a resin composition using a maleimide resin other than the phenylaralkyl maleimide resin Can achieve a low dielectric constant and a low dielectric loss tangent that could not be obtained.
[0014]
In particular, a novolak-type cyanate resin generates a triazine ring by a curing reaction, but the triazine ring has excellent symmetry and thus has small polarization and excellent dielectric properties. Further, since the crosslinking density is high, the glass transition temperature is high and the heat resistance is excellent.
However, the novolak type cyanate resin has a drawback in that since the crosslink density is high, distortion occurs during curing, unreacted cyanate groups remain, and the dielectric properties at high frequencies are inferior. Therefore, when a phenylaralkylmaleimide resin is used in combination with a novolak-type cyanate resin, the double bond of the maleimide reacts with the cyanate group, so that it can be incorporated into the resin skeleton, and the unreacted cyanate group can be completely reacted. In the present invention, a phenylaralkylmaleimide resin having better dielectric properties at higher frequencies is used. This makes it possible to obtain a resin composition having excellent dielectric properties over a wide frequency band.
[0015]
Although not particularly limited, the resin composition of the present invention preferably further contains an epoxy resin. Thereby, the adhesiveness can be improved.
Examples of the epoxy resin include bisphenol-type epoxy resins such as bisphenol A epoxy resin and bisphenol F epoxy resin, novolak epoxy resins such as novolak epoxy resin and cresol novolak epoxy resin, biphenyl epoxy resins such as biphenylaralkyl epoxy resin, and phenoxy. Resins. Among these, it is preferable to use a bisphenol-type epoxy resin and a biphenylaralkyl epoxy resin in combination. Thereby, in particular, adhesion, flame resistance, and water absorption can be improved.
[0016]
The content of the epoxy resin is not particularly limited, but is preferably 5 to 40% by weight, and particularly preferably 10 to 30% by weight of the entire resin composition. When the content is within the above range, the adhesion can be improved without particularly deteriorating the dielectric properties.
[0017]
The resin composition of the present invention contains the above-described phenylaralkyl maleimide resin and cyanate resin as essential components, but other resins, a curing accelerator, a coupling agent, and a flame retardant within a range not contrary to the object of the present invention. , And other components may be added.
[0018]
Next, the prepreg will be described.
The prepreg of the present invention is obtained by impregnating a substrate with the above resin composition. Thereby, a prepreg excellent in heat resistance and dielectric characteristics (particularly, dielectric characteristics in a high frequency band) can be obtained.
Examples of the base material used in the present invention include glass fiber base materials such as glass fiber cloth and glass non-woven cloth, or inorganic fiber base materials such as cloth or non-woven cloth containing an inorganic compound other than glass, aromatic polyamide resin, and polyamide resin. And an organic fiber base composed of organic fibers such as aromatic polyester resin, polyester resin, polyimide resin, and fluororesin. Among these substrates, a glass fiber substrate represented by a glass woven fabric is preferable in terms of strength and water absorption.
[0019]
Examples of the method of impregnating the base material with the resin composition obtained in the present invention include a method of impregnating the base material into a resin varnish, a method of applying with a variety of coaters, and a method of spraying with a spray. Among these, the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition to the base material can be improved. When the base material is impregnated with the resin varnish, ordinary impregnation coating equipment can be used.
[0020]
The solvent used for the resin varnish desirably exhibits good solubility in the resin composition, but a poor solvent may be used as long as it does not adversely affect the solvent. Solvents exhibiting good solubility include, for example, methyl ethyl ketone, dimethylformamide and the like.
The solid content of the resin varnish is not particularly limited, but the solid content of the resin composition is preferably 40 to 80 parts by weight, and particularly preferably 50 to 65 parts by weight. Thereby, the impregnation property of the resin varnish into the base material can be further improved.
A prepreg can be obtained by impregnating the base material with the resin composition and drying at a predetermined temperature, for example, 80 to 200 ° C.
[0021]
Next, the laminate will be described.
The laminate of the present invention is obtained by molding one or more prepregs described above. Thereby, a laminate having excellent heat resistance and dielectric characteristics (particularly, dielectric characteristics in a high frequency band) can be obtained.
In the case of one prepreg, a metal foil or film is laminated on the upper and lower sides or on one side. Also, two or more prepregs can be laminated. When laminating two or more prepregs, a metal foil or a film is laminated on the outermost upper and lower surfaces or one surface of the laminated prepreg.
Examples of the metal constituting the metal foil include copper or a copper-based alloy, iron or an iron-based alloy, aluminum or an aluminum-based alloy.
[0022]
Next, a laminated board can be obtained by heating and pressing a laminate of the prepreg and the metal foil. The heating temperature is not particularly limited, but is preferably from 120 to 220 ° C, particularly preferably from 150 to 200 ° C. The heating pressure is not particularly limited, but is preferably from 2.0 to 5.0 MPa, and particularly preferably from 2.5 to 4.0 MPa.
[0023]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(Example 1)
{Circle around (1)} Preparation of resin varnish 50% by weight of novolak type cyanate resin (PT-60, manufactured by Lonza, weight average molecular weight 2,300) and phenylaralkyl maleimide resin (ANILIX-MI, manufactured by Mitsui Chemicals Fine Chemicals, weight average molecular weight 650) 30% by weight, 10% by weight of biphenyl aralkyl epoxy resin (NC-3000S-H manufactured by Nippon Kayaku), 10% by weight of bisphenol A type epoxy resin (1016FH manufactured by Japan Epoxy Resin), and 100 parts by weight of resin component On the other hand, 0.05 parts by weight of cobalt acetylacetonate was added to dimethylformamide, and the varnish was adjusted to a non-volatile concentration of 55% by weight.
[0024]
{Circle around (2)} Preparation of prepreg Using the above-mentioned varnish, 100 parts by weight of glass fabric (0.088 mm in thickness, manufactured by Nitto Boseki Co., Ltd.) was impregnated with 160 parts by weight of varnish solids, and dried at 150 ° C. in a drying oven. After drying for a minute, a prepreg having a resin content of 62% was prepared.
[0025]
▲ 3 ▼ three sheets to produce the prepreg laminates, overlapping the electrolytic copper foil having a thickness of 18μm up and down, pressure 40 kgf / cm 2, 120 minutes at a temperature 200 ° C., a 60-minute hot pressing at 220 ° C. Then, a double-sided copper-clad laminate having a thickness of 0.5 mm was obtained.
[0026]
(Example 2)
Example 1 was repeated except that the composition of the resin varnish was as follows.
55% by weight of novolak type cyanate resin (PT-60 manufactured by Lonza), 30% by weight of phenylaralkyl maleimide resin (ANILIX-MI manufactured by Mitsui Chemicals Fine), and biphenylaralkyl epoxy resin (NC-3000S- manufactured by Nippon Kayaku Co., Ltd.) H) 10% by weight, 10% by weight of a bisphenol A type epoxy resin (1016FH manufactured by Japan Epoxy Resin Co.), and 0.05 part by weight of cobalt acetylacetonate based on 100 parts by weight of the resin component.
[0027]
(Example 3)
Example 1 was repeated except that the composition of the resin varnish was as follows.
35% by weight of a novolak type cyanate resin (PT-60 manufactured by Lonza), 40% by weight of a phenylaralkyl maleimide resin (ANILIX-MI manufactured by Mitsui Chemicals Fine), and a biphenylaralkyl epoxy resin (NC-3000S- manufactured by Nippon Kayaku) H) 15% by weight, 10% by weight of a bisphenol A type epoxy resin (1016FH, manufactured by Japan Epoxy Resin Co.), and 0.05 part by weight of cobalt acetylacetonate based on 100 parts by weight of the resin component.
[0028]
(Example 4)
Example 1 was repeated except that the composition of the resin varnish was as follows.
50% by weight of a novolak type cyanate resin (PT-60 manufactured by Lonza), 25% by weight of a phenylaralkyl maleimide resin (ANILIX-MI manufactured by Mitsui Chemicals Fine), and a biphenylaralkyl epoxy resin (NC-3000S- manufactured by Nippon Kayaku) H) 15% by weight, 10% by weight of a bisphenol A type epoxy resin (1016FH, manufactured by Japan Epoxy Resin Co.), and 0.05 part by weight of cobalt acetylacetonate based on 100 parts by weight of the resin component.
[0029]
(Example 5)
Example 1 was repeated except that the composition of the resin varnish was as follows.
40% by weight of a novolak type cyanate resin (PT-60 manufactured by Lonza), 45% by weight of a phenylaralkyl maleimide resin (ANILIX-MI manufactured by Mitsui Chemicals Fine), and a biphenylaralkyl epoxy resin (NC-3000S- manufactured by Nippon Kayaku) H) 10% by weight, 10% by weight of a bisphenol A type epoxy resin (1016FH manufactured by Japan Epoxy Resin Co.), and 0.05 part by weight of cobalt acetylacetonate based on 100 parts by weight of the resin component.
[0030]
(Example 6)
Example 1 was repeated except that a bisphenol-type cyanate resin was used as the cyanate resin.
Instead of the novolak type cyanate resin, a bisphenol A type cyanate resin (prepolymerization: trimerization ratio 40%, trade name: C-40, manufactured by Ciba Geigy) was used.
[0031]
(Comparative Example 1)
The same procedure as in Example 1 was carried out except that a bismaleimide compound (BMI-80 manufactured by KI Kasei Co., Ltd.) was used instead of the phenylaralkylmaleimide resin.
[0032]
The following evaluations were performed on the obtained laminates according to the respective examples and comparative examples. The evaluation items are shown together with the method. Table 1 shows the obtained results.
{Circle around (1)} The glass transition temperature of a sample was measured using a 1.2 mm laminated plate, and the glass transition point was measured at a temperature rising rate of 3 ° C./min and a frequency of 1 Hz using RDS-7700 manufactured by Rheometrics.
[0033]
{Circle around (2)} Dielectric characteristics The dielectric constant and dielectric loss tangent were measured at 1 MHz according to JIS C6481, and were measured by measuring the capacitance at a frequency of 1 MHz.
The dielectric constant and the dielectric loss tangent at a frequency of 1 GHz were measured by a triplate line resonator method using a network analyzer HP8510 manufactured by Agilent Technologies.
[0034]
(3) Solder heat resistance Solder heat resistance was measured according to JISC6481. The measurement was carried out by performing a moisture absorption treatment for 2 hours after boiling and then examining the appearance of abnormalities after immersion in a solder bath at 260 ° C. for 120 seconds.
[0035]
{Circle around (4)} Water absorption The water absorption was measured from the weight after drying at 130 ° C. for 2 hours and the weight after performing a moisture absorption treatment for 2 hours at boiling.
[0036]
(5) Peel strength The peel strength was measured according to JIS C6481.
[0037]
[Table 1]
Figure 2004269590
Notes in the table (1) Novolak type cyanate resin (softening point 60 ° C, Lonza PT-60)
(2) Bisphenol A type cyanate resin (prepolymerization: trimerization ratio 40%, trade name: B-40 manufactured by Ciba Geigy)
(3) Phenylaralkyl maleimide resin (ANILIX-MI manufactured by Mitsui Chemicals Fine)
(4) Bismaleimide compound (BMI-80 manufactured by K-I Kasei Co., Ltd.)
(5) Biphenylaralkyl epoxy resin (epoxy equivalent 290, NC-3000SH manufactured by Nippon Kayaku Co., Ltd.)
(6) Bisphenol A type epoxy resin (epoxy equivalent 1425, 1016FH manufactured by Japan Epoxy Resin Co., Ltd.)
[0038]
As is clear from Table 1, Examples 1 to 6 were excellent in dielectric properties in high frequency bands such as 1 GHz and 10 GHz, and also excellent in solder heat resistance.
Examples 1 to 6 also showed excellent peel strength and excellent adhesion.
In Examples 1, 3 and 6, the water absorption was also low.
[0039]
【The invention's effect】
According to the present invention, it is possible to provide a resin composition, a prepreg, and a laminate having excellent dielectric properties and heat resistance at high frequencies.
Further, by further containing an epoxy resin, the adhesion can be improved.
Furthermore, when a novolak-type cyanate resin is contained, a resin composition having particularly excellent heat resistance can be provided.

Claims (8)

基材に含浸させてシート状のプリプレグを形成するために用いる樹脂組成物であって、
フェニルアラルキルマレイミド樹脂と、シアネート樹脂とを含むことを特徴とする樹脂組成物。
A resin composition used to form a sheet-shaped prepreg by impregnating a substrate,
A resin composition comprising a phenylaralkyl maleimide resin and a cyanate resin.
さらにエポキシ樹脂を含むものである請求項1に記載の樹脂組成物。The resin composition according to claim 1, further comprising an epoxy resin. 前記フェニルアラルキルマレイミド樹脂は、下記式(I)で表されるものである請求項1または2に記載の樹脂組成物。
Figure 2004269590
The resin composition according to claim 1, wherein the phenylaralkyl maleimide resin is represented by the following formula (I).
Figure 2004269590
前記フェニルアラルキルマレイミド樹脂の含有量は、樹脂組成物全体の20〜50重量%である請求項1ないし3のいずれかに記載の樹脂組成物。The resin composition according to any one of claims 1 to 3, wherein the content of the phenylaralkyl maleimide resin is 20 to 50% by weight of the entire resin composition. 前記シアネート樹脂は、ノボラック型シアネート樹脂である請求項1ないし4のいずれかに記載の樹脂組成物。The resin composition according to any one of claims 1 to 4, wherein the cyanate resin is a novolak type cyanate resin. 前記シアネート樹脂の含有量は、樹脂組成物全体の30〜60重量%である請求項1ないし5のいずれかに記載の樹脂組成物。The resin composition according to any one of claims 1 to 5, wherein the content of the cyanate resin is 30 to 60% by weight of the entire resin composition. 請求項1ないし6のいずれかに記載の樹脂組成物を基材に含浸させてなることを特徴とするプリプレグ。A prepreg comprising a substrate impregnated with the resin composition according to any one of claims 1 to 6. 請求項7に記載のプリプレグを1枚以上成形してなることを特徴とする積層板。A laminate obtained by molding at least one prepreg according to claim 7.
JP2003059288A 2003-03-06 2003-03-06 Resin composition, prepreg and laminate Expired - Fee Related JP4159902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059288A JP4159902B2 (en) 2003-03-06 2003-03-06 Resin composition, prepreg and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059288A JP4159902B2 (en) 2003-03-06 2003-03-06 Resin composition, prepreg and laminate

Publications (2)

Publication Number Publication Date
JP2004269590A true JP2004269590A (en) 2004-09-30
JP4159902B2 JP4159902B2 (en) 2008-10-01

Family

ID=33122140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059288A Expired - Fee Related JP4159902B2 (en) 2003-03-06 2003-03-06 Resin composition, prepreg and laminate

Country Status (1)

Country Link
JP (1) JP4159902B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010970A (en) * 2012-10-16 2013-01-17 Mitsubishi Gas Chemical Co Inc Method for producing prepreg
US8552123B2 (en) 2010-03-24 2013-10-08 Samsung Electronics Co., Ltd. Thermosetting resin, composition including the same, and printed board fabricated using the same
EP3216834A4 (en) * 2014-11-06 2018-05-30 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal-foil-clad laminated board, resin composite sheet, and printed circuit board
JP2019056046A (en) * 2017-09-20 2019-04-11 横浜ゴム株式会社 Cyanate ester resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
CN111825955A (en) * 2020-07-23 2020-10-27 海南大学 High-frequency prepreg, preparation method thereof, copper-clad plate and preparation method thereof
WO2022107624A1 (en) * 2020-11-20 2022-05-27 日鉄ケミカル&マテリアル株式会社 Poly(vinylbenzyl)ether compound, curable resin composition, cured product, curable composite material, composite material cured product, laminate, resin-equipped metal foil, and method for producing poly(vinylbenzyl)ether compound

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552123B2 (en) 2010-03-24 2013-10-08 Samsung Electronics Co., Ltd. Thermosetting resin, composition including the same, and printed board fabricated using the same
JP2013010970A (en) * 2012-10-16 2013-01-17 Mitsubishi Gas Chemical Co Inc Method for producing prepreg
EP3216834A4 (en) * 2014-11-06 2018-05-30 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal-foil-clad laminated board, resin composite sheet, and printed circuit board
US10550244B2 (en) 2014-11-06 2020-02-04 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
JP2019056046A (en) * 2017-09-20 2019-04-11 横浜ゴム株式会社 Cyanate ester resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP7192202B2 (en) 2017-09-20 2022-12-20 横浜ゴム株式会社 Cyanate ester resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
CN111825955A (en) * 2020-07-23 2020-10-27 海南大学 High-frequency prepreg, preparation method thereof, copper-clad plate and preparation method thereof
CN111825955B (en) * 2020-07-23 2023-07-21 海南大学 Prepreg for high frequency, preparation method thereof and copper-clad plate and preparation method thereof
WO2022107624A1 (en) * 2020-11-20 2022-05-27 日鉄ケミカル&マテリアル株式会社 Poly(vinylbenzyl)ether compound, curable resin composition, cured product, curable composite material, composite material cured product, laminate, resin-equipped metal foil, and method for producing poly(vinylbenzyl)ether compound

Also Published As

Publication number Publication date
JP4159902B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP6756108B2 (en) Resin film, resin film with support, prepreg, metal-clad laminate and multi-layer printed wiring board
KR20160037793A (en) Polyimide resin composition, adhesive composition, primer composition, laminate, and resin attached copper foil
JP5196085B2 (en) Resin composition for printed wiring board
JP4738622B2 (en) Heat resistant resin composition, prepreg and laminate using the same
JP4159902B2 (en) Resin composition, prepreg and laminate
JP5136331B2 (en) Circuit board resin composition, circuit board prepreg and laminate
JP3588836B2 (en) Thermosetting resin composition
JP2003238681A (en) Resin composition, prepreg, and laminate
JP3466304B2 (en) Thermosetting resin composition
JPWO2019203291A1 (en) Thermosetting compositions, prepregs, laminates, metal foil-clad laminates, printed wiring boards and multilayer printed wiring boards
JP5417714B2 (en) Circuit board resin composition, prepreg and laminate
JP2004018615A (en) Resin composition, prepreg and laminate
JP3261061B2 (en) Resin composition for laminate, prepreg and laminate using the composition
JP3981251B2 (en) Heat resistant resin composition, prepreg and laminate using the same
JP4742425B2 (en) Heat resistant resin composition, prepreg and laminate using the same
JP4783988B2 (en) Heat resistant resin composition, prepreg and laminate using the same
JP2004224817A (en) Resin composition and prepreg and laminated sheet using the same
JP3529088B2 (en) Epoxy resin composition, prepreg and laminate using the same
JP7310944B2 (en) Resin composition, support with resin layer, prepreg, laminate, multilayer printed wiring board, and printed wiring board for millimeter wave radar
JP2004137381A (en) Resin composition, prepreg, and laminated board
JP5292942B2 (en) Circuit board resin composition, prepreg and laminate
JP3261062B2 (en) Resin varnish for printed wiring board and method for producing prepreg and metal-clad laminate using the same
JP4742426B2 (en) Heat resistant resin composition, prepreg and laminate using the same
JP2007254746A (en) Heat resistant resin composition, prepreg and laminated board made by using it
JP5245809B2 (en) Circuit board resin composition, prepreg and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees