JPH02267474A - Double effect air-cooled absorption type refrigerator - Google Patents

Double effect air-cooled absorption type refrigerator

Info

Publication number
JPH02267474A
JPH02267474A JP8704989A JP8704989A JPH02267474A JP H02267474 A JPH02267474 A JP H02267474A JP 8704989 A JP8704989 A JP 8704989A JP 8704989 A JP8704989 A JP 8704989A JP H02267474 A JPH02267474 A JP H02267474A
Authority
JP
Japan
Prior art keywords
refrigerant
air
cooled
evaporator
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8704989A
Other languages
Japanese (ja)
Other versions
JP2651239B2 (en
Inventor
Mokichi Kurosawa
黒沢 茂吉
Giichi Nagaoka
永岡 義一
Shinichi Kannou
閑納 真一
Sadatoshi Takemoto
竹本 貞寿
Tamio Shimizu
清水 民男
Tomihisa Ouchi
大内 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP8704989A priority Critical patent/JP2651239B2/en
Publication of JPH02267474A publication Critical patent/JPH02267474A/en
Application granted granted Critical
Publication of JP2651239B2 publication Critical patent/JP2651239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To enable a refrigerant piping system to be performed most appropriately by a method wherein in case that a liquid surface of an air-cooled condensor is placed at a lower position than that of a liquid surface in an evaporator, condensing refrigerant is returned back to the evaporator by a pump and another refrigerant in the evaporator is returned back from a dam means to an air-cooled absorber device through a piping system. CONSTITUTION:A refrigerant pump 6 is arranged in a refrigerant returning pipe 5 as means for feeding refrigerant having a capability to exceed a working pressure liquid column height. A condensed refrigerant is returned from an air-cooled condensor 3 to an evaporator 1 under a pump operating power. When solution shows a high concentration and the refrigerant is abnormally separated, the refrigerant is overflown over an opening dam 9 formed at a refrigerant container of the evaporator 1. The refrigerant passes an over-flow pipe 10, the refrigerant flows to the solution container of an air-cooled absorber device 14 so as to dilute the solution. With such an arrangement as above, a liquid surface 2 of the evaporator is higher than a liquid surface 4 of the air-cooled condensor. Even in case that it is higher than a differential pressure liquid column head, the liquid refrigerant can be returned positively from the air-cooled condensor 3 to the evaporator 1. The refrigerant over-flow in the evaporator 1 in properly attained and then a double-effected air-cooled absorption type refrigerator can be operated safely.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二重効用空冷吸収式冷凍機に係り、特に、空
冷凝縮器液面が、装置全体の低い部分に位置する構成に
おける冷媒流れ経路の戻り、およびオーバーフローの機
能に好適な冷媒配管系を僅えた二重効用空冷吸収式冷凍
機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dual effect air-cooled absorption refrigerating machine, and in particular to a refrigerant flow in a configuration in which the air-cooled condenser liquid level is located in a lower part of the overall device. The present invention relates to a dual-effect air-cooled absorption refrigerator with a reduced number of refrigerant piping systems suitable for return path and overflow functions.

[従来の技術] 従来の水冷吸収式冷凍機においては、凝縮器の液面は蒸
発器の液面より高い位置に配置され、位置ヘッドによっ
て凝縮冷媒を蒸発器へ戻すようになっていた。
[Prior Art] In conventional water-cooled absorption refrigerators, the liquid level of the condenser is located at a higher level than the liquid level of the evaporator, and a position head returns the condensed refrigerant to the evaporator.

例えば、「吸収式冷凍機とその応用」 (社団法人 日
本冷凍協会編、昭和47年10月20日発行)によれば
、P、33の図55、P、45の図2、P、60の図2
、P、75の図2に記載されているように、吸収式冷凍
サイクルではいずれも、凝縮器を蒸発器より高い位置に
設置し、位置ヘッドで凝縮器からの凝縮冷媒を蒸発器へ
戻していた。
For example, according to "Absorption Chiller and Its Applications" (edited by Japan Refrigeration Association, published October 20, 1972), Figure 55 on P.33, Figure 2 on P.45, P.60 Figure 2
As shown in Figure 2 of , P. 75, in all absorption refrigeration cycles, the condenser is installed higher than the evaporator, and the position head returns the condensed refrigerant from the condenser to the evaporator. Ta.

[発明が解決しようとする課題] 水冷吸収式冷凍機では、クーリングタワーの冷却水によ
る水冷を行うため、据付工事、保守および水管理にコス
トがかかることから、空冷吸収式冷凍機の開発が急速に
進められるに至った。
[Problem to be solved by the invention] In water-cooled absorption chillers, the cooling is performed using cooling water from a cooling tower, which requires installation work, maintenance, and water management costs, so the development of air-cooled absorption chillers has been rapid. We were able to proceed.

例えば、水を冷媒とし、リチウムブロマイドを吸収剤と
する空冷吸収式冷水機として、特開昭61−49970
号公報記載の技術が開発され、吸収器、凝縮器を、ファ
ンによる空気の流れで冷却するように、垂直管の管外に
フィンを設けた構成のものが用いられている。
For example, as an air-cooled absorption water chiller using water as a refrigerant and lithium bromide as an absorbent, JP-A-61-49970
The technology described in the above publication has been developed, and uses a configuration in which fins are provided outside the vertical tube so that the absorber and condenser are cooled by air flow from a fan.

ところで、水冷式から空冷式に変わって、空冷凝縮器の
液面が装置全体の低い部分にある場合、仕様点における
運転では、空冷凝縮器と蒸発器との圧力差によって凝縮
冷媒が蒸発器へ戻るが、低負荷時や起動時など、前記圧
力差が小さいときは凝縮冷媒を蒸発器へ戻すことができ
ないという問題があった。
By the way, when changing from a water-cooled type to an air-cooled type and the liquid level of the air-cooled condenser is at a lower part of the entire device, when operating at the specified point, the condensed refrigerant flows into the evaporator due to the pressure difference between the air-cooled condenser and the evaporator. To return to this point, there was a problem in that when the pressure difference was small, such as during low load or startup, the condensed refrigerant could not be returned to the evaporator.

また、負荷が高く定格(仕様点)より高い運転を行う場
合、溶液の高濃度化にともなって溶液が結晶領域に入る
恐れがあり、このとき、蒸発器の冷媒の量が設定点を超
えるが、空冷吸収式冷凍機では冷媒を自然落下だけで空
冷吸収器に送ることができず、冷媒のオーバーフロー手
段を必要とし、かつ、そのオーバーフローが適正に機能
しないという問題があった。
In addition, if the load is high and the operation is higher than the rated (specification point), there is a risk that the solution will become highly concentrated and enter the crystalline region, and in this case, the amount of refrigerant in the evaporator may exceed the set point. In the air-cooled absorption refrigerator, the refrigerant cannot be sent to the air-cooled absorber simply by gravity, and requires a refrigerant overflow means, and the overflow does not function properly.

本発明は、上記従来技術における課題を解決するために
なされたもので、空冷凝縮器の液面が蒸発器の液面より
低い位置にある場合、凝縮冷媒を蒸発器へ戻す冷媒戻り
系、および冷媒オーバーフロー系の冷媒配管系を最適に
機能させうる二重効用空冷吸収式冷凍機を提供すること
を、その目的とするものである。
The present invention was made to solve the problems in the prior art described above, and includes a refrigerant return system that returns condensed refrigerant to the evaporator when the liquid level of the air-cooled condenser is lower than the liquid level of the evaporator; It is an object of the present invention to provide a dual-effect air-cooled absorption refrigerator that allows a refrigerant piping system of a refrigerant overflow system to function optimally.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る二重効用空冷
吸収式冷凍機の第1の発明の構成は、蒸発器、空冷吸収
器、空冷凝縮器、低温再生器、高温再生器、溶液熱交換
器、溶液循環ポンプ、冷媒スプレーポンプ、およびこれ
らを作動的に接続する配管系からなり、前記空冷吸収器
、空冷凝縮器へ冷却空気を供給するファンを僅えた二重
効用空冷吸収式冷凍機において、空冷凝縮器と蒸発器と
を接続する冷媒戻り配管の途中に、蒸発器が空冷凝縮器
より高く位置して空冷凝縮器の液面と蒸発器液面との高
さの差が作動圧液柱高さを超える場合の冷媒送給手段を
設けるとともに、前記蒸発器に、あらかじめ設定した冷
媒液面より作動液面が高くなったときオーバーフローす
る堰手段と、その堰手段から空冷吸収器または溶液系へ
戻す冷媒配管を設けたものである。
[Means for Solving the Problems] In order to achieve the above object, the configuration of the first invention of the dual-effect air-cooled absorption refrigerator according to the present invention includes an evaporator, an air-cooled absorber, an air-cooled condenser, and a low-temperature It consists of a regenerator, a high temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system that operatively connects them. In the dual-effect air-cooled absorption chiller, the evaporator is located higher than the air-cooled condenser in the middle of the refrigerant return pipe that connects the air-cooled condenser and evaporator, so that the liquid level of the air-cooled condenser and the liquid level of the evaporator are separated. The evaporator is provided with a refrigerant supply means for when the difference in height between the two and A refrigerant pipe is provided for returning the refrigerant from the weir means to the air-cooled absorber or solution system.

また1本発明に係る二重効用空冷吸収式冷凍機の第2の
発明の構成は、蒸発器、空冷吸収器、空冷凝縮器、低温
再生器、高温再生器、溶液熱交換器、溶液循環ポンプ、
冷媒スプレーポンプ、およびこれらを作動的に接続する
配管系がらなり、前記空冷吸収器、空冷凝縮器へ冷却空
気を供給するファンを備えた二重効用吸収式冷凍機にお
いて、蒸発器の冷媒容器に連通ずる冷媒タンクを備え、
その冷媒液面を空冷凝縮器の液面とほぼ同レベルに保ち
うるように液面スイッチを具備し、前記空冷凝縮器と前
記冷媒タンクとを接続するU字管状の冷媒戻り配管を設
けるとともに、前記冷媒タンクに接続し冷媒スプレーポ
ンプを具備した冷媒スプレー配管と、この冷媒スプレー
配管から分岐し電磁弁を具備して空冷吸収器あるいは溶
液系の一部に接続する冷媒ブロー配管とを設け、前記液
面スイッチの信号により前記電磁弁を開閉するようにし
たものである。
In addition, a second invention of the dual-effect air-cooled absorption refrigerator according to the present invention includes an evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, and a solution circulation pump. ,
In a dual-effect absorption refrigerator comprising a refrigerant spray pump and a piping system operatively connecting these, and a fan supplying cooling air to the air-cooled absorber and air-cooled condenser, the refrigerant container of the evaporator is Equipped with a communicating refrigerant tank,
A liquid level switch is provided so that the refrigerant liquid level can be maintained at approximately the same level as the liquid level of the air-cooled condenser, and a U-shaped refrigerant return pipe is provided that connects the air-cooled condenser and the refrigerant tank. A refrigerant spray pipe connected to the refrigerant tank and equipped with a refrigerant spray pump, and a refrigerant blow pipe branched from the refrigerant spray pipe and equipped with a solenoid valve and connected to the air-cooled absorber or a part of the solution system, The solenoid valve is opened and closed by a signal from a liquid level switch.

さらに、本発明に係る二重効用空冷吸収式冷凍機の第3
の発明の構成は、蒸発器、空冷吸収器、空冷凝縮器、低
温再生器、高温再生器、溶液熱交換器、溶液循環ポンプ
、冷媒スプレーポンプ、およびこれらを作動的に接続す
る配管系からなり、前記空冷吸収器、空冷凝縮器へ冷却
空気を供給するファンを備えた二重効用空冷吸収式冷凍
機において、蒸発器の冷媒容器に連通ずる冷媒タンクを
備え、その冷媒タンクを主冷媒タンクと当該主冷媒タン
クの断面積より小さい断面積の補助冷媒タンクとで一体
形成したものとし、前記補助冷媒タンクに、冷媒が設定
液面をこえたときオーバーフローする堰手段と、その堰
手段から空冷吸収器へ接続する冷媒配管を設けるととも
に、そのオーバーフロー堰が、溶液のもっとも低濃度の
ときの空冷吸収器液面よりも高く配置され、上記空冷凝
縮器と前記冷媒タンクとを接続するU字状の冷媒戻り配
管を設けたものである。
Furthermore, the third aspect of the dual effect air-cooled absorption refrigerator according to the present invention is
The invention consists of an evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system operatively connecting these. , the dual-effect air-cooled absorption refrigerator equipped with a fan for supplying cooling air to the air-cooled absorber and the air-cooled condenser, including a refrigerant tank communicating with the refrigerant container of the evaporator, and the refrigerant tank serving as the main refrigerant tank. The auxiliary refrigerant tank is integrally formed with an auxiliary refrigerant tank having a cross-sectional area smaller than the cross-sectional area of the main refrigerant tank, and the auxiliary refrigerant tank includes a weir means for overflowing when the refrigerant exceeds a set liquid level, and an air-cooling absorption system from the weir means. A U-shaped refrigerant pipe connecting the air-cooled condenser and the refrigerant tank is provided, and the overflow weir is placed higher than the liquid level of the air-cooled absorber at the lowest concentration of the solution. A refrigerant return pipe is provided.

[作用] 第1の発明は、蒸発器液面が、空冷凝縮器の液面より高
く、かつ差動圧液柱ヘッドより高い場合の技術的手段で
ある。
[Operation] The first invention is a technical means when the evaporator liquid level is higher than the liquid level of the air-cooled condenser and higher than the differential pressure liquid column head.

この場合は、空冷凝縮器から蒸発器への凝縮冷媒の戻り
は、冷媒ポンプあるいは冷媒エゼクタ−など冷媒送給手
段によって行われる。また、蒸発器における冷媒オーバ
ーフローは開口基および冷媒オーバフロー配管により行
なわれ、空冷吸収器または溶液系へ冷媒を戻す。
In this case, the condensed refrigerant is returned from the air-cooled condenser to the evaporator by a refrigerant supply means such as a refrigerant pump or a refrigerant ejector. Also, refrigerant overflow in the evaporator is provided by an open base and refrigerant overflow piping to return refrigerant to the air-cooled absorber or solution system.

第2の発明は、蒸発器液面が空冷凝縮器の液面と同等レ
ベルの場合の技術的手段である。
The second invention is a technical means when the evaporator liquid level is at the same level as the air-cooled condenser liquid level.

この場合は、凝縮冷媒はU字管状の冷媒戻り配管で容易
に蒸発器側冷媒タンクへ流れる。しかし。
In this case, the condensed refrigerant easily flows to the evaporator side refrigerant tank through the U-shaped refrigerant return pipe. but.

空冷凝縮器とほぼ同位置にある空冷吸収器へ、結晶回避
のための冷媒オーバーフローを流すためには(または、
その配管系に溶液が逆流しないように流すため)、冷媒
スプレーポンプ等の冷媒送給手段を介して冷媒ブロー配
管によって空冷吸収器または溶液系へ冷媒を戻すことに
なる。
In order to flow the refrigerant overflow to avoid crystals to the air-cooled absorber located approximately at the same location as the air-cooled condenser (or
In order to prevent the solution from flowing back into the piping system), the refrigerant is returned to the air-cooled absorber or solution system by the refrigerant blow piping via a refrigerant supply means such as a refrigerant spray pump.

第3の発明は、前記第1.第2の発明の場合の中間の位
置に蒸発器または補助冷媒タンクが位置する場合の技術
的手段である。
A third invention is the first invention. This is a technical means when the evaporator or the auxiliary refrigerant tank is located at an intermediate position in the case of the second invention.

この場合は、凝縮冷媒はU字管状の冷媒戻り配管によっ
て、位置ヘッドと運転中の作動差圧で蒸発器側冷媒タン
クへ流れる。冷媒オーバーフローは、空冷吸収器の最大
液面より高い位置の補助冷媒タンクにオーバーフロー用
の開口基を設は冷媒オーバーフロー配管によって空冷吸
収器または溶液系へ冷媒を戻すことになる。
In this case, the condensed refrigerant flows to the evaporator-side refrigerant tank through the U-tubular refrigerant return pipe at the operating operating pressure differential with the position head. For refrigerant overflow, an opening for overflow is provided in the auxiliary refrigerant tank at a position higher than the maximum liquid level of the air-cooled absorber, and the refrigerant is returned to the air-cooled absorber or solution system through a refrigerant overflow piping.

[実施例] 以下、本発明の各実施例を第1図ないし第5図を参照し
て説明する。
[Example] Hereinafter, each example of the present invention will be described with reference to FIGS. 1 to 5.

第1図は、第1の発明の一実施例に係る二重効用空冷吸
収式冷凍機のサイクル系統図である。
FIG. 1 is a cycle system diagram of a dual-effect air-cooled absorption refrigerator according to an embodiment of the first invention.

第1図において、1は蒸発器、2は蒸発器液面、3は空
冷凝縮器、4は空冷凝縮器液面、5は、空冷凝縮器3と
蒸発器1とを結ぶ冷媒戻り配管、6は、冷媒戻り配管5
に具備された冷媒送給手段に係る冷媒ポンプ、7はバイ
パス配管、8は、バイパス配管7に具備されたオリフィ
ス、9は、蒸発器1の冷媒容器に設けたオーバーフロー
堰手段に係る開口基、10は、開口基9から空冷吸収器
14へ通じるオーバーフロー配管、11は冷媒スプレー
ポンプ、12は冷媒スプレー配管、14は空冷吸収器、
15は高温再生器、16は低温再生器、17は、空冷凝
縮器3および空冷吸収器14へ冷却空気を供給するファ
ン、25は、蒸発器1内を通る冷水管、26は、蒸発器
1と空冷吸収器14とを結ぶ蒸気通路、27は溶液循環
ポンプ、28は、空冷吸収器14の溶液容器と溶液熱交
換器29とを結ぶ稀溶液配管、29は溶液熱交換器、3
0は、溶液熱交換器29と高温再生器15とを結ぶ稀溶
液管、31は、溶液熱交換器29と低温再生器16とを
結ぶ稀溶液管、32は冷媒蒸気管、33は蒸気通路、3
4は、高温再生器15と溶液熱交換器29とを結ぶ濃溶
液管、35は、低温再生器16と溶液熱交換器29とを
結ぶ濃溶液管、36は、溶液熱交換器29と空冷吸収器
14とを結ぶ濃溶液配管である。
In FIG. 1, 1 is an evaporator, 2 is an evaporator liquid level, 3 is an air-cooled condenser, 4 is an air-cooled condenser liquid level, 5 is a refrigerant return pipe connecting the air-cooled condenser 3 and the evaporator 1, 6 is the refrigerant return pipe 5
7 is a bypass pipe, 8 is an orifice provided in the bypass pipe 7, 9 is an opening group related to an overflow weir means provided in the refrigerant container of the evaporator 1, 10 is an overflow pipe leading from the opening base 9 to the air-cooled absorber 14, 11 is a refrigerant spray pump, 12 is a refrigerant spray pipe, 14 is an air-cooled absorber,
15 is a high temperature regenerator, 16 is a low temperature regenerator, 17 is a fan that supplies cooling air to the air-cooled condenser 3 and the air-cooled absorber 14, 25 is a cold water pipe passing through the evaporator 1, and 26 is the evaporator 1 27 is a solution circulation pump, 28 is a dilute solution pipe that connects the solution container of the air-cooled absorber 14 and the solution heat exchanger 29, 29 is a solution heat exchanger, 3
0 is a dilute solution pipe that connects the solution heat exchanger 29 and the high temperature regenerator 15, 31 is a dilute solution pipe that connects the solution heat exchanger 29 and the low temperature regenerator 16, 32 is a refrigerant vapor pipe, and 33 is a vapor passage. ,3
4 is a concentrated solution tube that connects the high temperature regenerator 15 and the solution heat exchanger 29, 35 is a concentrated solution tube that connects the low temperature regenerator 16 and the solution heat exchanger 29, and 36 is an air cooling tube that connects the solution heat exchanger 29 and the solution heat exchanger 29. This is a concentrated solution pipe that connects to the absorber 14.

まず、このような二重効用空冷吸収式冷凍機の基本的な
サイクルの作用を説明する。
First, the basic cycle operation of such a dual-effect air-cooled absorption refrigerator will be explained.

蒸発器1内の冷媒(水)は、冷媒スプレーポンプ11、
冷媒スプレー配管12を介して冷水の通る冷水管25上
に撒布され、冷水から蒸発熱を奪って低圧の冷媒蒸気と
なり、蒸気通路26を経て空冷吸収器14に流入する。
The refrigerant (water) in the evaporator 1 is supplied by a refrigerant spray pump 11,
The refrigerant is sprayed onto the cold water pipe 25 through which the cold water passes through the refrigerant spray pipe 12, removes evaporation heat from the cold water, becomes low-pressure refrigerant vapor, and flows into the air-cooled absorber 14 through the steam passage 26.

空冷吸収器14は、ファン17によって空冷され、前記
冷媒蒸気は、上部から散布されて垂直管を流下するリチ
ウムブロマイド濃溶液に吸収されて稀溶液となる。
The air-cooled absorber 14 is air-cooled by a fan 17, and the refrigerant vapor is dispersed from the top and absorbed into a concentrated lithium bromide solution flowing down the vertical pipe, thereby becoming a dilute solution.

この稀溶液は、溶液循環ポンプ27によって稀溶液配管
28を送り出され、溶液熱交換器29を経て稀溶液管3
0.31を介して高温再生器15゜低温再生器16に送
り込まれる。
This dilute solution is sent out through a dilute solution pipe 28 by a solution circulation pump 27, passes through a solution heat exchanger 29, and then passes through a dilute solution pipe 3.
0.31 to the high temperature regenerator 15° and the low temperature regenerator 16.

高温再生器15には外部熱源が供給され、炉15aの燃
焼熱により稀溶液を濃縮し蒸気を発生する。この発生冷
媒蒸気は、冷媒蒸気管32の伝熱管部16aを介して低
温再生器16内の稀溶液を加熱濃縮する。
The high temperature regenerator 15 is supplied with an external heat source, and uses the combustion heat of the furnace 15a to condense the dilute solution and generate steam. The generated refrigerant vapor heats and concentrates the dilute solution in the low-temperature regenerator 16 via the heat transfer tube portion 16a of the refrigerant vapor pipe 32.

低温再生器16で濃縮された稀溶液から発生した蒸気は
、蒸気通路33を通って空冷凝縮器3の垂直管に流入し
ファン17によって空冷され凝縮液化して液冷媒となり
空冷凝縮器3の冷媒容器から冷媒戻り管5を経て蒸発器
1の冷媒容器に戻る。
Steam generated from the concentrated dilute solution in the low-temperature regenerator 16 flows into the vertical pipe of the air-cooled condenser 3 through the steam passage 33, is air-cooled by the fan 17, condenses and liquefies, and becomes a liquid refrigerant. The refrigerant returns from the container to the refrigerant container of the evaporator 1 via the refrigerant return pipe 5.

高温再生器15.低温再生器16でそれぞれ濃縮された
溶液は、濃溶液管34.35により溶液熱交換器29を
経たのち濃溶液配管36を介して空冷吸収器14の上部
ヘッダへ送られ撒布され、再び吸収過程がくり返される
High temperature regenerator 15. The solutions concentrated in the low-temperature regenerator 16 are sent to the upper header of the air-cooled absorber 14 via the concentrated solution pipe 36 after passing through the solution heat exchanger 29 via the concentrated solution pipes 34 and 35, where they are dispersed and again undergo the absorption process. is repeated.

次に1本実施例の特徴点についてより詳しく説明する。Next, the characteristic points of this embodiment will be explained in more detail.

運転中の蒸発器液面2は、空冷凝縮器液面4より作動圧
力差(例えば、凝縮器50mHg−蒸発器7 mHg=
 42 nn+Hg= 571 mmAg)以上に高い
。両者の差圧では凝縮冷媒が空冷凝縮器3から蒸発器1
へ戻らない。
During operation, the evaporator liquid level 2 is lower than the air-cooled condenser liquid level 4 by the operating pressure difference (for example, condenser 50 mHg - evaporator 7 mHg =
42 nn+Hg=571 mmAg) or higher. At the differential pressure between the two, the condensed refrigerant flows from the air-cooled condenser 3 to the evaporator 1.
I won't go back.

そこで、第1図の実施例では、作動圧液柱高さを超える
能力の冷媒送給手段として、冷媒戻り配管5に冷媒ポン
プ6を設け、ポンプ動力により凝縮冷媒を空冷凝縮器3
から蒸発器1へ戻すようにしている。
Therefore, in the embodiment shown in FIG. 1, a refrigerant pump 6 is provided in the refrigerant return pipe 5 as a refrigerant supply means with a capacity exceeding the working pressure liquid column height, and the pump power supplies the condensed refrigerant to the air-cooled condenser 3.
The liquid is then returned to the evaporator 1.

冷媒ポンプ6の吸込圧力のバランスをとリキャビテーシ
ョンを防止するため、この冷媒ポンプ6の前後に、オリ
フィス8(あるいは絞り弁)を具備したバイパス配管7
を設けている。
In order to balance the suction pressure of the refrigerant pump 6 and prevent recavitation, a bypass pipe 7 is provided with an orifice 8 (or throttle valve) before and after the refrigerant pump 6.
has been established.

一方、溶液が高濃度となり、冷媒が異常に分離したとき
には、蒸発器1の冷媒容器部に形成した開口基9により
冷媒をオーバーフローさせ、オーバーフロー配管10を
経由して冷媒が空冷吸収器14の溶液容器部へ流れ溶液
を稀釈する。
On the other hand, when the solution becomes highly concentrated and the refrigerant is abnormally separated, the refrigerant overflows through the opening base 9 formed in the refrigerant container of the evaporator 1, and the refrigerant passes through the overflow pipe 10 into the solution in the air-cooled absorber 14. Flow into the container section to dilute the solution.

第1図の実施例によれば、蒸発器液面2が空冷凝縮器液
面4より高く、かつ、差動圧液柱ヘッドより高い場合で
も、液冷媒を空冷凝縮器3から蒸発器1へ確実に戻すこ
とができるとともに、蒸発器1における冷媒オーバーフ
ローを適正に機能させ、二重効用空冷吸収式冷凍機を安
全に運転することができる。
According to the embodiment of FIG. 1, even if the evaporator liquid level 2 is higher than the air-cooled condenser liquid level 4 and higher than the differential pressure liquid column head, the liquid refrigerant is transferred from the air-cooled condenser 3 to the evaporator 1. In addition to being able to reliably return the refrigerant, the refrigerant overflow in the evaporator 1 can be made to function properly, and the dual effect air-cooled absorption refrigerator can be operated safely.

なお、第1図の実施例では、オーバーフローさせた冷媒
はすべて空冷吸収器へ送る例を説明したが、他の溶液系
へ戻して溶液を稀釈するようにしても差支えない。
In the embodiment shown in FIG. 1, an example has been described in which all the overflowed refrigerant is sent to the air-cooled absorber, but the solution may be diluted by returning it to another solution system.

次に、第2図は、第1の発明の他の実施例に係る二重効
用空冷吸収式冷凍機のサイクル系統図である。第2図中
、第1図と同一符号のものは同等部分であるから、その
説明を省略する。
Next, FIG. 2 is a cycle system diagram of a dual-effect air-cooled absorption refrigerator according to another embodiment of the first invention. In FIG. 2, parts with the same reference numerals as in FIG. 1 are equivalent parts, so their explanation will be omitted.

第2図の実施例が第1図の実施例と相違するところは、
冷媒送給手段として、空冷凝縮器3からの冷媒戻り配管
5Aと、冷媒スプレー配管12の冷媒スプレーポンプ1
1の吐出側に、冷媒エゼクタ−13を介して接続したも
のである。
The difference between the embodiment shown in FIG. 2 and the embodiment shown in FIG. 1 is as follows.
As a refrigerant supply means, a refrigerant return pipe 5A from the air-cooled condenser 3 and a refrigerant spray pump 1 of the refrigerant spray pipe 12 are used.
1 through a refrigerant ejector 13.

第2図の実施例によれば、凝縮冷媒は冷媒エゼクタ−1
3の作動によって冷媒スプレー配管12を介して蒸発器
1へ戻すことができ、先の第1図の実施例で説明したと
全く同様の効果が期待される。
According to the embodiment of FIG. 2, the condensed refrigerant is
3, the refrigerant can be returned to the evaporator 1 via the refrigerant spray pipe 12, and the same effects as those described in the embodiment shown in FIG. 1 can be expected.

次に、第3図は、第2の発明の一実施例に係る二重効用
空冷吸収式冷凍機のサイクル系統図である。第3図中、
第1図と同一符号のものは同等部分であるから、その説
明を省略する。
Next, FIG. 3 is a cycle system diagram of a dual-effect air-cooled absorption refrigerator according to an embodiment of the second invention. In Figure 3,
Components with the same reference numerals as those in FIG. 1 are equivalent parts, so a description thereof will be omitted.

第3図において、18は、蒸発器1の冷媒容器に連通ず
る冷媒タンクで、この冷媒タンク中の冷媒液面2′ (
蒸発器液面に相当)は、空冷凝縮器液面4とほぼ同レベ
ルに保ちうる位置に設けられている。19は空冷吸収器
液面、20は、前記冷媒液面2′を空冷凝縮器液面4と
同レベルに制御する液面スイッチ、21は電磁弁、23
は、冷媒スプレー配管12Bから分”岐し電磁弁21を
具備して空冷吸収器14に接続する冷媒ブロー配管であ
る。
In FIG. 3, 18 is a refrigerant tank communicating with the refrigerant container of the evaporator 1, and the refrigerant liquid level 2' (
(corresponding to the evaporator liquid level) is provided at a position where it can be maintained at approximately the same level as the air-cooled condenser liquid level 4. 19 is an air-cooled absorber liquid level; 20 is a liquid level switch for controlling the refrigerant liquid level 2' to the same level as the air-cooled condenser liquid level 4; 21 is a solenoid valve; 23
is a refrigerant blow pipe that branches from the refrigerant spray pipe 12B, is provided with a solenoid valve 21, and is connected to the air-cooled absorber 14.

第3図に示す二重効用空冷吸収式冷凍機において、運転
が始まると、凝縮冷媒が空冷凝縮器2の冷媒容器に溜ま
り、液位が高くなり冷媒U字状冷媒戻り配管5Bを経て
冷媒タンク18に戻る。また、動作により差圧が生じ、
その圧力によっても戻る。
In the dual-effect air-cooled absorption refrigerator shown in FIG. 3, when the operation starts, the condensed refrigerant accumulates in the refrigerant container of the air-cooled condenser 2, and the liquid level becomes high, and the refrigerant passes through the U-shaped refrigerant return pipe 5B to the refrigerant tank. Return to 18. In addition, differential pressure is generated due to operation,
It also returns due to the pressure.

一方、空冷吸収器液面19もほぼ同レベルなので、オー
バーフロー配管を冷媒タンクの冷媒液面から設けるよう
にすると、溶液が逆流して冷媒が汚れることになる。
On the other hand, since the air-cooled absorber liquid level 19 is approximately at the same level, if an overflow pipe is provided from the refrigerant liquid level of the refrigerant tank, the solution will flow back and the refrigerant will be contaminated.

そこで、冷媒タンク18の冷媒液面2′ (設定液面高
さ)に液面センサーとして液面スイッチ20を設けた。
Therefore, a liquid level switch 20 is provided as a liquid level sensor at the refrigerant liquid level 2' (set liquid level height) of the refrigerant tank 18.

冷媒液面2′が上がると液面スイッチ20の信号により
電磁弁21が開き、冷媒スプレーポンプ11の動力によ
り、溶液の逆流が心配のない高い位置から冷媒ブロー配
管23を介して冷媒は空冷吸収器14へ流れ、溶液を稀
釈する。
When the refrigerant liquid level 2' rises, the solenoid valve 21 is opened by the signal from the liquid level switch 20, and the refrigerant is air-cooled and absorbed by the power of the refrigerant spray pump 11 through the refrigerant blow piping 23 from a high position where there is no risk of backflow of the solution. Flow to vessel 14 to dilute the solution.

第3図の実施例によれば、蒸発器液面に相当する冷媒タ
ンク18の冷媒液面2′が空冷凝縮器液面4と同等レベ
ルの場合でも、液冷媒を空冷凝縮器3から蒸発器1側の
冷媒タンク18へ確実に戻すことができるとともに、設
定冷媒液面を超える冷媒を溶液の逆流なしに確実に空冷
吸収器14へ送り冷媒オーバーフロー機能を果たして、
二重効用空冷吸収式冷凍機を安全に運転することができ
る。
According to the embodiment shown in FIG. 3, even if the refrigerant liquid level 2' of the refrigerant tank 18 corresponding to the evaporator liquid level is at the same level as the air-cooled condenser liquid level 4, the liquid refrigerant is transferred from the air-cooled condenser 3 to the evaporator. It is possible to reliably return the refrigerant to the refrigerant tank 18 on the first side, and also to reliably send the refrigerant exceeding the set refrigerant liquid level to the air-cooled absorber 14 without backflow of the solution, thus fulfilling the refrigerant overflow function.
A dual-effect air-cooled absorption chiller can be operated safely.

次に、第4図は、第3の発明の一実施例に係る二重効用
空冷吸収式冷凍機のサイクル系統図である。図中、第1
図、第3図と同一符号のものは。
Next, FIG. 4 is a cycle system diagram of a dual-effect air-cooled absorption refrigerator according to an embodiment of the third invention. In the figure, the first
Figures with the same numbers as in Figure 3 are shown.

それらの実施例と同等部分であるから、その説明を省略
する。
Since the parts are equivalent to those of those embodiments, the explanation thereof will be omitted.

第4図の実施例では、運転中の冷媒タンクの冷媒液面が
、先の第1図の蒸発器液面2と第2図の冷媒タンクの冷
媒液面2′との中間に位置するものである。
In the embodiment shown in FIG. 4, the refrigerant liquid level in the refrigerant tank during operation is located between the evaporator liquid level 2 in FIG. 1 and the refrigerant liquid level 2' in the refrigerant tank in FIG. It is.

第4図において、18′は、蒸発器1の冷媒容器に連通
ずる冷媒タンクで、この冷媒タンク18′は主冷媒タン
クと当該主冷媒タンクの断面積より小さい断面積の補助
冷媒タンク18aとで一体形成されている。この補助冷
媒タンク18aにおける冷媒液面2′は、空冷凝縮器液
面4よりHmm Ag高いレベルにある。
In FIG. 4, 18' is a refrigerant tank communicating with the refrigerant container of the evaporator 1, and this refrigerant tank 18' consists of a main refrigerant tank and an auxiliary refrigerant tank 18a having a cross-sectional area smaller than that of the main refrigerant tank. It is integrally formed. The refrigerant liquid level 2' in this auxiliary refrigerant tank 18a is at a level Hmm Ag higher than the air-cooled condenser liquid level 4.

冷媒タンク18′は、低負荷のとき、その冷媒液面が空
冷凝縮器14の液面とほぼ同じ高さとなり、高負荷にな
ると、その冷媒液面が高くなるように、主冷媒タンク上
部に断面積の小さい補助冷媒タンク18aを形成してい
る。
The refrigerant tank 18' has a refrigerant at the top of the main refrigerant tank so that when the load is low, the refrigerant liquid level is approximately the same height as the liquid level of the air-cooled condenser 14, and when the load is high, the refrigerant liquid level becomes higher. An auxiliary refrigerant tank 18a with a small cross-sectional area is formed.

9Aは、補助冷媒タンク18aに設けた開口基で、開口
基9Aは、冷媒が設定液面をこえたときオーバーフロー
する堰手段である。IOAは、開口基9Aから空冷吸収
器14へ接続するオーバーフロー配管である。前記開口
基9Aは、溶液のもっとも低濃度のときの空冷吸収器液
面19.すなわち空冷吸収器14の最大液面高さより高
く配置されている。
9A is an opening base provided in the auxiliary refrigerant tank 18a, and the opening base 9A is a weir means that overflows when the refrigerant exceeds a set liquid level. IOA is an overflow pipe that connects from the open base 9A to the air-cooled absorber 14. The open group 9A is located at the air-cooled absorber liquid level 19. when the solution has the lowest concentration. That is, it is arranged higher than the maximum liquid level height of the air-cooled absorber 14.

第4図に示す二重効用空冷吸収式冷凍機においては、前
述のように空冷凝縮器液面4は、補助冷媒タンクの冷媒
液面2′よりHmaAg低い。そこで、運転中の両者区
の圧力差が、H/ 13 、6 nnHgを超えたとき
、初めて凝縮冷媒が空冷凝縮器3からU字状冷媒戻り配
管5Bを経て冷媒タンク18′へ流れる(例えば、H=
 200■Agとすると、圧力差14 、7 nmHg
)。いうまでもなく、冷媒が冷媒タンク18′へ流れ出
すまでは空冷凝縮器3の冷媒容器に冷媒が溜まり液面が
上がり、Hがやがて小さくなる。
In the dual-effect air-cooled absorption refrigerator shown in FIG. 4, the air-cooled condenser liquid level 4 is HmaAg lower than the refrigerant liquid level 2' in the auxiliary refrigerant tank, as described above. Therefore, when the pressure difference between the two sections during operation exceeds H/13,6 nnHg, the condensed refrigerant flows from the air-cooled condenser 3 to the refrigerant tank 18' via the U-shaped refrigerant return pipe 5B (for example, H=
Assuming 200■Ag, the pressure difference is 14,7 nmHg
). Needless to say, until the refrigerant flows into the refrigerant tank 18', the refrigerant accumulates in the refrigerant container of the air-cooled condenser 3, the liquid level rises, and H eventually becomes small.

また、冷媒の異常な分離の際には、補助冷媒タンク18
aに設けた開口基9Aから冷媒をオーバーフローさせ、
オーバーフロー配管10Aを介して冷媒を空冷吸収器1
4へ戻し溶液を稀釈する。
In addition, in the case of abnormal separation of refrigerant, the auxiliary refrigerant tank 18
Let the refrigerant overflow from the opening base 9A provided in a,
The refrigerant is transferred to the air-cooled absorber 1 through the overflow pipe 10A.
Dilute the solution back to step 4.

このとき、前述のように、開口基9Aは吸収器最大液面
高さより高く配置されているので、溶液の逆流により冷
媒が汚れることはない。
At this time, as described above, since the opening group 9A is arranged higher than the maximum liquid level height of the absorber, the refrigerant is not contaminated by the backflow of the solution.

次に、第5図は、第1の発明のさらに他の実施例に係る
二重効用空冷吸収式冷凍機のサイクル系統図である。図
中、第1図と同一符号のものは第1図の実施例と同等部
分であるから、その説明を省略する。
Next, FIG. 5 is a cycle system diagram of a dual-effect air-cooled absorption refrigerator according to still another embodiment of the first invention. In the figure, parts with the same reference numerals as those in FIG. 1 are the same parts as in the embodiment of FIG. 1, and therefore their explanation will be omitted.

第5図の実施例が、第1図の実施例と、異なるところは
、第1図の実施例においてバイパス配管により冷媒ポン
プ6のキャビテーション防止を図っていたのに代わり、
空冷凝縮器3の冷媒容器に液面スイッチ22を設け、冷
媒戻り配管5Cの冷媒ポンプ6吐出側に前記液面スイッ
チ22と連動する流量制御弁24を設けて、冷媒戻り配
管5Cの循環量を制御し、キャビテーションの防止を図
ったことである。
The embodiment shown in FIG. 5 differs from the embodiment shown in FIG. 1 in that instead of using bypass piping in the embodiment shown in FIG. 1 to prevent cavitation of the refrigerant pump 6,
A liquid level switch 22 is provided in the refrigerant container of the air-cooled condenser 3, and a flow rate control valve 24 that interlocks with the liquid level switch 22 is provided on the refrigerant pump 6 discharge side of the refrigerant return pipe 5C to control the circulation amount of the refrigerant return pipe 5C. This is to prevent cavitation.

すなわち、空冷凝縮器液面4が低下すると冷媒ポンプ6
にキャビテーションを発生する恐れがあるので、液面ス
イッチ22で液面を検出し、液面が低下したときは流量
制御弁24の開度を絞って冷媒循環量を制御するもので
ある。
That is, when the air-cooled condenser liquid level 4 decreases, the refrigerant pump 6
Since there is a risk that cavitation may occur, the liquid level is detected by the liquid level switch 22, and when the liquid level drops, the opening degree of the flow rate control valve 24 is reduced to control the amount of refrigerant circulation.

第5図の実施例によれば、先の第1図で説明したと同様
の効果が期待される。
According to the embodiment shown in FIG. 5, the same effects as described in FIG. 1 can be expected.

[発明の効果] 以上述べたように、本発明によれば、空冷凝縮器の液面
が蒸発器の液面より低い位置にある場合、凝縮冷媒を蒸
発器へ戻す冷媒戻り系、および冷媒オーバーフロー系の
冷媒配管系を最適に機能させうる二重効用空冷吸収式冷
凍機を提供することができる。
[Effects of the Invention] As described above, according to the present invention, when the liquid level of the air-cooled condenser is lower than the liquid level of the evaporator, the refrigerant return system returns the condensed refrigerant to the evaporator, and the refrigerant overflow It is possible to provide a dual-effect air-cooled absorption refrigerator that allows the refrigerant piping system of the system to function optimally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、第1の発明の一実施例に係る二重効用空冷吸
収式冷凍機のサイクル系統図、第2図は、第1の発明の
他の実施例に係る二重効用空冷吸収式冷凍機のサイクル
系統図、第3図は、第2の発明の一実施例に係る二重効
用空冷吸収式冷凍機のサイクル系統図、第4図は、第3
の発明の一実施例に係る二重効用空冷吸収式冷凍機のサ
イクル系統図、第5図は、第1の発明のさらに他の実施
例に係る二重効用空冷吸収式冷凍機のサイクル系統図で
ある。 1・・・蒸発器、2・・・蒸発器液面、2′、2′・・
・冷媒液面、3・・・空冷凝縮器、4・・・空冷凝縮器
液面、5.5A、5C・・・冷媒戻り配管、5B、・・
・U字状冷媒戻り配管、6・・・冷媒ポンプ、7・・・
バイパス配管、8・・・オリフィス、9,9A・・・開
口基、10゜10A・・・オーバーフロー配管、11・
・・冷媒スプレーポンプ、12.12B・・・冷媒スプ
レー配管、13・・・冷媒エゼクタ−14・・・空冷吸
収器、15・・・高温再生器、16・・・低温再生器、
17・・・ファン、is、is’・・・冷媒タンク、1
8a・・・補助冷媒タンク、19・・・空冷吸収器液面
、20.22・・・液面スイッチ、23・・・冷媒ブロ
ー配管、24・・・流量制御弁、27・・・溶液循環ポ
ンプ、29・・・溶液熱交換器。
FIG. 1 is a cycle system diagram of a dual-effect air-cooled absorption refrigerator according to an embodiment of the first invention, and FIG. 2 is a cycle diagram of a dual-effect air-cooled absorption refrigerator according to another embodiment of the first invention. A cycle system diagram of a refrigerator, FIG. 3 is a cycle system diagram of a dual-effect air-cooled absorption refrigerator according to an embodiment of the second invention, and FIG.
FIG. 5 is a cycle system diagram of a dual-effect air-cooled absorption refrigerator according to yet another embodiment of the first invention. It is. 1... Evaporator, 2... Evaporator liquid level, 2', 2'...
・Refrigerant liquid level, 3... Air-cooled condenser, 4... Air-cooled condenser liquid level, 5.5A, 5C... Refrigerant return pipe, 5B,...
・U-shaped refrigerant return pipe, 6...refrigerant pump, 7...
Bypass piping, 8... Orifice, 9,9A... Opening group, 10° 10A... Overflow piping, 11.
... Refrigerant spray pump, 12.12B... Refrigerant spray piping, 13... Refrigerant ejector-14... Air-cooled absorber, 15... High-temperature regenerator, 16... Low-temperature regenerator,
17... Fan, is, is'... Refrigerant tank, 1
8a... Auxiliary refrigerant tank, 19... Air-cooled absorber liquid level, 20.22... Liquid level switch, 23... Refrigerant blow piping, 24... Flow rate control valve, 27... Solution circulation Pump, 29...solution heat exchanger.

Claims (1)

【特許請求の範囲】 1、蒸発器、空冷吸収器、空冷凝縮器、低温再生器、高
温再生器、溶液熱交換器、溶液循環ポンプ、冷媒スプレ
ーポンプ、およびこれらを作動的に接続する配管系から
なり、前記空冷吸収器、空冷凝縮器へ冷却空気を供給す
るファンを備えた二重効用空冷吸収式冷凍機において、
空冷凝縮器と蒸発器とを接続する冷媒戻り配管の途中に
、蒸発器が空冷凝縮器より高く位置して空冷凝縮器の液
面と蒸発器液面との高さの差が差動圧液柱高さを超える
場合の冷媒送給手段を設けるとともに、前記蒸発器に、
あらかじめ設定した冷媒液面より作動液面が高くなった
ときオーバーフローする堰手段と、その堰手段から空冷
吸収器または溶液系へ戻す冷媒配管を設けたことを特徴
とする二重効用空冷吸収式冷凍機。 2、特許請求の範囲第1項記載のものにおいて、冷媒送
給手段は、空冷凝縮器と蒸発器とを接続する冷媒戻り配
管に冷媒ポンプを設けるものとし、この冷媒ポンプの前
後に、オリフィスを具備したバイパス管を設けたことを
特徴とする二重効用空冷吸収式冷凍機。 3、特許請求の範囲第1項記載のものにおいて、冷媒送
給手段は、空冷凝縮器からの冷媒戻り配管を、冷媒スプ
レー配管の冷媒スプレーポンプ吐出側に冷媒エゼクター
を介して接続したことを特徴とする二重効用空冷吸収式
冷凍機。 4、特許請求の範囲第1項記載のものにおいて、空冷凝
縮器の冷媒液容器に液面スイッチを設け、前記空冷凝縮
器からの冷媒戻り配管の冷媒ポンプ吐出側に前記液面ス
イッチと連動する流量制御弁を設けたことを特徴とする
二重効用空冷吸収式冷凍機。 5、蒸発器、空冷吸収器、空冷凝縮器、低温再生器、高
温再生器、溶液熱交換器、溶液循環ポンプ、冷媒スプレ
ーポンプ、およびこれらを作動的に接続する配管系から
なり、前記空冷吸収器、空冷凝縮器へ冷却空気を供給す
るファンを備えた二重効用空冷吸収式冷凍機において、
蒸発器の冷媒容器に連通する冷媒タンクを備え、その冷
媒液面を空冷凝縮器の液面とほぼ同レベルに保ちうるよ
うに液面スイッチを具備し、前記空冷凝縮器と前記冷媒
タンクとを接続するU字管状の冷媒戻り配管を設けると
ともに、前記冷媒タンクに接続し冷媒スプレーポンプを
具備した冷媒スプレー配管と、この冷媒スプレー配管か
ら分岐し電磁弁を具備して空冷吸収器あるいは溶液系の
一部に接続する冷媒ブロー配管とを設け、前記液面スイ
ッチの信号により前記電磁弁を開閉するようにしたこと
を特徴とする二重効用空冷吸収式冷凍機。 6、蒸発器、空冷吸収器、空冷凝縮器、低温再生器、高
温再生器、溶液熱交換器、溶液循環ポンプ、冷媒スプレ
ーポンプ、およびこれらを作動的に接続する配管系から
なり、前記空冷吸収器、空冷凝縮器へ冷却空気を供給す
るファンを備えた二重効用空冷吸収式冷凍機において、
蒸発器の冷媒容器に連通する冷媒タンクを備え、その冷
媒タンクを主冷媒タンクと当該主冷媒タンクの断面積よ
り小さい断面積の補助冷媒タンクとで一体形成したもの
とし、前記補助冷媒タンクに、冷媒が設定液面をこえた
ときオーバーフローする堰手段と、その堰手段から空冷
吸収器へ接続する冷媒配管を設けるとともに、そのオー
バーフロー堰が、溶液のもっとも低濃度のときの空冷吸
収器液面よりも高く配置され、上記空冷凝縮器と前記冷
媒タンクとを接続するU字状の冷媒戻り配管を設けたこ
とを特徴とする二重効用空冷吸収式冷凍機。
[Claims] 1. An evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system that operatively connects these. In a dual-effect air-cooled absorption refrigerator comprising a fan that supplies cooling air to the air-cooled absorber and air-cooled condenser,
In the middle of the refrigerant return piping that connects the air-cooled condenser and evaporator, the evaporator is located higher than the air-cooled condenser, and the difference in height between the liquid level in the air-cooled condenser and the liquid level in the evaporator is caused by differential pressure. In addition to providing a refrigerant supply means in case the column height exceeds the column height, the evaporator is provided with:
A dual-effect air-cooled absorption refrigeration system characterized by having a weir means that overflows when the working liquid level becomes higher than a preset refrigerant liquid level, and a refrigerant pipe that returns the refrigerant from the weir means to the air-cooled absorber or solution system. Machine. 2. In the device described in claim 1, the refrigerant supply means is provided with a refrigerant pump in the refrigerant return pipe connecting the air-cooled condenser and the evaporator, and an orifice is provided before and after the refrigerant pump. A dual-effect air-cooled absorption refrigerator characterized by having a bypass pipe. 3. In the device described in claim 1, the refrigerant supply means is characterized in that the refrigerant return pipe from the air-cooled condenser is connected to the refrigerant spray pump discharge side of the refrigerant spray pipe via a refrigerant ejector. A dual-effect air-cooled absorption chiller. 4. In the item described in claim 1, a liquid level switch is provided in the refrigerant liquid container of the air-cooled condenser, and is interlocked with the liquid level switch on the refrigerant pump discharge side of the refrigerant return pipe from the air-cooled condenser. A dual-effect air-cooled absorption refrigerator characterized by being equipped with a flow control valve. 5. Consists of an evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system operatively connecting these; In a dual-effect air-cooled absorption chiller equipped with a fan that supplies cooling air to an air-cooled condenser and an air-cooled condenser,
A refrigerant tank communicating with the refrigerant container of the evaporator is provided, and a liquid level switch is provided to maintain the refrigerant liquid level at approximately the same level as the liquid level of the air-cooled condenser, and the air-cooled condenser and the refrigerant tank are connected to each other. In addition to providing a U-shaped refrigerant return pipe for connection, a refrigerant spray pipe connected to the refrigerant tank and equipped with a refrigerant spray pump, and a refrigerant spray pipe branching from this refrigerant spray pipe and equipped with a solenoid valve to connect the air-cooled absorber or solution system. A dual-effect air-cooled absorption refrigerator, characterized in that a refrigerant blow pipe is connected to a part of the refrigerator, and the solenoid valve is opened and closed by a signal from the liquid level switch. 6. Consists of an evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system operatively connecting these; In a dual-effect air-cooled absorption chiller equipped with a fan that supplies cooling air to an air-cooled condenser and an air-cooled condenser,
A refrigerant tank communicating with a refrigerant container of the evaporator is provided, and the refrigerant tank is integrally formed with a main refrigerant tank and an auxiliary refrigerant tank having a cross-sectional area smaller than the cross-sectional area of the main refrigerant tank, and the auxiliary refrigerant tank includes: A weir means that overflows when the refrigerant exceeds a set liquid level, and refrigerant piping that connects the weir means to the air-cooled absorber are provided, and the overflow weir has a level that is higher than the liquid level of the air-cooled absorber when the solution has the lowest concentration. 1. A dual-effect air-cooled absorption refrigerating machine, characterized in that a U-shaped refrigerant return pipe is arranged at a high height and connects the air-cooled condenser and the refrigerant tank.
JP8704989A 1989-04-07 1989-04-07 Double-effect air-cooled absorption refrigerator Expired - Lifetime JP2651239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8704989A JP2651239B2 (en) 1989-04-07 1989-04-07 Double-effect air-cooled absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8704989A JP2651239B2 (en) 1989-04-07 1989-04-07 Double-effect air-cooled absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH02267474A true JPH02267474A (en) 1990-11-01
JP2651239B2 JP2651239B2 (en) 1997-09-10

Family

ID=13904087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8704989A Expired - Lifetime JP2651239B2 (en) 1989-04-07 1989-04-07 Double-effect air-cooled absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2651239B2 (en)

Also Published As

Publication number Publication date
JP2651239B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
EP0322476A1 (en) Air-cooled absorbtion-type water cooling and heating apparatus
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JPH0886530A (en) Absorption type water cooling and heating machine
US3864930A (en) Control for absorption refrigeration system
JP3887227B2 (en) Refrigerant storage device
US3864929A (en) Absorption refrigeration system
JPH02267474A (en) Double effect air-cooled absorption type refrigerator
CN108139126A (en) Absorption refrigerating machine
JPH074769A (en) Single and double effect absorption refrigerating device
JP3880852B2 (en) Refrigerant management device and method for storing and discharging refrigerant
KR19990029907A (en) Absorption Chiller
JP3225155B2 (en) Absorption air conditioner
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP3281228B2 (en) Absorption type cold / hot water unit
JP3813348B2 (en) Absorption refrigerator
JP2777450B2 (en) Absorption refrigerator
JP3434284B2 (en) Absorption refrigerator
JPS6021727Y2 (en) Double effect absorption chiller
JP2828700B2 (en) Absorption refrigerator
JP2823295B2 (en) Absorption refrigerator
JP3663007B2 (en) Absorption chiller / heater
JP2517425B2 (en) Absorption refrigerator
JP2517422B2 (en) Absorption refrigerator
JP2001317835A (en) Absorption refrigeration machine
JPH08105661A (en) Absorption chilled and warm water generator and controlling method therefor