JP6796569B2 - Method for manufacturing a thermally conductive composite sheet - Google Patents

Method for manufacturing a thermally conductive composite sheet Download PDF

Info

Publication number
JP6796569B2
JP6796569B2 JP2017197557A JP2017197557A JP6796569B2 JP 6796569 B2 JP6796569 B2 JP 6796569B2 JP 2017197557 A JP2017197557 A JP 2017197557A JP 2017197557 A JP2017197557 A JP 2017197557A JP 6796569 B2 JP6796569 B2 JP 6796569B2
Authority
JP
Japan
Prior art keywords
hardness
thermally conductive
silicone layer
conductive silicone
composite sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017197557A
Other languages
Japanese (ja)
Other versions
JP2019071380A (en
Inventor
靖久 石原
靖久 石原
晃洋 遠藤
晃洋 遠藤
五十嵐 実
実 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2017197557A priority Critical patent/JP6796569B2/en
Publication of JP2019071380A publication Critical patent/JP2019071380A/en
Application granted granted Critical
Publication of JP6796569B2 publication Critical patent/JP6796569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、熱伝導性複合シート及びその製造方法に関する。 The present invention relates to a thermally conductive composite sheet and a method for producing the same.

コンバーターや、電源等の電子機器に使用されるトランジスタやダイオード、照明やディスプレイの光源となるLED素子等の半導体は、高性能化、高速化、小型化、高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱による機器の温度上昇は動作不良、破壊を引き起こす。そのため、動作中の半導体の温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。 Semiconductors such as transistors and diodes used in electronic devices such as converters and power supplies, and LED elements that serve as light sources for lighting and displays are in large quantities due to higher performance, higher speed, smaller size, and higher integration. The heat of the device is generated, and the temperature rise of the device due to the heat causes malfunction and destruction. Therefore, many heat dissipation methods and heat dissipation members used for suppressing the temperature rise of the semiconductor during operation have been proposed.

従来、電子機器等においては、動作中の発熱体の温度上昇を抑えるために、アルミニウム板や銅板等、熱伝導率の高い金属板を用いたヒートシンクや筐体等の冷却部材に、熱伝導性材料を介して、半導体から発生する熱を伝え、雰囲気との温度差により外部に放熱させていた。熱伝導性材料としては熱伝導性シートが多く用いられている。 Conventionally, in electronic devices and the like, in order to suppress a temperature rise of a heating element during operation, thermal conductivity is applied to a cooling member such as a heat sink or a housing using a metal plate having high thermal conductivity such as an aluminum plate or a copper plate. The heat generated from the semiconductor was transferred through the material and radiated to the outside due to the temperature difference from the atmosphere. A thermally conductive sheet is often used as a thermally conductive material.

熱伝導性シートはポリマーに熱伝導性充填材を充填させてなる熱伝導性組成物を硬化成型することで得られる。熱伝導性シートに用いられる樹脂にはアクリル、シリコーン、ポリオレフィン等が挙げられるが、中でも耐熱性、耐寒性、長期信頼性の観点からシリコーンが用いられている熱伝導性シリコーンシートが多い。 The thermally conductive sheet is obtained by curing and molding a thermally conductive composition obtained by filling a polymer with a thermally conductive filler. Examples of the resin used for the heat conductive sheet include acrylic, silicone, and polyolefin. Among them, most of them are heat conductive silicone sheets in which silicone is used from the viewpoint of heat resistance, cold resistance, and long-term reliability.

熱伝導性シリコーンシートの中には、高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層からなる熱伝導性複合シートがある。高硬度熱伝導性シリコーン層は硬度が高く取扱いは簡便である反面、発熱体と冷却部材の界面に実装され固定される時に、その硬度から発熱体に高い応力がかかるため、電子機器に余計なストレスを与えてしまう。一方、低硬度熱伝導性シリコーン層は硬度が低く、発熱体に高い応力が掛かりづらく、さらに発熱体及び冷却部材とよく密着するため、接触熱抵抗が小さくなる。しかし、その硬度から取扱いが難しく、すぐに変形してしまう。そこで、高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を積層させた、取扱いが容易でかつ発熱体に高い応力が掛かりづらい、熱伝導性複合シートが知られている。さらにガラスクロスのような補強材を介在させて、より取扱い性や強度を向上させた熱伝導性複合シートも知られている(特許文献1)。 Among the heat conductive silicone sheets, there is a heat conductive composite sheet composed of a high hardness heat conductive silicone layer and a low hardness heat conductive silicone layer. The high hardness thermally conductive silicone layer has high hardness and is easy to handle, but when it is mounted and fixed at the interface between the heating element and the cooling member, high stress is applied to the heating element due to its hardness, which is unnecessary for electronic devices. It gives stress. On the other hand, the low hardness heat conductive silicone layer has low hardness, it is difficult to apply high stress to the heating element, and it adheres well to the heating element and the cooling member, so that the contact thermal resistance becomes small. However, due to its hardness, it is difficult to handle and it deforms quickly. Therefore, there is known a heat conductive composite sheet in which a high hardness heat conductive silicone layer and a low hardness heat conductive silicone layer are laminated, which is easy to handle and does not easily apply high stress to a heating element. Further, a heat conductive composite sheet having improved handleability and strength by interposing a reinforcing material such as glass cloth is also known (Patent Document 1).

高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層は、実装時の取扱い性や実装中の信頼性の観点から、強く密着している必要がある。そのために、これまで接着助剤の添加やプライマーを塗布することで密着性を得てきたが、低硬度熱伝導性シリコーン層の硬度を上昇させてしまったり、プライマー処理の効果が時間と共に失われてしまうという問題があった。また、そもそもプライマー塗布工程が必要であり、製造工程が煩雑になる。 The high-hardness thermal conductive silicone layer and the low-hardness thermal conductive silicone layer need to be in strong contact with each other from the viewpoint of handleability at the time of mounting and reliability during mounting. For this reason, adhesion has been obtained by adding an adhesive aid or applying a primer, but the hardness of the low-hardness thermal conductive silicone layer is increased, and the effect of the primer treatment is lost over time. There was a problem that it would end up. In addition, a primer coating process is required in the first place, which complicates the manufacturing process.

特開平06−155517Japanese Patent Application Laid-Open No. 06-155517

本発明は、上記問題を解決するためになされたものであり、簡便かつ安定的に、熱伝導性複合シートの高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を良好な密着状態で積層させることができる熱伝導性複合シートの製造方法、及び、良好に密着した熱伝導性複合シートを提供することを目的とする。 The present invention has been made to solve the above problems, and the high-hardness heat-conducting silicone layer and the low-hardness heat-conductive silicone layer of the heat-conductive composite sheet are easily and stably adhered to each other in a good adhesion state. It is an object of the present invention to provide a method for producing a heat conductive composite sheet that can be laminated and a heat conductive composite sheet that adheres well.

上記課題を達成するために、本発明では、熱伝導性複合シートの製造方法であって、有機過酸化物を有効量含む未硬化の高硬度熱伝導性シリコーン層上に、未硬化の低硬度熱伝導性シリコーン層を積層させた後、前記未硬化の高硬度熱伝導性シリコーン層と前記未硬化の低硬度熱伝導性シリコーン層を同時に硬化させて、ショアA硬度が60以上かつ97以下である高硬度熱伝導性シリコーン層と、アスカーC硬度が50以下である低硬度熱伝導性シリコーン層からなる熱伝導性複合シートを得る熱伝導性複合シートの製造方法を提供する。 In order to achieve the above object, the present invention is a method for producing a heat conductive composite sheet, which is an uncured low hardness on an uncured high hardness heat conductive silicone layer containing an effective amount of an organic peroxide. After laminating the thermally conductive silicone layer, the uncured high-hardness thermally conductive silicone layer and the uncured low-hardness thermally conductive silicone layer are simultaneously cured so that the shore A hardness is 60 or more and 97 or less. Provided is a method for producing a heat conductive composite sheet for obtaining a heat conductive composite sheet including a certain high hardness heat conductive silicone layer and a low hardness heat conductive silicone layer having an Asker C hardness of 50 or less.

このような熱伝導性複合シートの製造方法であれば、簡便かつ安定的に、熱伝導性複合シートの高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を良好な密着状態で積層させることができる。 With such a method for producing a heat conductive composite sheet, the high hardness heat conductive silicone layer and the low hardness heat conductive silicone layer of the heat conductive composite sheet are laminated in a good adhesion state in a simple and stable manner. be able to.

また、前記高硬度熱伝導性シリコーン層及び前記低硬度熱伝導性シリコーン層の熱伝導率を1W/mK以上とすることが好ましい。 Further, it is preferable that the thermal conductivity of the high-hardness thermally conductive silicone layer and the low-hardness thermally conductive silicone layer is 1 W / mK or more.

また、前記高硬度熱伝導性シリコーン層の厚みを0.05mm以上かつ0.5mm以下とし、前記低硬度熱伝導性シリコーン層の厚みを0.1mm以上かつ20mm以下とすることが好ましい。 Further, it is preferable that the thickness of the high hardness heat conductive silicone layer is 0.05 mm or more and 0.5 mm or less, and the thickness of the low hardness heat conductive silicone layer is 0.1 mm or more and 20 mm or less.

また、前記高硬度熱伝導性シリコーン層を、補強材を含むものとすることが好ましい。 Further, it is preferable that the high hardness heat conductive silicone layer contains a reinforcing material.

また、前記補強材を、ガラスクロスとすることが好ましい。 Further, it is preferable that the reinforcing material is glass cloth.

本発明の熱伝導性複合シートの製造方法では、このような熱伝導性複合シートを製造することで、良好な熱伝導性を有するとともに、密着性も良好なものとすることができる。 In the method for producing a thermally conductive composite sheet of the present invention, by producing such a thermally conductive composite sheet, it is possible to have good thermal conductivity and good adhesion.

また、本発明では、ショアA硬度が60以上かつ97以下である高硬度熱伝導性シリコーン層と、アスカーC硬度が50以下である低硬度熱伝導性シリコーン層からなる熱伝導性複合シートであって、前記高硬度熱伝導性シリコーン層から前記低硬度熱伝導性シリコーン層を剥がしたときに、前記低硬度熱伝導性シリコーン層が凝集破壊するものである熱伝導性複合シートを提供する。 Further, in the present invention, it is a heat conductive composite sheet composed of a high hardness heat conductive silicone layer having a shore A hardness of 60 or more and 97 or less and a low hardness heat conductive silicone layer having an Asker C hardness of 50 or less. Further, the present invention provides a heat conductive composite sheet in which the low hardness heat conductive silicone layer is cohesively broken when the low hardness heat conductive silicone layer is peeled off from the high hardness heat conductive silicone layer.

このような熱伝導性複合シートであれば実装時の取扱い性や実装中の信頼性の高い熱伝導性複合シートとすることができる。 Such a heat conductive composite sheet can be a heat conductive composite sheet having high handleability at the time of mounting and reliability during mounting.

また、前記高硬度熱伝導性シリコーン層及び前記低硬度熱伝導性シリコーン層の熱伝導率が1W/mK以上であることが好ましい。 Further, it is preferable that the thermal conductivity of the high-hardness thermally conductive silicone layer and the low-hardness thermally conductive silicone layer is 1 W / mK or more.

このような熱伝導性複合シートであれば、より放熱性に優れた熱伝導性複合シートとすることができる。 Such a heat conductive composite sheet can be a heat conductive composite sheet having more excellent heat dissipation.

また、前記高硬度熱伝導性シリコーン層の厚みが0.05mm以上かつ0.5mm以下であり、前記低硬度熱伝導性シリコーン層の厚みが0.1mm以上かつ20mm以下であることが好ましい。 Further, it is preferable that the thickness of the high hardness heat conductive silicone layer is 0.05 mm or more and 0.5 mm or less, and the thickness of the low hardness heat conductive silicone layer is 0.1 mm or more and 20 mm or less.

このような熱伝導性複合シートであれば、放熱性に優れるとともに、より取扱い性に優れた熱伝導性複合シートとすることができる。 Such a heat conductive composite sheet can be a heat conductive composite sheet having excellent heat dissipation and more excellent handleability.

また、前記高硬度熱伝導性シリコーン層が、補強材を含むものであることが好ましい。 Further, it is preferable that the high hardness heat conductive silicone layer contains a reinforcing material.

このような熱伝導性複合シートであれば、より取扱い性や強度を向上させた熱伝導性複合シートとすることができる。 Such a heat conductive composite sheet can be used as a heat conductive composite sheet with improved handleability and strength.

また、前記補強材が、ガラスクロスであることが好ましい。 Further, it is preferable that the reinforcing material is glass cloth.

このような熱伝導性複合シートであれば、さらに取扱い性や強度を向上させた熱伝導性複合シートとすることができる。 Such a heat conductive composite sheet can be a heat conductive composite sheet with further improved handleability and strength.

以上のように、本発明の熱伝導性複合シートの製造方法であれば、簡便かつ安定的に、熱伝導性複合シートの高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を良好な密着状態で積層させることができる。また、本発明の熱伝導性複合シートの製造方法では、高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を密着させるのにプライマーを用いる必要がないので、低硬度熱伝導性シリコーン層の硬度を上昇させる、プライマー処理の効果が時間と共に失われてしまう、製造工程が煩雑になるといった問題が生じない。さらに、本発明の熱伝導性複合シートであれば、高い熱伝導性、放熱性を有するとともに、高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層との密着性に極めて優れたものとなる。そして、本発明の熱伝導性複合シートであれば、プライマー層を有さず、高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層が直接密着しているので、低硬度熱伝導性シリコーン層の硬度を上昇させる、プライマー処理の効果が時間と共に失われてしまう、製造工程が煩雑になるといった問題が生じないものとなる。 As described above, according to the method for producing a heat conductive composite sheet of the present invention, the high hardness heat conductive silicone layer and the low hardness heat conductive silicone layer of the heat conductive composite sheet are good in a simple and stable manner. It can be laminated in close contact. Further, in the method for producing a heat conductive composite sheet of the present invention, since it is not necessary to use a primer to bring the high hardness heat conductive silicone layer and the low hardness heat conductive silicone layer into close contact with each other, the low hardness heat conductive silicone layer There are no problems such as increasing the hardness of the material, losing the effect of the primer treatment over time, and complicating the manufacturing process. Further, the heat conductive composite sheet of the present invention has high heat conductivity and heat dissipation, and is extremely excellent in adhesion between the high hardness heat conductive silicone layer and the low hardness heat conductive silicone layer. Become. The heat conductive composite sheet of the present invention does not have a primer layer, and the high hardness heat conductive silicone layer and the low hardness heat conductive silicone layer are in direct contact with each other. Therefore, the low hardness heat conductive silicone Problems such as increasing the hardness of the layer, losing the effect of the primer treatment over time, and complicating the manufacturing process will not occur.

上述のように、簡便かつ安定的に、熱伝導性複合シートの高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を良好な密着状態で積層させることができる熱伝導性複合シートの製造方法の開発が求められていた。 As described above, the production of a heat conductive composite sheet capable of easily and stably laminating a high hardness heat conductive silicone layer and a low hardness heat conductive silicone layer of a heat conductive composite sheet in a good adhesion state. The development of a method was required.

本発明者らは、上記状況を鑑み鋭意検討した結果、過酸化物が有効量含まれている、未硬化の高硬度熱伝導性シリコーン層上に、未硬化の低硬度熱伝導性シリコーン層を積層させ、未硬化の高硬度熱伝導性シリコーン層と未硬化の低硬度熱伝導性シリコーン層を同時に硬化させることにより、熱伝導性複合シートの高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を良好な密着状態で積層させられることを見出し、本発明に到達した。 As a result of diligent studies in view of the above situation, the present inventors have put an uncured low-hardness thermally conductive silicone layer on an uncured high-hardness thermally conductive silicone layer containing an effective amount of peroxide. By laminating and curing the uncured high-hardness thermally conductive silicone layer and the uncured low-hardness thermally conductive silicone layer at the same time, the high-hardness thermally conductive silicone layer and the low-hardness thermal conductivity of the thermally conductive composite sheet are cured. We have found that the silicone layer can be laminated in a good adhesion state, and have reached the present invention.

即ち、本発明は、熱伝導性複合シートの製造方法であって、有機過酸化物を有効量含む未硬化の高硬度熱伝導性シリコーン層上に、未硬化の低硬度熱伝導性シリコーン層を積層させた後、前記未硬化の高硬度熱伝導性シリコーン層と前記未硬化の低硬度熱伝導性シリコーン層を同時に硬化させて、ショアA硬度が60以上かつ97以下である高硬度熱伝導性シリコーン層と、アスカーC硬度が50以下である低硬度熱伝導性シリコーン層からなる熱伝導性複合シートを得る熱伝導性複合シートの製造方法である。 That is, the present invention is a method for producing a thermally conductive composite sheet, in which an uncured low-hardness thermally conductive silicone layer is formed on an uncured high-hardness thermally conductive silicone layer containing an effective amount of an organic peroxide. After laminating, the uncured high-hardness thermally conductive silicone layer and the uncured low-hardness thermally conductive silicone layer are simultaneously cured to have a shore A hardness of 60 or more and 97 or less. This is a method for producing a thermally conductive composite sheet for obtaining a thermally conductive composite sheet composed of a silicone layer and a low-hardness thermally conductive silicone layer having an Asker C hardness of 50 or less.

また、本発明は、ショアA硬度が60以上かつ97以下である高硬度熱伝導性シリコーン層と、アスカーC硬度が50以下である低硬度熱伝導性シリコーン層からなる熱伝導性複合シートであって、前記高硬度熱伝導性シリコーン層から前記低硬度熱伝導性シリコーン層を剥がしたときに、前記低硬度熱伝導性シリコーン層が凝集破壊するものである熱伝導性複合シートである。 Further, the present invention is a heat conductive composite sheet composed of a high hardness heat conductive silicone layer having a shore A hardness of 60 or more and 97 or less and a low hardness heat conductive silicone layer having an Asker C hardness of 50 or less. This is a heat conductive composite sheet in which the low hardness heat conductive silicone layer is cohesively broken when the low hardness heat conductive silicone layer is peeled off from the high hardness heat conductive silicone layer.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

[熱伝導性複合シート]
熱伝導性複合シートは、高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層からなる。高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層の間にはプライマー層はない。以下、これらについてさらに詳細に説明する。
[Thermal conductive composite sheet]
The thermally conductive composite sheet is composed of a high-hardness thermally conductive silicone layer and a low-hardness thermally conductive silicone layer. There is no primer layer between the high hardness thermal conductive silicone layer and the low hardness thermal conductive silicone layer. Hereinafter, these will be described in more detail.

<高硬度熱伝導性シリコーン層>
高硬度熱伝導性シリコーン層の硬度については、ショアA硬度が60以上かつ97以下であり、より好ましくは75以上かつ95以下である。ショアA硬度が60未満であれば、上述した高硬度熱伝導性シリコーン層の特徴である取扱い性が損なわれてしまう。一方、ショアA硬度が97を超えると、高硬度熱伝導性シリコーン層が硬すぎるため折り曲げると折れてしまう。
<High hardness thermal conductivity silicone layer>
Regarding the hardness of the high hardness thermal conductive silicone layer, the shore A hardness is 60 or more and 97 or less, and more preferably 75 or more and 95 or less. If the shore A hardness is less than 60, the handleability characteristic of the above-mentioned high-hardness thermally conductive silicone layer is impaired. On the other hand, if the Shore A hardness exceeds 97, the high-hardness thermally conductive silicone layer is too hard and will break when bent.

高硬度熱伝導性シリコーン層の熱伝導率は1W/mK以上であることが好ましく、1.3W/mK以上であればより好ましい。熱伝導率が1W/mK以上であれば、発熱体の熱を十分に冷却部材に伝えることができる。 The thermal conductivity of the high-hardness thermally conductive silicone layer is preferably 1 W / mK or more, and more preferably 1.3 W / mK or more. When the thermal conductivity is 1 W / mK or more, the heat of the heating element can be sufficiently transferred to the cooling member.

高硬度熱伝導性シリコーン層に用いるシリコーン成分としては、ショアA硬度が60以上かつ97以下の高硬度になるものであれば特に限定されないが、平均組成式R SiO(4−a)/2(式中、Rは同一又は異なる、置換又は非置換の炭素原子数1〜10、好ましくは1〜8の1価炭化水素基を表わし、aは1.90〜2.05の正数である)で表されるオルガノポリシロキサンであることが好ましい。 The silicone component used for the high-hardness thermally conductive silicone layer is not particularly limited as long as the shore A hardness is 60 or more and 97 or less, but the average composition formula R 1 a SiO (4-a) /. 2 (In the formula, R 1 represents a monovalent hydrocarbon group having the same or different, substituted or unsubstituted carbon atoms 1 to 10, preferably 1 to 8, and a is a positive number of 1.90 to 2.05. It is preferably an organopolysiloxane represented by).

上記Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基、3−フェニルプロピル基等のアラルキル基;3,3,3−トリフルオロプロピル基、3−クロロプロピル基等のハロゲン化アルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基等が挙げられる。重合度は20〜12,000の範囲とすることが好ましく、特に50〜10,000の範囲とすることがより好ましい。また、オイル状であってもガム状であってもよい。 Examples of R 1 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and octadecyl group; cyclopentyl group and cyclohexyl group. Cycloalkyl groups such as phenyl group, trill group, xylyl group, naphthyl group and other aryl groups; benzyl group, phenethyl group, 3-phenylpropyl group and other aralkyl groups; 3,3,3-trifluoropropyl group, 3 -Alkyl halide group such as chloropropyl group; alkenyl group such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group can be mentioned. The degree of polymerization is preferably in the range of 20 to 12,000, and more preferably in the range of 50 to 10,000. Further, it may be in the form of oil or gum.

高硬度熱伝導性シリコーン層は、有機過酸化物を含むものである。このような有機過酸化物は、未硬化の高硬度熱伝導性シリコーン層と未硬化の低硬度熱伝導性シリコーン層を同時に硬化させる際に、熱により分解することでラジカルを発生させ、そのラジカルが高硬度熱伝導性シリコーン層を硬化させるとともに、高硬度熱伝導性シリコーン層と接触している低硬度熱伝導性シリコーン層の一部分を硬化させるために必要である。 The high hardness thermally conductive silicone layer contains an organic peroxide. When such an uncured high-hardness thermally conductive silicone layer and an uncured low-hardness thermally conductive silicone layer are simultaneously cured, such an organic peroxide is decomposed by heat to generate radicals, and the radicals are generated. Is required to cure the high hardness thermally conductive silicone layer and also to cure a part of the low hardness thermally conductive silicone layer in contact with the high hardness thermally conductive silicone layer.

このような有機過酸化物としては、高硬度熱伝導性シリコーン層を十分硬化させられるものであれば特に制限はされないが、例えば、ベンゾイルパ−オキサイド、パラメチルベンゾイルパ−オキサイド、オルトメチルベンゾイルパ−オキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパ−オキシヘキサン、t−ブチルパ−オキシベンゾエ−ト、ジクミルパ−オキサイド、クミル−t−ブチルパ−オキサイド、2−メチルジベンゾイルパーオキサイド等の塩素原子を含まない有機過酸化物が挙げられ、特に、常圧熱気加硫用としては、ベンゾイルパ−オキサイド、パラメチルベンゾイルパ−オキサイド、オルトメチルベンゾイルパ−オキサイド等のアシル系有機過酸化物であることが好ましい。これらの有機過酸化物は単独で用いてもよいし、2種以上を併用してもよい。 Such an organic peroxide is not particularly limited as long as it can sufficiently cure the high hardness heat conductive silicone layer, and is, for example, benzoyl peroxide, paramethyl benzoyl peroxide, orthomethyl benzoyl peroxide. Oxides, 2,5-dimethyl-2,5-di-t-butylpa-oxyhexane, t-butylpa-oxybenzoate, dicumyl-peroxide, cumyl-t-butyl-peroxide, 2-methyldibenzoyl peroxide, etc. Examples include organic peroxides that do not contain chlorine atoms. In particular, for atmospheric hot air brewing, acyl-based organic peroxides such as benzoyl peroxide, paramethylbenzoyl peroxide, and orthomethylbenzoyl peroxide are used. It is preferable to have. These organic peroxides may be used alone or in combination of two or more.

高硬度熱伝導性シリコーン層は、熱伝導性充填材を含むものであることが好ましい。このような熱伝導性充填材を用いることで、高硬度熱伝導性シリコーン層により高い熱伝導性を付与することができる。 The high-hardness thermally conductive silicone layer preferably contains a thermally conductive filler. By using such a heat conductive filler, it is possible to impart high heat conductivity to the high hardness heat conductive silicone layer.

このような熱伝導性充填材としては特に限定はされないが、例えば、非磁性の銅やアルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア、酸化亜鉛等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化珪素等、一般に熱伝導充填材とされる物質を用いることができる。これらの熱伝導性充填材は1種を単独で用いてもよいし、2種以上を複合して用いてもよい。 Such a thermal conductive filler is not particularly limited, but for example, non-magnetic metals such as copper and aluminum, and metal oxides such as alumina, silica, magnesia, red iron oxide, beryria, titania, zirconia, and zinc oxide. Materials generally used as thermal conductivity fillers such as metal nitrides such as aluminum nitride, silicon nitride and boron nitride, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, artificial diamonds and silicon carbide can be used. One of these thermally conductive fillers may be used alone, or two or more thereof may be used in combination.

<低硬度熱伝導性シリコーン層>
低硬度熱伝導性シリコーン層の硬度はアスカーC硬度が50以下であり、より好ましくは20以下、さらに好ましくは10以下である。アスカーC硬度が50を超えると、発熱体と冷却部材の界面に熱伝導性複合シートを実装した際の密着性が悪くなり、発熱体の熱を十分に冷却部材に伝えることができない。
<Low hardness thermal conductivity silicone layer>
The hardness of the low-hardness thermally conductive silicone layer is asker C hardness of 50 or less, more preferably 20 or less, still more preferably 10 or less. If the hardness of Asker C exceeds 50, the adhesion when the heat conductive composite sheet is mounted at the interface between the heating element and the cooling member deteriorates, and the heat of the heating element cannot be sufficiently transferred to the cooling member.

低硬度熱伝導性シリコーン層に用いるシリコーン成分としては、アスカーC硬度が50以下の低硬度になるものであれば特に限定されないが、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンと、ケイ素原子に直接結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサンの、白金系触媒によって促進される付加反応によって得られるものであることが好ましい。 The silicone component used in the low-hardness thermally conductive silicone layer is not particularly limited as long as it has a low hardness of 50 or less asker C, but has two or more alkenyl groups bonded to silicon atoms in one molecule. It is preferably obtained by an addition reaction promoted by a platinum-based catalyst of an organopolysiloxane and an organohydrogenpolysiloxane having two or more hydrogen atoms directly bonded to a silicon atom.

また、低硬度熱伝導性シリコーン層には、上述の付加反応を促進させるための白金系触媒や、付加反応制御剤等を用いることができる。 Further, for the low-hardness thermally conductive silicone layer, a platinum-based catalyst for promoting the above-mentioned addition reaction, an addition reaction control agent, or the like can be used.

低硬度熱伝導性シリコーン層は、熱伝導性充填材を含むものであることが好ましい。このような熱伝導性充填材を用いることで、低硬度熱伝導性シリコーン層により高い熱伝導性を付与することができる。 The low-hardness thermally conductive silicone layer preferably contains a thermally conductive filler. By using such a heat conductive filler, it is possible to impart high heat conductivity to the low hardness heat conductive silicone layer.

このような熱伝導性充填材としては特に限定はされないが、例えば、非磁性の銅やアルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア、酸化亜鉛等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化珪素等、一般に熱伝導充填材とされる物質を用いることができる。これらの熱伝導性充填材は1種を単独で用いてもよいし、2種以上を複合して用いてもよい。 Such a thermal conductive filler is not particularly limited, but for example, non-magnetic metals such as copper and aluminum, and metal oxides such as alumina, silica, magnesia, red iron oxide, beryria, titania, zirconia, and zinc oxide. Materials generally used as thermal conductivity fillers such as metal nitrides such as aluminum nitride, silicon nitride and boron nitride, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, artificial diamonds and silicon carbide can be used. One of these thermally conductive fillers may be used alone, or two or more thereof may be used in combination.

[熱伝導性複合シートの製造方法]
熱伝導性複合シートの製造方法の一例について説明する。シリコーン成分、熱伝導性充填材、及び有機過酸化物を含む熱伝導性シリコーン組成物(高硬度熱伝導性シリコーン組成物)を適量のキシレンで希釈して、コンマコーター等の塗工装置で所定の厚みに塗工する。これを80℃環境下で有機溶剤を揮発させ、未硬化の高硬度熱伝導性シリコーン層を得る。その後、低硬度熱伝導性シリコーン層用のシリコーン成分、及び熱伝導性充填材を含む熱伝導性シリコーン組成物(低硬度熱伝導性シリコーン組成物)を、上記で得られた未硬化の高硬度熱伝導性シリコーン層上にコンマコーターで所定の厚みに塗布する。これを例えば150℃環境下で各層を同時に硬化させることにより高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を積層させてなる熱伝導性複合シートを得る。
[Manufacturing method of thermally conductive composite sheet]
An example of a method for manufacturing a thermally conductive composite sheet will be described. A thermally conductive silicone composition (high-hardness thermally conductive silicone composition) containing a silicone component, a thermally conductive filler, and an organic peroxide is diluted with an appropriate amount of xylene and prescribed by a coating device such as a comma coater. Apply to the thickness of. The organic solvent is volatilized in an environment of 80 ° C. to obtain an uncured high-hardness thermally conductive silicone layer. Then, a heat conductive silicone composition (low hardness heat conductive silicone composition) containing a silicone component for a low hardness heat conductive silicone layer and a heat conductive filler is applied to the uncured high hardness obtained above. It is applied to a predetermined thickness on the heat conductive silicone layer with a comma coater. By simultaneously curing each layer in, for example, an environment of 150 ° C., a thermally conductive composite sheet obtained by laminating a high-hardness thermally conductive silicone layer and a low-hardness thermally conductive silicone layer is obtained.

以上のように、本発明の熱伝導性複合シートの製造方法であれば、簡便かつ安定的に、熱伝導性複合シートの高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を良好な密着状態で積層させることができる。 As described above, according to the method for producing a heat conductive composite sheet of the present invention, the high hardness heat conductive silicone layer and the low hardness heat conductive silicone layer of the heat conductive composite sheet are good in a simple and stable manner. It can be laminated in close contact.

以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例及び比較例に用いた熱伝導性複合シートの製造方法(成型方法)を以下に示す。 The manufacturing method (molding method) of the heat conductive composite sheet used in Examples and Comparative Examples is shown below.

[高硬度熱伝導性シリコーン組成物の調製]
高硬度熱伝導性シリコーン組成物の調製に使用した原料を以下に示す。
(a)成分:平均重合度8000の、ジメチル基で両末端封鎖した、ジメチルポリシロキサン
(d)成分:熱伝導性充填材
(d−1)成分:平均粒径10μmの水酸化アルミニウム
(d−2)成分:平均粒径1μmの水酸化アルミニウム
(ア)成分:有機過酸化物
(ア−1)成分:2−メチルジベンゾイルパーオキサイド
(アー2)成分:2,5−ジメチル−2,5−ジ−t−ブチルパ−オキシヘキサン
[Preparation of high-hardness thermally conductive silicone composition]
The raw materials used to prepare the high-hardness, thermally conductive silicone composition are shown below.
(A) Component: Dimethylpolysiloxane (d) having an average degree of polymerization of 8000 and sealed at both ends with a dimethyl group. Component: Thermally conductive filler (d-1) Component: Aluminum hydroxide (d-) having an average particle size of 10 μm. 2) Component: Aluminum hydroxide with an average particle size of 1 μm (A) Component: Organic peroxide (A-1) Component: 2-Methyldibenzoyl peroxide (A2) Component: 2,5-dimethyl-2,5 -Di-t-butylperoxyhexane

上記成分を所定量混合した後、ニーダーを用いて混練し、表1に示す配合の高硬度熱伝導性シリコーン組成物1及び2を得た。また、得られた高硬度熱伝導性シリコーン組成物の、硬化後のショアA硬度及び熱伝導率(W/mK)を測定した。その結果を表1に示す。 After mixing the above components in a predetermined amount, they were kneaded using a kneader to obtain high-hardness thermally conductive silicone compositions 1 and 2 having the formulations shown in Table 1. In addition, the shore A hardness and thermal conductivity (W / mK) of the obtained high-hardness thermally conductive silicone composition after curing were measured. The results are shown in Table 1.

Figure 0006796569
Figure 0006796569

[低硬度熱伝導性シリコーン組成物の調製]
低硬度熱伝導性シリコーン組成物の調製に使用した原料を以下に示す。
(b)成分:下記化学構造式(1)で表されるオルガノポリシロキサン

Figure 0006796569
(X=ビニル基、n=1000)
(c)成分:下記化学構造式(2)で表される、側鎖が水素で封鎖されたオルガノハイドロジェンポリシロキサン
Figure 0006796569
(平均重合度:o=16.8、p=6.3)
(d)成分:熱伝導性充填材
(d−3)成分:平均粒径10μmの球状アルミナ
(d−4)成分:平均粒径1μmの球状アルミナ
(イ)成分:5%塩化白金酸2−エチルヘキサノール溶液
(e)成分:エチニルメチリデンカルビノール(付加反応制御剤) [Preparation of low-hardness thermal conductive silicone composition]
The raw materials used to prepare the low hardness thermal conductive silicone composition are shown below.
(B) Component: Organopolysiloxane represented by the following chemical structural formula (1)
Figure 0006796569
(X = vinyl group, n = 1000)
(C) Component: Organohydrogenpolysiloxane whose side chain is sealed with hydrogen, which is represented by the following chemical structural formula (2).
Figure 0006796569
(Average degree of polymerization: o = 16.8, p = 6.3)
(D) Component: Thermally conductive filler (d-3) Component: Spherical alumina (d-4) having an average particle size of 10 μm Component: Spherical alumina (a) component having an average particle size of 1 μm: 5% Platinum chloride 2- Ethylhexanol solution (e) component: ethynylmethyldencarbinol (addition reaction control agent)

上記成分を所定量混合した後、プラネタリーミキサーを用いて混練し、表2に示す配合の低硬度熱伝導性シリコーン組成物を得た。また、得られた低硬度熱伝導性シリコーン組成物の、硬化後のアスカーC硬度及び熱伝導率(W/mK)を測定した。その結果を表2に示す。 After mixing the above components in a predetermined amount, they were kneaded using a planetary mixer to obtain a low-hardness thermally conductive silicone composition having the formulation shown in Table 2. In addition, the Asker C hardness and thermal conductivity (W / mK) of the obtained low-hardness thermally conductive silicone composition after curing were measured. The results are shown in Table 2.

Figure 0006796569
Figure 0006796569

[熱伝導性複合シートの作製]
[実施例1]
得られた高硬度熱伝導性シリコーン組成物1に対して、トルエンを適量添加した。これをフッ素処理フィルム上に塗工した後、80℃でトルエンを揮発させ、100μm厚の未硬化の高硬度熱伝導性シリコーン層を得た。これを25℃で1週間保管した後、低硬度熱伝導性シリコーン組成物を未硬化の高硬度熱伝導性シリコーン層上に塗布し、1mm厚の未硬化の低硬度熱伝導性シリコーン層を得た。これを150℃で10分間硬化させ、熱伝導性複合シートを得た。
[Preparation of thermally conductive composite sheet]
[Example 1]
An appropriate amount of toluene was added to the obtained high-hardness thermally conductive silicone composition 1. After coating this on a fluorine-treated film, toluene was volatilized at 80 ° C. to obtain an uncured high-hardness thermally conductive silicone layer having a thickness of 100 μm. After storing this at 25 ° C. for 1 week, the low-hardness thermally conductive silicone composition was applied onto the uncured high-hardness thermally conductive silicone layer to obtain a 1 mm-thick uncured low-hardness thermally conductive silicone layer. It was. This was cured at 150 ° C. for 10 minutes to obtain a heat conductive composite sheet.

[実施例2]
得られた高硬度熱伝導性シリコーン組成物1に対して、トルエンを適量添加した。これをフッ素処理フィルム上に塗工した後、80℃でトルエンを揮発させ、100μm厚の未硬化の高硬度熱伝導性シリコーン層を得た。これを25℃で8ヵ月保管した後、低硬度熱伝導性シリコーン組成物を未硬化の高硬度熱伝導性シリコーン層上に塗布し、1mm厚の未硬化の低硬度熱伝導性シリコーン層を得た。これを150℃で10分間硬化させ、熱伝導性複合シートを得た。
[Example 2]
An appropriate amount of toluene was added to the obtained high-hardness thermally conductive silicone composition 1. After coating this on a fluorine-treated film, toluene was volatilized at 80 ° C. to obtain an uncured high-hardness thermally conductive silicone layer having a thickness of 100 μm. After storing this at 25 ° C. for 8 months, the low-hardness thermally conductive silicone composition was applied onto the uncured high-hardness thermally conductive silicone layer to obtain a 1 mm-thick uncured low-hardness thermally conductive silicone layer. It was. This was cured at 150 ° C. for 10 minutes to obtain a heat conductive composite sheet.

[実施例3]
得られた高硬度熱伝導性シリコーン組成物2に対して、トルエンを適量添加した。これをフッ素処理フィルム上に塗工した後、80℃でトルエンを揮発させ、100μm厚の未硬化の高硬度熱伝導性シリコーン層を得た。これを25℃で1週間保管した後、低硬度熱伝導性シリコーン組成物を未硬化の高硬度熱伝導性シリコーン層上に塗布し、1mm厚の未硬化の低硬度熱伝導性シリコーン層を得た。これを150℃で10分間硬化させ、熱伝導性複合シートを得た。
[Example 3]
An appropriate amount of toluene was added to the obtained high-hardness thermally conductive silicone composition 2. After coating this on a fluorine-treated film, toluene was volatilized at 80 ° C. to obtain an uncured high-hardness thermally conductive silicone layer having a thickness of 100 μm. After storing this at 25 ° C. for 1 week, the low-hardness thermally conductive silicone composition was applied onto the uncured high-hardness thermally conductive silicone layer to obtain a 1 mm-thick uncured low-hardness thermally conductive silicone layer. It was. This was cured at 150 ° C. for 10 minutes to obtain a heat conductive composite sheet.

[実施例4]
得られた高硬度熱伝導性シリコーン組成物2に対して、トルエンを適量添加した。これをフッ素処理フィルム上に塗工した後、80℃でトルエンを揮発させ、100μm厚の未硬化の高硬度熱伝導性シリコーン層を得た。これを25℃で8ヵ月保管した後、低硬度熱伝導性シリコーン組成物を未硬化の高硬度熱伝導性シリコーン層上に塗布し、1mm厚の未硬化の低硬度熱伝導性シリコーン層を得た。これを150℃で10分間硬化させ、熱伝導性複合シートを得た。
[Example 4]
An appropriate amount of toluene was added to the obtained high-hardness thermally conductive silicone composition 2. After coating this on a fluorine-treated film, toluene was volatilized at 80 ° C. to obtain an uncured high-hardness thermally conductive silicone layer having a thickness of 100 μm. After storing this at 25 ° C. for 8 months, the low-hardness thermally conductive silicone composition was applied onto the uncured high-hardness thermally conductive silicone layer to obtain a 1 mm-thick uncured low-hardness thermally conductive silicone layer. It was. This was cured at 150 ° C. for 10 minutes to obtain a heat conductive composite sheet.

[比較例1]
得られた高硬度熱伝導性シリコーン組成物1をキシレンで希釈し、フッ素処理PETフィルム上に塗工した。これを80℃で5分間乾燥した後、150℃で10分間硬化させ、100μm厚の高硬度熱伝導性シリコーン層を得た。これを25℃で1週間保管した後、低硬度熱伝導性シリコーン組成物を高硬度熱伝導性シリコーン層上に塗布し、1mm厚の未硬化の低硬度熱伝導性シリコーン層を得た。これを120℃で10分間硬化させ、熱伝導性複合シートを得た。
[Comparative Example 1]
The obtained high-hardness thermally conductive silicone composition 1 was diluted with xylene and coated on a fluorine-treated PET film. This was dried at 80 ° C. for 5 minutes and then cured at 150 ° C. for 10 minutes to obtain a high-hardness thermally conductive silicone layer having a thickness of 100 μm. After storing this at 25 ° C. for 1 week, a low hardness heat conductive silicone composition was applied onto the high hardness heat conductive silicone layer to obtain a 1 mm thick uncured low hardness heat conductive silicone layer. This was cured at 120 ° C. for 10 minutes to obtain a thermally conductive composite sheet.

[比較例2]
上記高硬度熱伝導性シリコーン組成物1をキシレンで希釈し、フッ素処理PETフィルム上に塗工した。これを80℃で5分間乾燥した後、150℃で10分間硬化させ、100μm厚の高硬度熱伝導性シリコーン層を得た。さらに、上述の式(2)で表されるオルガノハイドロジェンポリシロキサン(平均重合度:o=0、p=38)の1%トルエン溶液を高硬度熱伝導性シリコーン層上にグラビアコーターを用いて塗布し、乾燥させて、オルガノハイドロジェンポリシロキサン処理の高硬度熱伝導性シリコーン層を得た。これを25℃で1週間保管した後、低硬度熱伝導性シリコーン組成物をオルガノハイドロジェンポリシロキサン処理の高硬度熱伝導性シリコーン層上に塗布し、1mm厚の未硬化の低硬度熱伝導性シリコーン層を得た。これを120℃で10分間硬化させ、熱伝導性複合シートを得た。
[Comparative Example 2]
The above-mentioned high-hardness thermally conductive silicone composition 1 was diluted with xylene and coated on a fluorine-treated PET film. This was dried at 80 ° C. for 5 minutes and then cured at 150 ° C. for 10 minutes to obtain a high-hardness thermally conductive silicone layer having a thickness of 100 μm. Further, a 1% toluene solution of organohydrogenpolysiloxane (average degree of polymerization: o = 0, p = 38) represented by the above formula (2) is placed on a high hardness thermally conductive silicone layer using a gravure coater. It was applied and dried to obtain a high hardness thermally conductive silicone layer treated with an organohydrogenpolysiloxane. After storing this at 25 ° C. for 1 week, a low-hardness heat-conducting silicone composition was applied onto a high-hardness heat-conducting silicone layer treated with organohydrogenpolysiloxane, and a 1 mm-thick uncured low-hardness heat-conductivity was applied. A silicone layer was obtained. This was cured at 120 ° C. for 10 minutes to obtain a thermally conductive composite sheet.

[比較例3]
オルガノハイドロジェンポリシロキサン処理の高硬度熱伝導性シリコーン層の保管期間を8か月としたこと以外は、比較例2と同様の方法で熱伝導性複合シートを得た。
[Comparative Example 3]
A heat conductive composite sheet was obtained in the same manner as in Comparative Example 2 except that the storage period of the high hardness heat conductive silicone layer treated with organohydrogenpolysiloxane was set to 8 months.

[比較例4]
比較例1と同様の方法で100μm厚の高硬度熱伝導性シリコーン層を得て、これを25℃で1週間保管した。次に、高硬度熱伝導性シリコーン層にプラズマ処理を施した後、低硬度熱伝導性シリコーン組成物をこの上に塗布し、1mm厚の未硬化の低硬度熱伝導性シリコーン層を得た。これを120℃で10分間硬化させて熱伝導性複合シートを得た。なお、プラズマ処理は大気圧ダイレクトプラズマ発生装置を用い、アルゴンと酸素の混合気体中で出力210Wの条件で行った。
[Comparative Example 4]
A high-hardness thermally conductive silicone layer having a thickness of 100 μm was obtained in the same manner as in Comparative Example 1, and this was stored at 25 ° C. for 1 week. Next, after plasma treatment was applied to the high-hardness heat-conducting silicone layer, a low-hardness heat-conducting silicone composition was applied thereto to obtain a 1 mm-thick uncured low-hardness heat-conducting silicone layer. This was cured at 120 ° C. for 10 minutes to obtain a thermally conductive composite sheet. The plasma treatment was carried out using an atmospheric pressure direct plasma generator under the condition of an output of 210 W in a mixed gas of argon and oxygen.

[評価方法]
[密着性]
高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層との密着性を、高硬度熱伝導性シリコーン層から低硬度熱伝導性シリコーン層を剥がした時に、低硬度熱伝導性シリコーン層が凝集破壊するか、界面剥離するかで評価した。結果を表3及び表4に示す。
[Evaluation method]
[Adhesion]
The adhesion between the high-hardness thermal conductive silicone layer and the low-hardness thermal conductive silicone layer is improved. When the low-hardness thermal conductive silicone layer is peeled off from the high-hardness thermal conductive silicone layer, the low-hardness thermally conductive silicone layer aggregates. It was evaluated whether it was broken or the interface was peeled off. The results are shown in Tables 3 and 4.

[圧縮応力]
得られた熱伝導性複合シートを60℃で3ヵ月間エージングした後、経時変化した熱伝導性複合シートについて、30%圧縮する時にかかる圧縮応力を測定した。測定には島津オートグラフを用い、圧縮速度は0.5mm/minとした。結果を表3及び表4に示す。
[Compressive stress]
After aging the obtained heat conductive composite sheet at 60 ° C. for 3 months, the compressive stress applied when compressing the heat conductive composite sheet changed with time by 30% was measured. A Shimadzu autograph was used for the measurement, and the compression rate was 0.5 mm / min. The results are shown in Tables 3 and 4.

Figure 0006796569
Figure 0006796569

Figure 0006796569
Figure 0006796569

実施例1〜4のように、本発明の熱伝導性複合シートの製造方法によって得られる熱伝導性複合シートは、高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層との密着性が優れているとともに、未硬化の低硬度熱伝導性シリコーン層を積層させるまでの保管期間が長くなっても優れた密着性を示す。また、エージングした後の熱伝導性複合シートの圧縮応力も低く抑えられている。 As in Examples 1 to 4, the heat conductive composite sheet obtained by the method for producing the heat conductive composite sheet of the present invention has a high adhesion between the high hardness heat conductive silicone layer and the low hardness heat conductive silicone layer. In addition to being excellent, it exhibits excellent adhesion even if the storage period until the uncured low-hardness thermally conductive silicone layer is laminated is long. In addition, the compressive stress of the thermally conductive composite sheet after aging is also suppressed to a low level.

一方、比較例1では、未硬化の高硬度熱伝導性シリコーン層を硬化させた後に、未硬化の低硬度熱伝導性シリコーン層を硬化させたために、高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層との密着性が得られなかった。比較例2では、オルガノハイドロジェンポリシロキサン処理した高硬度熱伝導性シリコーン層の保管期間が短かったために、低硬度熱伝導性シリコーン層との密着性は得られたが、塗布したオルガノハイドロジェンポリシロキサンの影響で、低硬度熱伝導性シリコーン層が硬くなり、エージングした後の圧縮応力が大きくなった。比較例3では、比較例2よりも保管期間を長くしたために、オルガノハイドロジェンポリシロキサンの効果が消失し、低硬度熱伝導性シリコーン層との密着性を得られなかった。また、比較例4では、先に硬化させた高硬度熱伝導性シリコーン層の表面にプラズマ処理を施しても、低硬度熱伝導性シリコーン層との密着性を得ることはできなかった。 On the other hand, in Comparative Example 1, since the uncured high-hardness thermally conductive silicone layer was cured and then the uncured low-hardness thermally conductive silicone layer was cured, the high-hardness thermally conductive silicone layer and the low-hardness thermal were cured. Adhesion with the conductive silicone layer could not be obtained. In Comparative Example 2, since the storage period of the high-hardness thermally conductive silicone layer treated with organohydrogenpolysiloxane was short, adhesion to the low-hardness thermally conductive silicone layer was obtained, but the applied organohydrogenpoly Due to the influence of siloxane, the low-hardness thermally conductive silicone layer became hard, and the compressive stress after aging increased. In Comparative Example 3, since the storage period was longer than that in Comparative Example 2, the effect of the organohydrogenpolysiloxane disappeared, and the adhesion to the low-hardness thermally conductive silicone layer could not be obtained. Further, in Comparative Example 4, even if the surface of the previously cured high-hardness thermally conductive silicone layer was subjected to plasma treatment, adhesion to the low-hardness thermally conductive silicone layer could not be obtained.

上述のように、本発明の熱伝導性複合シートの製造方法は、簡便かつ安定的に、熱伝導性複合シートの高硬度熱伝導性シリコーン層と低硬度熱伝導性シリコーン層を良好な密着状態で積層させることができる、優れた熱伝導性複合シートの製造方法であることが明らかとなった。 As described above, the method for producing a heat conductive composite sheet of the present invention is simple and stable, in which the high hardness heat conductive silicone layer and the low hardness heat conductive silicone layer of the heat conductive composite sheet are in a good adhesion state. It has been clarified that it is an excellent method for producing a heat conductive composite sheet that can be laminated with.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Claims (5)

熱伝導性複合シートの製造方法であって、
有機過酸化物を有効量含む未硬化の高硬度熱伝導性シリコーン層上に、未硬化の低硬度熱伝導性シリコーン層を積層させた後、前記未硬化の高硬度熱伝導性シリコーン層と前記未硬化の低硬度熱伝導性シリコーン層を同時に硬化させて、ショアA硬度が60以上かつ97以下である高硬度熱伝導性シリコーン層と、アスカーC硬度が50以下である低硬度熱伝導性シリコーン層からなる熱伝導性複合シートを得ることを特徴とする熱伝導性複合シートの製造方法。
A method for manufacturing a thermally conductive composite sheet.
After laminating an uncured low-hardness thermally conductive silicone layer on an uncured high-hardness thermally conductive silicone layer containing an effective amount of organic peroxide, the uncured high-hardness thermally conductive silicone layer and the above An uncured low-hardness thermally conductive silicone layer is simultaneously cured to form a high-hardness thermally conductive silicone layer having a Shore A hardness of 60 or more and 97 or less, and a low-hardness thermally conductive silicone layer having an Asker C hardness of 50 or less. A method for producing a thermally conductive composite sheet, which comprises obtaining a thermally conductive composite sheet composed of layers.
前記高硬度熱伝導性シリコーン層及び前記低硬度熱伝導性シリコーン層の熱伝導率を1W/mK以上とすることを特徴とする請求項1に記載の熱伝導性複合シートの製造方法。 The method for producing a thermally conductive composite sheet according to claim 1, wherein the thermal conductivity of the high-hardness thermally conductive silicone layer and the low-hardness thermally conductive silicone layer is 1 W / mK or more. 前記高硬度熱伝導性シリコーン層の厚みを0.05mm以上かつ0.5mm以下とし、前記低硬度熱伝導性シリコーン層の厚みを0.1mm以上かつ20mm以下とすることを特徴とする請求項1又は請求項2に記載の熱伝導性複合シートの製造方法。 Claim 1 is characterized in that the thickness of the high-hardness thermally conductive silicone layer is 0.05 mm or more and 0.5 mm or less, and the thickness of the low-hardness thermally conductive silicone layer is 0.1 mm or more and 20 mm or less. Alternatively, the method for producing a thermally conductive composite sheet according to claim 2. 前記高硬度熱伝導性シリコーン層を、補強材を含むものとすることを特徴とする請求項1から請求項3のいずれか一項に記載の熱伝導性複合シートの製造方法。 The method for producing a thermally conductive composite sheet according to any one of claims 1 to 3, wherein the high-hardness thermally conductive silicone layer contains a reinforcing material. 前記補強材を、ガラスクロスとすることを特徴とする請求項4に記載の熱伝導性複合シートの製造方法。 The method for producing a heat conductive composite sheet according to claim 4, wherein the reinforcing material is a glass cloth.
JP2017197557A 2017-10-11 2017-10-11 Method for manufacturing a thermally conductive composite sheet Active JP6796569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017197557A JP6796569B2 (en) 2017-10-11 2017-10-11 Method for manufacturing a thermally conductive composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197557A JP6796569B2 (en) 2017-10-11 2017-10-11 Method for manufacturing a thermally conductive composite sheet

Publications (2)

Publication Number Publication Date
JP2019071380A JP2019071380A (en) 2019-05-09
JP6796569B2 true JP6796569B2 (en) 2020-12-09

Family

ID=66441266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197557A Active JP6796569B2 (en) 2017-10-11 2017-10-11 Method for manufacturing a thermally conductive composite sheet

Country Status (1)

Country Link
JP (1) JP6796569B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7194667B2 (en) * 2019-12-02 2022-12-22 信越化学工業株式会社 Method for producing thermally conductive silicone composite sheet containing reinforcing layer
JP7478704B2 (en) 2021-04-19 2024-05-07 信越化学工業株式会社 Thermally conductive composite sheet and method for mounting heat-generating electronic components

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966915B2 (en) * 2008-05-09 2012-07-04 株式会社タイカ Thermally conductive sheet, thermal conductive sheet laminate and method for producing the same
JP6136952B2 (en) * 2013-02-28 2017-05-31 信越化学工業株式会社 Thermally conductive composite silicone rubber sheet

Also Published As

Publication number Publication date
JP2019071380A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
TWI635169B (en) Thermally conductive composite sheet
JP6136952B2 (en) Thermally conductive composite silicone rubber sheet
TWI424028B (en) Thermal hardening and its manufacturing method
WO2019098290A1 (en) Two-step curable thermally conductive silicone composition and method for producing same
JP4572056B2 (en) Thermally conductive silicone rubber composite sheet
TWI719108B (en) Curable silicone composition, method for obtaining thermally conductive cured product, and adhesive tape and adhesive film containing the cured product
TWI787193B (en) Thermally conductive silicone rubber composite sheet
JP2004090516A (en) Thermally conductive composite sheet and manufacturing method therefor
WO2016063573A1 (en) Heat dissipation sheet
JP2009234112A (en) Heat conductive laminate and its manufacturing method
JP6020187B2 (en) Thermally conductive composite sheet
JP2011025676A (en) Heat-conductive silicone rubber composite sheet
TWI839459B (en) Thermally conductive silicone rubber sheet having a thermally conductive adhesive layer and a method for manufacturing the same
TW202103954A (en) Thermally conductive composite tape
JP6796569B2 (en) Method for manufacturing a thermally conductive composite sheet
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
JP6735432B1 (en) Thermally conductive silicone rubber composition, sheet thereof, and method for producing the same
TWI724156B (en) Thermally conductive composite sheet
JP2007224102A (en) Thermal conductive silicone composition, thermal conductive silicone molded article, and its manufacturing method
JP2016219732A (en) Thermal conducive composite silicone rubber sheet
TW201833295A (en) Thermally conductive sheet
JP5418620B2 (en) Thermal conduction member
JP2020189929A (en) Method of producing non-tacky heat-conductive silicone rubber sheet
WO2023090049A1 (en) Thermally conductive silicone adhesive composition and thermally conductive complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201116

R150 Certificate of patent or registration of utility model

Ref document number: 6796569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150