JPH02267810A - Heat conductive electric insulator - Google Patents

Heat conductive electric insulator

Info

Publication number
JPH02267810A
JPH02267810A JP8919889A JP8919889A JPH02267810A JP H02267810 A JPH02267810 A JP H02267810A JP 8919889 A JP8919889 A JP 8919889A JP 8919889 A JP8919889 A JP 8919889A JP H02267810 A JPH02267810 A JP H02267810A
Authority
JP
Japan
Prior art keywords
thermally conductive
heat
synthetic resin
heat conductive
organopolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8919889A
Other languages
Japanese (ja)
Other versions
JPH077605B2 (en
Inventor
Shu Kashida
周 樫田
Noboru Shimamoto
島本 登
Tsutomu Yoneyama
勉 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8919889A priority Critical patent/JPH077605B2/en
Publication of JPH02267810A publication Critical patent/JPH02267810A/en
Publication of JPH077605B2 publication Critical patent/JPH077605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the surface flexible and improve heat conductivity by laminating a specified synthetic resin film on the hardened material surface of a determined silicon rubber composite. CONSTITUTION:On the surface of a hardened material formed by hardening a silicon rubber composite containing organopolysiloxane and a heat conductive inorganic filler as main components, a synthetic resin film less than 10mum in thickness having a softening point of 40-120 deg.C is laminated. Any hardenable organopolysiloxane can be used without particular limitation, and when a one of crude rubber form having a high viscosity is used, the composite is rapidly hardened, and a heat conductive eleotric insulator excellent in rubber elasticity can be obtained. As the heat conductive inorganic filler, Al2O3, MgO, SnO, SiC, Al nitride and quartz can be used. The quartz, alumina, and Al nitride are used in 300-1200 parts per 100 parts (by weight) of organopolysiloxane, and B nitride is in 100-500 parts. As the film laminating synthetic resin, resins of polyethylene, ethylene vinyl monoacetic polymerization and polyurethane series are used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱伝導性電気絶縁体、特には熱伝導性であり、
かつはその表面に軟化点の低い合成樹脂皮膜が積層され
ており、発熱性電気、電子部品に接触したときに合成樹
脂が溶融してこれら部品に平滑に接触し、発生熱が有効
に除去されるので、発熱性電気、電子部品などの放熱用
被覆材として有用とされる熱伝導性電気絶縁体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thermally conductive electrical insulator, in particular a thermally conductive electrical insulator,
A synthetic resin film with a low softening point is layered on its surface, and when it comes into contact with heat-generating electrical or electronic parts, the synthetic resin melts and smoothly contacts these parts, effectively removing the generated heat. The present invention relates to a thermally conductive electrical insulator that is useful as a heat dissipating coating material for heat-generating electrical and electronic components.

[従来の技術] 従来、パワートランジスタ、サイリスタ、整流器あるい
はトランス等の発熱性電気、電子部品は、使用時に熱を
発生するため、これらの電気。
[Prior Art] Conventionally, heat-generating electric and electronic components such as power transistors, thyristors, rectifiers, and transformers generate heat when they are used.

電子部品については発熱性部品からの熱を放熱フィンや
金属放熱板により放熱することが行われているが、この
場合これらの間に熱伝導性電気絶縁体をシート状に介在
させることが必要とされ、この熱伝導性電気絶縁体とし
ては、シリコーンゴムに石英、アルミナ、窒化硼素等の
熱伝導性無機質充填剤を添加したシリコーンゴム組成物
を硬化したものが主に使われている。
For electronic components, heat from heat-generating components is radiated using heat-radiating fins or metal heat-radiating plates, but in this case it is necessary to interpose a sheet of thermally conductive electric insulator between these. As this thermally conductive electrical insulator, a cured silicone rubber composition is mainly used, which is made by adding a thermally conductive inorganic filler such as quartz, alumina, or boron nitride to silicone rubber.

また、この熱伝導性電気絶縁体を用いて発熱性電気、電
子部品から発生する熱を効率的に放熱するには、発熱性
電気、電子部品と熱伝導性電気絶縁体、さらには熱伝導
性電気絶縁体と放熱フィンや金属放熱板との接触面積が
大きい程有利である。このため、発熱性電気、電子部品
と放熱フィンや金属放熱板の間に熱伝導性電気絶縁体を
介在させた後、一定のトルク圧をかけてこれらをねじ締
めして各々の接触性を高め、接触面積を大きくすること
が行われている。
In addition, in order to efficiently radiate heat generated from heat-generating electrical and electronic components using this thermally conductive electrical insulator, it is necessary to use heat-generating electrical and electronic components and thermally conductive electrical insulators, and It is more advantageous to have a larger contact area between the electrical insulator and the heat sink or metal heat sink. For this reason, after interposing a thermally conductive electrical insulator between heat-generating electrical or electronic components and heat-radiating fins or metal heat-radiating plates, a certain amount of torque pressure is applied to tighten the screws to improve each contact. Efforts are being made to increase the area.

[発明が解決しようとする課題] しかし、この熱伝導性電気絶縁体もこれをねじ締めする
と各々の接触面積は広くなるが、ねじ締めした周辺部分
は十分に接触する反面、ねじ締め部分から離れたところ
の接触性が悪くなって接触性にむらが生じる上、発熱性
電気、電子部品等の表面は肉眼では平坦に見えるがミク
ロ的には凹凸が存在しており、ねじ締めのみではこの凹
凸のある接触面を完全に密着させることは難しい。
[Problem to be solved by the invention] However, when this thermally conductive electric insulator is screwed together, the contact area of each part becomes wider, but while the peripheral area where the screw is tightened is in sufficient contact, it is separated from the screwed area. In addition, the surface of heat-generating electrical and electronic components may appear flat to the naked eye, but microscopically there are irregularities, and screw tightening alone can remove these irregularities. It is difficult to make complete contact between contact surfaces.

そこで、熱伝導性電気絶縁体の両面に粘着層を設け、こ
の粘着層を介して発熱性電子部品等に熱伝導性電気絶縁
体を接着させることが行われており、この場合は接触に
むらが生じることなく発熱性電気、電子部品等の表面と
電気絶縁体の表面が完全に密着するが、この表面に粘着
層を有する熱伝導性電気絶縁体は、使用する際に粘着層
面から保護用セパレーターを剥離しなければならず、生
産性や作業性の点から好ましくなく、さらに粘着層の厚
みを増やすと、粘着力は増大するものの電気絶縁体の熱
伝導性が悪くなるという問題がある。
Therefore, adhesive layers are provided on both sides of a thermally conductive electrical insulator, and the thermally conductive electrical insulator is bonded to heat-generating electronic components through this adhesive layer. In this case, the contact is uneven. The surface of the heat-generating electrical or electronic component and the surface of the electrical insulator come into close contact with each other without causing any The separator must be peeled off, which is undesirable from the viewpoint of productivity and workability. Furthermore, if the thickness of the adhesive layer is increased, there is a problem that although the adhesive force increases, the thermal conductivity of the electrical insulator deteriorates.

[課題を解決するための手段] 本発明はこのような不利を解決した熱伝導性電気絶縁体
に関するもので、これはオルガノポリシロキサンと熱伝
導性無機質充填剤とを主成分とするシリコーンゴム組成
物を硬化させてなる硬化物表面に、軟化点が40〜12
0℃である厚さが109m以下の合成樹脂皮膜を積層し
てなることを特徴とするものである。
[Means for Solving the Problems] The present invention relates to a thermally conductive electrical insulator that overcomes these disadvantages, and is made of a silicone rubber composition containing organopolysiloxane and a thermally conductive inorganic filler as main components. The surface of the cured product obtained by curing the material has a softening point of 40 to 12.
It is characterized by being formed by laminating synthetic resin films having a thickness of 109 m or less at 0°C.

すなわち、本発明者らは発熱性電気、電子部品などに放
熱材として使用する熱伝導性電気絶縁材の改良について
種々検討した結果、オルガノポリシロキサンと熱伝導性
無機質充填剤とを主成分とするシリコーンゴム組成物を
硬化させてなる熱伝導性で電気絶縁性のシリコーンゴム
硬化物の表面に、軟化点の低い合成樹脂皮膜を積層する
と、このものは表面の合成樹脂皮膜が柔軟性を有してい
るので電気、電子部品などの表面にこれを接触させたと
きにこの表面に微細な凹凸が存在してもこの凹凸を吸収
して平滑な接触面を成形するし、この電気、電子部品が
その作動開始で発熱するとこの発熱によって合成樹脂皮
膜が軟化流動し、この電気、電子部品と熱伝導性電気絶
縁性成形体との接触がよりよくなるので、この熱伝導性
電気絶縁性成形体を放熱フィンまたは放熱板と接触させ
ておけば電気、電子部品の発熱を効率的に放熱させるこ
とができるということを見出し、ここに使用するオルガ
ノポリシロキサン、熱伝導性無機質充填剤1合成樹脂の
種類、添加量、皮膜厚さなどについての研究を進めて本
発明を完成させた。
That is, as a result of various studies on improving thermally conductive electrical insulating materials used as heat dissipating materials in heat-generating electrical and electronic components, the present inventors found that the main components are organopolysiloxane and a thermally conductive inorganic filler. When a synthetic resin film with a low softening point is laminated on the surface of a thermally conductive and electrically insulating cured silicone rubber product obtained by curing a silicone rubber composition, the synthetic resin film on the surface becomes flexible. Because of this, even if there are minute irregularities on the surface of electrical or electronic components, it absorbs these irregularities and forms a smooth contact surface. When it generates heat at the start of operation, the synthetic resin film softens and flows, improving the contact between the electrical and electronic components and the thermally conductive electrically insulating molded body, allowing the thermally conductive electrically insulating molded body to dissipate heat. We discovered that the heat generated by electrical and electronic components can be efficiently radiated by contacting them with fins or heat sinks, and we developed the organopolysiloxane used here, the thermally conductive inorganic filler 1, the type of synthetic resin, The present invention was completed by conducting research on the amount added, film thickness, etc.

以下これをさらに詳述する。This will be explained in more detail below.

[作 用] 本発明の熱伝導性電気絶縁体を得るために用いるシリコ
ーンゴム組成物は、上述したようにオルガノポリシロキ
サンと熱伝導性無機質充填剤とを主要成分とするもので
ある。
[Function] As described above, the silicone rubber composition used to obtain the thermally conductive electrical insulator of the present invention contains an organopolysiloxane and a thermally conductive inorganic filler as main components.

このオルガノポリシロキサンとしては、硬化可能なもの
であれば特に制限されないが、中でもジメチルポリシロ
キサン又はビニル基含有ジメチルポリシロキサンと有機
過酸化物とを必須成分として含有する熱加硫型オルガノ
ポリシロキサンや、ビニル基含有ジメチルポリシロキサ
ンと=Si)I基を有するジメチルハイドロジエンポリ
シロキサンと触媒の白金又は白金化合物とを必須成分と
して含有する付加反応硬化型オルガノポリシロキサン又
はこれらの混合物等が好適に用いられるが、特にオルガ
ノポリシロキサンとして生ゴム状で高粘度のものを使用
すると、組成物が速く硬化してゴム弾性に優れた熱伝導
性電気絶縁体を得ることができる。
The organopolysiloxane is not particularly limited as long as it is curable, but among them, heat-curable organopolysiloxane containing dimethylpolysiloxane or vinyl group-containing dimethylpolysiloxane and an organic peroxide as essential components, , an addition reaction curing type organopolysiloxane containing as essential components a vinyl group-containing dimethylpolysiloxane, a dimethylhydrodienepolysiloxane having an =Si)I group, and a catalyst platinum or a platinum compound, or a mixture thereof is preferably used. However, if a raw rubber-like organopolysiloxane with high viscosity is used, the composition will harden quickly and a thermally conductive electrical insulator with excellent rubber elasticity can be obtained.

また、この熱伝導性無機質充填剤としては、例えばアル
ミナ、酸化マグネシウム、酸化亜鉛、炭化ケイ素7窒化
アルミニウム、窒化硼素、黒鉛。
Examples of the thermally conductive inorganic filler include alumina, magnesium oxide, zinc oxide, silicon carbide 7 aluminum nitride, boron nitride, and graphite.

石英等を使用し得るが、これらのうちでは、価格や性能
の点からアルミナや窒化硼素を使用することが望ましく
、これら熱伝導性無機質充填剤は一種を単独で用いても
二種以上を混合して用いてもよい。
Although quartz etc. can be used, it is preferable to use alumina and boron nitride from the viewpoint of price and performance.These thermally conductive inorganic fillers can be used alone or in combination of two or more. It may also be used as

なお、この熱伝導性無機質充填剤の配合比は別に制限さ
れず、使用する充填剤の種類に応じた配合比とすること
ができるが、通常オルガノポリシロキサン100部(重
量部、以下同様)に対する各熱伝導性無81質充填剤の
好ましい配合比はこれが少ないと熱伝導性が不充分にな
るおそれがあり、逆に多すぎると得られるシリコーンゴ
ム成形体の機械的強度及び電気絶縁性が低下すると共に
、ゴム弾性が減少して発熱性電気、電子部品の放熱体と
の接触が不充分となり、その結果熱伝導効率が減少する
場合があるので、石英やアルミナ、窒化アルミニウムの
場合は300〜1200部、窒化硼素の場合は100〜
500部とすればよい。
Note that the blending ratio of this thermally conductive inorganic filler is not particularly limited and can be determined depending on the type of filler used, but usually the blending ratio is based on 100 parts (parts by weight, hereinafter the same) of organopolysiloxane. The preferred blending ratio of each thermally conductive 81-free filler is that if the ratio is too low, the thermal conductivity may be insufficient, and if the ratio is too high, the mechanical strength and electrical insulation properties of the resulting silicone rubber molded product will decrease. At the same time, the elasticity of the rubber decreases, resulting in insufficient contact with the heat dissipating body of heat-generating electrical and electronic components, and as a result, the heat conduction efficiency may decrease. 1200 parts, 100~ for boron nitride
It may be 500 copies.

なお、このシリコーンゴム組成物には、上記主要成分に
加えてその他の成分として所定量の加硫剤もしくは架橋
剤及び反応触媒が配合されるが、これCはさらに必要に
応じてシリカ等の補強性フィラー、加工助剤、難燃化剤
、硬化制御剤、密着向上剤1着色防止剤等を添加するこ
とができ、その使用成分や使用量などは公知のシリコー
ンゴム組成物と同様にすればよい。
In addition to the above-mentioned main components, this silicone rubber composition contains a predetermined amount of a vulcanizing agent or a crosslinking agent and a reaction catalyst as other components. Fillers, processing aids, flame retardants, curing control agents, adhesion improvers, color inhibitors, etc. can be added, and the ingredients and amounts used are the same as those for known silicone rubber compositions. good.

また、このシリコーンゴム組成物はフィルム。This silicone rubber composition can also be used as a film.

シート、チューブなどに成形することができるが、この
成形は公知の方法で行えばよく、したがってこれは例え
ばカレンダーロールを用いたシート状成形、押出機によ
るチューブ状又はシート状成形、コーティング法による
シート状成形等とすればよい。しかし、コーティング法
を採用する場合は、トルエン、キシレン、酢酸エチル、
トリクロルエチレン、テトラクロルエチレン等の有機溶
剤を用いてシリコーンゴム組成物を所定濃度で均一に溶
解して塗工用液を調整することが好ましく、さらにシー
ト状成形体に°はその片面又は両面にガラスクロス等を
貼合して強度を向上させることができるが、このガラス
クロス貼合工程は紫外線硬化皮膜形成前に行っても成形
後に行っても差支えない。なお、この成形体の淳さに特
に制限はないが、シート状やチューブ状に形成する場合
は0.1〜2mm程度が実用的である。
It can be formed into a sheet, tube, etc., and this forming can be done by any known method, such as forming a sheet into a sheet using a calendar roll, forming into a tube or sheet using an extruder, or forming a sheet into a sheet by a coating method. It may be formed into a shape or the like. However, when using the coating method, toluene, xylene, ethyl acetate,
It is preferable to prepare a coating liquid by uniformly dissolving the silicone rubber composition at a predetermined concentration using an organic solvent such as trichlorethylene or tetrachlorethylene. The strength can be improved by laminating glass cloth or the like, but this glass cloth laminating step may be performed before or after forming the ultraviolet-cured film. There is no particular limit to the thickness of this molded body, but when forming it into a sheet or tube shape, a thickness of about 0.1 to 2 mm is practical.

つぎに本発明の熱伝導性電気絶縁体は上記のようにして
得られた熱伝導性シリコーンゴム硬化物の表面に合成樹
脂皮膜を積層するのであるが、この合成樹脂としてはポ
リエチレン系樹脂、エチレン−酢酸ビニル共重合系樹脂
、ポリウレタン系樹脂、アクリル系樹脂、エポキシ系樹
脂、フェノール系樹脂などが例示され、これらはその単
独または2種あるいは2 fffi以上の混合で使用し
てもよい。しかし、この合成樹脂皮膜はこれが軟化して
流動可能となるときの温度である軟化点が40℃より低
いと夏期などの高温環境下での保存および取扱いが実用
的でなくなるし、120℃より高くなると発熱性電気、
電子部品の発熱による軟化が期待できなくなるので、こ
れは軟化点が40〜120℃の範囲のものとする必要が
ある。
Next, the thermally conductive electrical insulator of the present invention is produced by laminating a synthetic resin film on the surface of the thermally conductive silicone rubber cured product obtained as described above. - Vinyl acetate copolymer resins, polyurethane resins, acrylic resins, epoxy resins, phenol resins, etc. are exemplified, and these may be used alone or in combination of two or more fffi. However, if the softening point of this synthetic resin film, which is the temperature at which it softens and becomes fluid, is lower than 40°C, it becomes impractical to store and handle it in high-temperature environments such as in the summer; When it comes to exothermic electricity,
Since the electronic parts cannot be expected to soften due to heat generation, it is necessary that the softening point is in the range of 40 to 120°C.

この合成樹脂皮膜の熱伝導性シリコーンゴム成形体への
積層はどのような方法で行なってもよいが、これは例え
ば合成樹脂を適宜な有機溶剤に溶解してこれを熱伝導性
シリコーンゴム硬化物の表面に塗布するか、この硬化物
をその有機溶剤液に浸漬し、乾燥させればよく、この皮
膜の厚さは10μmより厚くなるとその熱伝導性に悪影
響が生ずるので、これは10℃1m以下とする必要があ
るが、好ましくは1〜2μmとすればよい。
The synthetic resin film may be laminated onto the thermally conductive silicone rubber molded body by any method, but for example, the synthetic resin may be dissolved in an appropriate organic solvent and then laminated onto the thermally conductive silicone rubber cured product. The cured product can be applied to the surface of The thickness needs to be below, preferably 1 to 2 μm.

[実施例] つぎに実施例及び比較例を挙げて本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではない
。なお、以下の例において部はいずれも・重量部であり
、例中における熱抵抗は下記の方法による測定値を示し
たものである。
[Examples] Next, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the following examples, all parts are parts by weight, and the thermal resistances in the examples are values measured by the following method.

〈熱抵抗〉 実施例、比較例で作られた熱伝導性電気絶縁体シートを
発熱性電子部品としてTO−3型のパワートランジスタ
2 sc 2245 [富士電機社製コと放熱器・FB
A−150PS−AN−0[オーニス社製コとの間に介
装して5kgのトルクで固定した。これに直流電流4A
、電圧7■を20分間印加し、放熱器とトランジスタと
の温度が平衡状態に達したときの両者の温度差を測定し
て、この値と印加した消費電力から熱抵抗値(’C:/
W)を求めた。
<Thermal Resistance> TO-3 type power transistor 2sc 2245 [Fuji Electric Co., Ltd. heatsink/FB
A-150PS-AN-0 [manufactured by Ornis Co., Ltd.] was interposed between the two and fixed with a torque of 5 kg. This has a DC current of 4A
, a voltage of 7■ is applied for 20 minutes, and when the temperatures of the radiator and the transistor reach an equilibrium state, the temperature difference between the two is measured, and from this value and the applied power consumption, the thermal resistance value ('C: /
W) was calculated.

実施例1〜8.比較例1〜4 ビニル基を0.05モル%含有するジメチルポリシロキ
サンゴムコンパウンド100部にアルミナ300部と2
.4−ジクロロベンゾイルパーオキサイド1.5部を添
加したシリコーンゴム組成物を170℃で15分間プレ
ス加硫して厚さ0.5+n+nの熱伝導性のシリコーン
ゴムシート(以下これヲs−1と略記する)を作ると共
に、ビニル基を0.1モル%含有するジメチルポリシロ
キサンゴムコンパウンド100部に窒化はう素150部
と2.4−ジクロロベンゾイルパーオキサイド1.0部
およびトルエン500部を添加したシリコーンゴム組成
物溶液を厚さO,15mmのガラスクロス上にバーコー
ターを用いて20cmI、lに連続的にコーティングし
、60℃に保持したのち熱風併用赤外線ドライヤーで溶
剤を除去し、ついで170℃で15分間プレス加硫して
厚さ0.5mmの熱伝導性のゴムシート(以下これをS
−2と略記する)を作った。
Examples 1-8. Comparative Examples 1 to 4 100 parts of dimethylpolysiloxane rubber compound containing 0.05 mol% of vinyl groups, 300 parts of alumina and 2
.. A silicone rubber composition to which 1.5 parts of 4-dichlorobenzoyl peroxide was added was press-vulcanized at 170°C for 15 minutes to produce a thermally conductive silicone rubber sheet with a thickness of 0.5+n+n (hereinafter abbreviated as s-1). At the same time, 150 parts of boron nitride, 1.0 part of 2,4-dichlorobenzoyl peroxide, and 500 parts of toluene were added to 100 parts of a dimethylpolysiloxane rubber compound containing 0.1 mol% of vinyl groups. The silicone rubber composition solution was continuously coated on a glass cloth with a thickness of O and 15 mm using a bar coater to a thickness of 20 cm, and after being maintained at 60°C, the solvent was removed using an infrared dryer with hot air, and then the temperature was increased to 170°C. A thermally conductive rubber sheet with a thickness of 0.5 mm (hereinafter referred to as S
-2) was created.

ついで、このシートS−1,S−2の表面に軟化点が5
5℃であるエポキシフェノール樹脂・EOCN1020
−55  [日本化薬味製商品名、以下これをN−1と
略記する]、軟化点が80℃であるエポキシフェノール
樹脂・EOCN1020−80  [日本化薬味製商品
名、以下これをN−2と略記するコ、および軟化点が7
0℃であるフェノール樹脂: XR5F4270B[群
宋化学■製商品名、以下これをN−3と略記するコの0
.1%トルエン溶液をワイヤーバーを用いてコーティン
グし、70℃で10分間乾燥して、ここに塗工膜を作っ
た。この際、この塗工膜の厚さの調整はワイヤーバーの
ワイヤーの太さを調節することにより行ない、この厚み
を予め塗布後の重量変化により算出した検量線で求めた
ところ、第1表に示したとおりの結果が得られた。
Next, the surfaces of these sheets S-1 and S-2 have a softening point of 5.
Epoxy phenol resin EOCN1020 at 5℃
-55 [Product name of Nipponka Yami Co., Ltd., hereinafter abbreviated as N-1], epoxy phenol resin with a softening point of 80°C EOCN1020-80 [Product name of Nippon Kakami Co., Ltd., hereinafter abbreviated as N-2] The abbreviation is ko, and the softening point is 7.
Phenol resin at 0°C:
.. A 1% toluene solution was coated using a wire bar and dried at 70° C. for 10 minutes to form a coating film. At this time, the thickness of the coating film was adjusted by adjusting the thickness of the wire of the wire bar, and when this thickness was determined in advance using a calibration curve calculated from the weight change after coating, Table 1 shows the thickness of the coating film. The results shown were obtained.

つぎにこのようにして得た熱伝導性電気絶縁体の熱抵抗
を測定したところ、第1表に併記したとおりの結果が得
られ、これらはいずれも発熱性電子部品としてのパワー
トランジスタ25C2245(前出)の表面に接触させ
たとき、この電子部品に密着させることができたし、こ
れは電子部品の作動時における発熱(80℃〜100℃
)によって合成樹脂塗膜が軟化流動してさらによ(定着
し、これを放熱フィンと接触させたところ、効率的に放
熱の行なわれることが確認された。
Next, we measured the thermal resistance of the thermally conductive electrical insulator obtained in this way, and the results shown in Table 1 were obtained, and these results were obtained from the power transistor 25C2245 (formerly known as the heat generating electronic component). When the electronic component was brought into contact with the surface of the electronic component, it could be brought into close contact with the electronic component.
), the synthetic resin coating was softened, fluidized, and then fixed.When this was brought into contact with heat dissipation fins, it was confirmed that heat was dissipated efficiently.

しかし、比較のために上記で得た熱伝導性のゴムシート
S−1,S−2に上記したエポキシフェノール樹脂、フ
ェノール樹脂の塗工膜を設けないもの、またエポキシフ
ェノール樹脂N−1の塗工膜を形成させたがこの厚さを
20μmとしたものについてその熱抵抗を測定したとこ
ろ、これらは第1表に併記したとおりの結果を示した。
However, for comparison, the thermally conductive rubber sheets S-1 and S-2 obtained above were coated with the above-mentioned epoxy phenol resin, one without the phenol resin coating, and one coated with the epoxy phenol resin N-1. When the thermal resistance of a film formed with a thickness of 20 μm was measured, the results were as shown in Table 1.

第  1  表 [発明の効果] 本発明の熱伝導性電気絶縁体は前記したように、オルガ
ノポリシロキサンと熱伝導性無機質充填剤とを主成分と
するシリコーンゴム組成物から作られた硬化物表面に、
軟化点が40〜120℃である厚さが10μm以下の合
成樹脂皮膜を積層してなるものであるが、このものはそ
の合成樹脂皮膜が柔軟性を有しているので、これを電気
、電子部品に接触させたときにその表面の微細な表面の
凹凸を吸収して平滑な接触面を形成するし、この電気。
Table 1 [Effects of the Invention] As described above, the thermally conductive electrical insulator of the present invention has a hardened surface made of a silicone rubber composition containing organopolysiloxane and a thermally conductive inorganic filler as main components. To,
This product is made by laminating synthetic resin films with a softening point of 40 to 120°C and a thickness of 10 μm or less, but since the synthetic resin film is flexible, it can be used in electrical and electronic applications. When it comes into contact with a component, it absorbs the minute irregularities on its surface to form a smooth contact surface.

電子部品が発熱性であるとこの発熱によって合成樹脂皮
膜が軟化流動するのでこの接触がさらによくなり、これ
が熱伝導性であることから、これに放熱フィンを取りつ
ければ電気、電子部品の発熱を効率的に放熱させること
ができるので、このものはパワートランジスタ、サイリ
スタ、整流器トランスなどの発熱性電気、電子部品の放
熱フィンや放熱板に取りつける絶縁性放熱シートとして
有用とされるという工業的な有利性をもつものとなる。
When electronic components generate heat, the synthetic resin film softens and flows due to the heat generated, making this contact even better.Since this is thermally conductive, attaching heat dissipation fins to it can reduce the heat generated by electrical and electronic components. Because it can dissipate heat efficiently, this product has an industrial advantage as it is useful as an insulating heat dissipation sheet attached to the heat dissipation fins and heat sinks of power transistors, thyristors, rectifier transformers, and other heat-generating electrical and electronic components. It becomes a thing with sexuality.

Claims (1)

【特許請求の範囲】[Claims] 1.オルガノポリシロキサンと熱伝導性無機質充填剤と
を主成分とするシリコーンゴム組成物を硬化させてなる
硬化物表面に、軟化点が40〜120℃である厚さが1
0μm以下の合成樹脂皮膜を積層してなることを特徴と
する熱伝導性電気絶縁体。
1. The surface of the cured product obtained by curing a silicone rubber composition containing organopolysiloxane and a thermally conductive inorganic filler as main components is coated with a thickness of 1.2°C with a softening point of 40 to 120°C.
A thermally conductive electrical insulator characterized by being formed by laminating synthetic resin films of 0 μm or less.
JP8919889A 1989-04-07 1989-04-07 Thermal conductive electrical insulator Expired - Fee Related JPH077605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8919889A JPH077605B2 (en) 1989-04-07 1989-04-07 Thermal conductive electrical insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8919889A JPH077605B2 (en) 1989-04-07 1989-04-07 Thermal conductive electrical insulator

Publications (2)

Publication Number Publication Date
JPH02267810A true JPH02267810A (en) 1990-11-01
JPH077605B2 JPH077605B2 (en) 1995-01-30

Family

ID=13964016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8919889A Expired - Fee Related JPH077605B2 (en) 1989-04-07 1989-04-07 Thermal conductive electrical insulator

Country Status (1)

Country Link
JP (1) JPH077605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293861A (en) * 1993-03-23 1994-10-21 Toshiba Silicone Co Ltd Heat conductive silicone rubber composition
JP2007273478A (en) * 1994-09-13 2007-10-18 W L Gore & Assoc Inc Jacket material for protection of electrical conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293861A (en) * 1993-03-23 1994-10-21 Toshiba Silicone Co Ltd Heat conductive silicone rubber composition
JP2672930B2 (en) * 1993-03-23 1997-11-05 東芝シリコーン株式会社 Thermally conductive silicone rubber composition
JP2007273478A (en) * 1994-09-13 2007-10-18 W L Gore & Assoc Inc Jacket material for protection of electrical conductor

Also Published As

Publication number Publication date
JPH077605B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US6090484A (en) Thermally conductive filled polymer composites for mounting electronic devices and method of application
JP4572056B2 (en) Thermally conductive silicone rubber composite sheet
US20030067055A1 (en) Thermally conductive silk-screenable interface material
JP3182257B2 (en) Heat dissipation sheet
CN101954766A (en) The heat-conducting silicon rubber composite sheet
JPH10189838A (en) Heat conductive gel
JP3425521B2 (en) Method for reducing surface tackiness of low hardness thermally conductive silicone rubber sheet
WO2014069353A1 (en) Semiconductor device
JP2003026928A (en) Thermally conductive composition
JPH01215855A (en) Silicone rubber composition and heat-conductive insulator
JP2002164481A (en) Heat conductive sheet
JPH02267810A (en) Heat conductive electric insulator
JPH10237228A (en) Heat dissipating sheet and heat dissipating plate
JP6796569B2 (en) Method for manufacturing a thermally conductive composite sheet
JP3762675B2 (en) Thermal softening sheet
JP2002299534A (en) Heat radiation material and manufacturing method therefor
JP4149846B2 (en) Heat dissipation sheet
JPH01164099A (en) Heat-dissipating shield sheet
JPH01173514A (en) Heat conducting electric insulating sheet and its manufacture
JP3010982B2 (en) Insulation heat dissipation sheet
JP2003193016A (en) Highly thermo resistant adhesive film with high heat dissipation
JPS6367335B2 (en)
JPS6145324B2 (en)
JP2020164756A (en) Composition for heat radiation member, heat radiation member, electronic apparatus, and method for manufacturing heat radiation member
JPS6145325B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees