JP2651239B2 - Double-effect air-cooled absorption refrigerator - Google Patents

Double-effect air-cooled absorption refrigerator

Info

Publication number
JP2651239B2
JP2651239B2 JP8704989A JP8704989A JP2651239B2 JP 2651239 B2 JP2651239 B2 JP 2651239B2 JP 8704989 A JP8704989 A JP 8704989A JP 8704989 A JP8704989 A JP 8704989A JP 2651239 B2 JP2651239 B2 JP 2651239B2
Authority
JP
Japan
Prior art keywords
refrigerant
air
cooled
evaporator
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8704989A
Other languages
Japanese (ja)
Other versions
JPH02267474A (en
Inventor
茂吉 黒沢
義一 永岡
真一 閑納
貞寿 竹本
民男 清水
富久 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP8704989A priority Critical patent/JP2651239B2/en
Publication of JPH02267474A publication Critical patent/JPH02267474A/en
Application granted granted Critical
Publication of JP2651239B2 publication Critical patent/JP2651239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二重効用空冷吸収式冷凍機に係り、特に、
空冷凝縮器液面が、装置全体の低い部分に位置する構成
における冷媒流れ経路の戻り、およびオーバーフローの
機能に好適な冷媒配管系を備えた二重効用空冷吸収式冷
凍機に関するものである。
Description: TECHNICAL FIELD The present invention relates to a double-effect air-cooled absorption refrigerator,
The present invention relates to a double-effect air-cooled absorption refrigerator having a refrigerant piping system suitable for the return of a refrigerant flow path and the overflow function in a configuration in which the liquid level of an air-cooled condenser is located at a lower part of the entire apparatus.

[従来の技術] 従来の水冷吸収式冷凍機においては、凝縮器の液面は
蒸発器の液面より高い位置に配置され、位置ヘッドによ
って凝縮冷媒を蒸発器へ戻すようになっていた。
[Prior Art] In a conventional water-cooled absorption refrigerator, the liquid level of the condenser is arranged higher than the liquid level of the evaporator, and the condensed refrigerant is returned to the evaporator by a position head.

例えば、「吸収式冷凍機とその応用」(社団法人 日
本冷凍協会編,昭和47年10月20日発行)によれば、P.33
の図55、P.45の図2、P.60の図2、P.75の図2に記載さ
れているように、吸収式冷凍サイクルではいずれも、凝
縮器を蒸発器より高い位置に設置し、位置ヘッドで凝縮
器からの凝縮冷媒を蒸発器へ戻していた。
For example, according to “Absorption refrigerator and its application” (edited by the Japan Refrigeration Association, published on October 20, 1972), P.33
55, Fig. 2 on page 45, Fig. 2 on page 60, and Fig. 2 on page 75, in all of the absorption refrigeration cycles, the condenser is installed at a higher position than the evaporator. Then, the condensed refrigerant from the condenser is returned to the evaporator by the position head.

[発明が解決しようとする課題] 水冷吸収式冷凍機では、クーリングタワーの冷却水に
よる水冷を行うため、据付工事、保守および水管理にコ
ストがかかることから、空冷吸収式冷凍機の開発が急速
に進められるに至った。
[Problems to be Solved by the Invention] In the water-cooled absorption chiller, since the water is cooled by the cooling water of the cooling tower, installation work, maintenance, and water management are costly. It has been advanced.

例えば、水を冷媒とし、リチウムブロマイドを吸収剤
とする空冷吸収式冷水機として、特開昭61−49970号公
報記載の技術が開発され、吸収器、凝縮器を、フアンに
よる空気の流れで冷却するように、垂直管の管外にフイ
ンを設けた構成のものが用いられている。
For example, as an air-cooled absorption chiller using water as a refrigerant and lithium bromide as an absorbent, the technology described in JP-A-61-49970 has been developed, and the absorber and the condenser are cooled by the flow of air by fan. For this purpose, a vertical tube having a fin provided outside the tube is used.

ところで、水冷式から空冷式に変わって、空冷凝縮器
の液面が装置全体の低い部分にある場合、仕様点におけ
る運転では、空冷凝縮器と蒸発器との圧力差によって凝
縮冷媒が蒸発器へ戻るが、低負荷時や起動時など、前記
圧力差が小さいときは凝縮冷媒を蒸発器へ戻すことがで
きないという問題があった。
By the way, when the liquid level of the air-cooled condenser is changed to the air-cooled type from the water-cooled type and the liquid level of the air-cooled condenser is in the lower part of the entire device, the condensed refrigerant flows to the evaporator due to the pressure difference between the air-cooled condenser and the evaporator in the operation at the specification point However, when the pressure difference is small, such as when the load is low or when starting, there is a problem that the condensed refrigerant cannot be returned to the evaporator.

また、負荷が高く定格(仕様点)より高い運転を行う
場合、溶液の高濃度化にともなって溶液が結晶領域に入
る恐れがあり、このとき、蒸発器の冷媒の量が設定点を
超えるが、空冷吸収式冷凍機では冷媒を自然落下だけで
空冷吸収器に送ることができず、冷媒のオーバーフロー
手段を必要とし、かつ、そのオーバーフローが適正に機
能しないという問題があった。
When the load is high and the operation is higher than the rating (specification point), the solution may enter the crystal region due to the high concentration of the solution. At this time, the amount of the refrigerant in the evaporator exceeds the set point. However, the air-cooled absorption chiller has a problem that the refrigerant cannot be sent to the air-cooled absorber only by natural fall, and a means for overflowing the refrigerant is required, and the overflow does not function properly.

本発明は、上記従来技術における課題を解決するため
になされたもので、空冷凝縮器の液面が蒸発器の液面よ
り低い位置にある場合、凝縮冷媒を蒸発器へ戻す冷媒戻
り系、および冷媒オーバーフロー系の冷媒配管系を最適
に機能させうる二重効用空冷吸収式冷凍機を提供するこ
とを、その目的とするものである。
The present invention has been made in order to solve the above-described problems in the prior art, and when the liquid level of the air-cooled condenser is at a position lower than the liquid level of the evaporator, a refrigerant return system that returns the condensed refrigerant to the evaporator, and It is an object of the present invention to provide a double-effect air-cooling absorption refrigerator capable of optimally functioning a refrigerant piping system of a refrigerant overflow system.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る二重効用空
冷吸収式冷凍機の第1の発明の構成は、蒸発器、空冷吸
収器、空冷凝縮器、低温再生器、高温再生器、溶液熱交
換器、溶液循環ポンプ、冷媒スプレーポンプ、およびこ
れらを作動的に接続する配管系からなり、前記空冷吸収
器、空冷凝縮器へ冷却空気を供給するフアンを備えた二
重効用空冷吸収式冷凍機において、空冷凝縮器と蒸発器
とを接続する冷媒戻り配管の途中に、蒸発器が空冷凝縮
器より高く位置して空冷凝縮器の液面と蒸発器液面との
高さの差が差動圧液柱高さを超える場合の冷媒送給手段
を設けるとともに、前記蒸発器に、あらかじめ設定した
冷媒液面より作動液面が高くなったときオーバーフロー
する堰手段と、その堰手段から空冷吸収器または溶液系
へ戻す冷媒配管を設けたものである。
[Means for Solving the Problems] In order to achieve the above object, a first invention of a double-effect air-cooled absorption refrigerator according to the present invention comprises an evaporator, an air-cooled absorber, an air-cooled condenser, and a low-temperature condenser. A regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system for operatively connecting these, the air-cooled absorber, and a fan for supplying cooling air to the air-cooled condenser In the double effect air-cooled absorption refrigerator, the evaporator is located higher than the air-cooled condenser in the middle of the refrigerant return pipe connecting the air-cooled condenser and the evaporator, and the liquid level of the air-cooled condenser and the evaporator liquid level And a weir means that overflows when the working fluid level becomes higher than a preset coolant level in the evaporator. From the weir means to the air-cooled absorber Alternatively, a refrigerant pipe for returning to the solution system is provided.

また、本発明に係る二重効用空冷吸収式冷凍機の第2
の発明の構成は、蒸発器、空冷吸収器、空冷凝縮器、低
温再生器、高温再生器、溶液熱交換器、溶液循環ポン
プ、冷媒スプレーポンプ、およびこれらを作動的に接続
する配管系からなり、前記空冷吸収器、空冷凝縮器へ冷
却空気を供給するフアンを備えた二重効用吸収式冷凍機
において、蒸発器の冷媒容器に連通する冷媒タンクを備
え、その冷媒液面を空冷凝縮器の液面とほぼ同レベルに
保ちうるように液面スイッチを具備し、前記空冷凝縮器
と前記冷媒タンクとを接続するU字管状の冷媒戻り配管
を設けるとともに、前記冷媒タンクに接続し冷媒スプレ
ーポンプを具備した冷媒スプレー配管と、この冷媒スプ
レー配管から分岐し電磁弁を具備して空冷吸収器あるい
は溶液系の一部に接続する冷媒ブロー配管とを設け、前
記液面スイッチの信号により前記電磁弁を開閉するよう
にしたものである。
In addition, the second effect air-cooled absorption refrigerator of the present invention has a second effect.
The invention comprises an evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system operatively connecting these. In the double-effect absorption refrigerator including a fan for supplying cooling air to the air-cooled absorber and the air-cooled condenser, the air-cooled condenser includes a refrigerant tank communicating with a refrigerant container of the evaporator. A liquid level switch is provided so as to maintain the liquid level at substantially the same level, a U-shaped tubular refrigerant return pipe connecting the air-cooled condenser and the refrigerant tank is provided, and a refrigerant spray pump connected to the refrigerant tank. And a refrigerant blow pipe branched from the refrigerant spray pipe and provided with an electromagnetic valve and connected to an air-cooled absorber or a part of the solution system. It is obtained so as to open and close the solenoid valve by.

さらに、本発明に係る二重効用空冷吸収式冷凍機の第
3の発明の構成は、蒸発器、空冷吸収器、空冷凝縮器、
低温再生器、高温再生器、溶液熱交換器、溶液循環ポン
プ、冷媒スプレーポンプ、およびこれらを作動的に接続
する配管系からなり、前記空冷吸収器、空冷凝縮器へ冷
却空気を供給するフアンを備えた二重効用空冷吸収式冷
凍機において、蒸発器の冷媒容器に連通する冷媒タンク
を備え、その冷媒タンクを主冷媒タンクと当該主冷媒タ
ンクの断面積より小さい断面積の補助冷媒タンクとで一
体形成したものとし、前記補助冷媒タンクに、冷媒が設
定液面をこえたときオーバーフローする堰手段と、その
堰手段から空冷吸収器へ接続する冷媒配管を設けるとと
もに、そのオーバーフロー堰が、溶液のもっとも低濃度
のときの空冷吸収器液面よりも高く配置され、上記空冷
凝縮器と前記冷媒タンクとを接続するU字状の冷媒戻り
配管を設けたものである。
Further, the configuration of the third invention of the double-effect air-cooled absorption refrigerator according to the present invention includes an evaporator, an air-cooled absorber, an air-cooled condenser,
It consists of a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system operatively connecting these, and the fan for supplying cooling air to the air-cooled absorber and air-cooled condenser. The double effect air-cooling absorption refrigerator includes a refrigerant tank that communicates with a refrigerant container of the evaporator, and the refrigerant tank includes a main refrigerant tank and an auxiliary refrigerant tank having a cross-sectional area smaller than the cross-sectional area of the main refrigerant tank. The auxiliary refrigerant tank is provided with a weir means that overflows when the refrigerant exceeds a set liquid level, and a refrigerant pipe connected from the weir means to the air-cooled absorber. The one having a U-shaped refrigerant return pipe arranged higher than the liquid level of the air-cooled absorber at the lowest concentration and connecting the air-cooled condenser and the refrigerant tank. A.

[作用] 第1の発明は、蒸発器液面が、空冷凝縮器の液面より
高く、かつ差動圧液柱ヘッドより高い場合の技術的手段
である。
[Operation] The first invention is a technical means when the liquid level of the evaporator is higher than the liquid level of the air-cooled condenser and higher than the differential pressure liquid column head.

この場合は、空冷凝縮器から蒸発器への凝縮冷媒の戻
りは、冷媒ポンプあるいは冷媒エゼクターなど冷媒送給
手段によって行われる。また、蒸発器における冷媒オー
バーフローは開口堰および冷媒オーバフロー配管により
行なわれ、空冷吸収器または溶液系へ冷媒を戻す。
In this case, the return of the condensed refrigerant from the air-cooled condenser to the evaporator is performed by refrigerant supply means such as a refrigerant pump or a refrigerant ejector. Refrigerant overflow in the evaporator is performed by the opening weir and the refrigerant overflow pipe, and returns the refrigerant to the air-cooled absorber or the solution system.

第2の発明は、蒸発器液面が空冷凝縮器の液面と同等
レベルの場合の技術的手段である。
The second invention is a technical means when the liquid level of the evaporator is equal to the liquid level of the air-cooled condenser.

この場合は、凝縮冷媒はU字管状の冷媒戻り配管で容
易に蒸発器側冷媒タンクへ流れる。しかし、空冷凝縮器
とほぼ同位置にある空冷吸収器へ、結晶回避のための冷
媒オーバーフローを流すためには(または、その配管系
に溶液が逆流しないように流すため)、冷媒スプレーポ
ンプ等の冷媒送給手段を介して冷媒ブロー配管によって
空冷吸収器または溶液系へ冷媒を戻すことになる。
In this case, the condensed refrigerant easily flows to the evaporator side refrigerant tank through the U-shaped tubular refrigerant return pipe. However, in order to flow the refrigerant overflow for avoiding crystallization to the air-cooled absorber at the same position as the air-cooled condenser (or to prevent the solution from flowing back to the piping system), it is necessary to use a refrigerant spray pump or the like. The refrigerant is returned to the air-cooled absorber or the solution system by the refrigerant blow pipe via the refrigerant supply means.

第3の発明は、前記第1,第2の発明の場合の中間の位
置に蒸発器または補助冷媒タンクが位置する場合の技術
的手段である。
The third invention is a technical means in a case where the evaporator or the auxiliary refrigerant tank is located at an intermediate position between the first and second inventions.

この場合は、凝縮冷媒はU字管状の冷媒戻り配管によ
って、位置ヘッドと運転中の作動差圧で蒸発器側冷媒タ
ンクへ流れる。冷媒オーバーフローは、空冷吸収器の最
大液面より高い位置の補助冷媒タンクにオーバーフロー
用の開口堰を設け冷媒オーバーフロー配管によって空冷
吸収器または溶液系へ冷媒を戻すことになる。
In this case, the condensed refrigerant flows to the evaporator-side refrigerant tank by the U-shaped tubular refrigerant return pipe at the position head and the operating differential pressure during operation. In the refrigerant overflow, an opening weir for overflow is provided in the auxiliary refrigerant tank at a position higher than the maximum liquid level of the air-cooled absorber, and the refrigerant is returned to the air-cooled absorber or the solution system by the refrigerant overflow pipe.

[実施例] 以下、本発明の各実施例を第1図ないし第5図を参照
して説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.

第1図は、第1の発明の一実施例に係る二重効用空冷
吸収式冷凍機のサイクル系統図である。
FIG. 1 is a cycle diagram of a double-effect air-cooled absorption refrigerator according to one embodiment of the first invention.

第1図において、1は蒸発器、2は蒸発器液面、3は
空冷凝縮器、4は空冷凝縮器液面、5は、空冷凝縮器3
と蒸発器1とを結ぶ冷媒戻り配管、6は、冷媒戻り配管
5に具備された冷媒送給手段に係る冷媒ポンプ、7はバ
イパス配管、8は、バイパス配管7に具備されたオリフ
イス、9は、蒸発器1の冷媒容器に設けたオーバーフロ
ー堰手段に係る開口堰、10は、開口堰9から空冷吸収器
14へ通じるオーバーフロー配管、11は冷媒スプレーポン
プ、12は冷媒スプレー配管、14は空冷吸収器、15は高温
再生器、16は低温再生器、17は、空冷凝縮器3および空
冷吸収器14へ冷却空気を供給するフアン、25は、蒸発器
1内を通る冷水管、26は、蒸発器1と空冷吸収器14とを
結ぶ蒸気通路、27は溶液循環ポンプ、28は、空冷吸収器
14の溶液容器と溶液熱交換器29とを結ぶ稀溶液配管、29
は溶液熱交換器、30は、溶液熱交換器29と高温再生器15
とを結ぶ稀溶液管、31は、溶液熱交換器29と低温再生器
16とを結ぶ稀溶液管、32は冷媒蒸気管、33は蒸気通路、
34は、高温再生器15と溶液熱交換器29とを結ぶ濃溶液
管、35は、低温再生器16と溶液熱交換器29とを結ぶ濃溶
液管、36は、溶液熱交換器29と空冷吸収器14とを結ぶ濃
溶液配管である。
In FIG. 1, 1 is an evaporator, 2 is an evaporator liquid level, 3 is an air-cooled condenser, 4 is an air-cooled condenser liquid level, and 5 is an air-cooled condenser 3
A refrigerant return pipe connecting the evaporator 1 and the evaporator 1, 6 is a refrigerant pump related to refrigerant supply means provided in the refrigerant return pipe 5, 7 is a bypass pipe, 8 is an orifice provided in a bypass pipe 7, 9 is , An open weir relating to overflow weir means provided in the refrigerant container of the evaporator 1,
Overflow pipe to 14; refrigerant spray pump 11; refrigerant spray pipe 12; air-cooled absorber 14; high-temperature regenerator 16; low-temperature regenerator 16; air-cooled condenser 3 and air-cooled absorber 14 A fan for supplying air, 25 is a cold water pipe passing through the evaporator 1, 26 is a steam passage connecting the evaporator 1 and the air-cooled absorber 14, 27 is a solution circulation pump, and 28 is an air-cooled absorber
Dilute solution piping connecting the solution container of 14 with the solution heat exchanger 29, 29
Is the solution heat exchanger, 30 is the solution heat exchanger 29 and the high-temperature regenerator 15
The dilute solution tube connecting the solution heat exchanger 29 and the low temperature regenerator
Dilute solution pipe connecting to 16, 32 is a refrigerant vapor pipe, 33 is a vapor passage,
34 is a concentrated solution pipe connecting the high temperature regenerator 15 and the solution heat exchanger 29, 35 is a concentrated solution pipe connecting the low temperature regenerator 16 and the solution heat exchanger 29, and 36 is a solution heat exchanger 29 and air cooling. This is a concentrated solution pipe connecting the absorber 14.

まず、このような二重効用空冷吸収式冷凍機の基本的
なサイクルの作用を説明する。
First, the operation of the basic cycle of such a double-effect air-cooled absorption refrigerator will be described.

蒸発器1内の冷媒(水)は、冷媒スプレーポンプ11、
冷媒スプレー配管12を介して冷水の通る冷水管25上に撒
布され、冷水から蒸発熱を奪って低圧の冷媒蒸気とな
り、蒸気通路26を経て空冷吸収器14に流入する。空冷吸
収器14は、フアン17によって空冷され、前記冷媒蒸気
は、上部から散布されて垂直管を流下するリチウムブロ
マイド濃溶液に吸収されて稀溶液となる。
The refrigerant (water) in the evaporator 1 is supplied to a refrigerant spray pump 11,
The refrigerant is sprayed on the cold water pipe 25 through which the cold water passes through the refrigerant spray pipe 12, takes away the heat of evaporation from the cold water, becomes low-pressure refrigerant vapor, and flows into the air-cooled absorber 14 via the vapor passage 26. The air-cooled absorber 14 is air-cooled by the fan 17, and the refrigerant vapor is scattered from above and absorbed by the lithium bromide concentrated solution flowing down the vertical tube to become a dilute solution.

この稀溶液は、溶液循環ポンプ27によって稀溶液配管
28を送り出され、溶液熱交換器29を経て稀溶液管30,31
を介して高温再生器15,低温再生器16に送り込まれる。
The diluted solution is supplied to the diluted solution piping by the solution circulation pump 27.
28, and passed through the solution heat exchanger 29 to dilute solution tubes 30, 31
Are sent to the high-temperature regenerator 15 and the low-temperature regenerator 16 via the.

高温再生器15には外部熱源が供給され、炉15aの燃焼
熱により稀溶液を濃縮し蒸気を発生する。この発生冷媒
蒸気は、冷媒蒸気管32の伝熱管部16aを介して低温再生
器16内の稀溶液を加熱濃縮する。
An external heat source is supplied to the high temperature regenerator 15, and the high temperature regenerator 15 concentrates the dilute solution by the heat of combustion of the furnace 15a to generate steam. The generated refrigerant vapor heats and concentrates the dilute solution in the low-temperature regenerator 16 via the heat transfer tube section 16a of the refrigerant vapor pipe 32.

低温再生器16で濃縮された稀溶液から発生した蒸気
は、蒸気通路33を通って空冷凝縮器3の垂直管に流入し
フアン17によって空冷され凝縮液化して液冷媒となり空
冷凝縮器3の冷媒容器から冷媒戻り管5を経て蒸発器1
の冷媒容器に戻る。
The vapor generated from the dilute solution concentrated in the low-temperature regenerator 16 flows into the vertical pipe of the air-cooled condenser 3 through the vapor passage 33, is air-cooled by the fan 17, condensed and liquefied, becomes a liquid refrigerant, and becomes a liquid refrigerant. Evaporator 1 from container via refrigerant return pipe 5
Return to the refrigerant container.

高温再生器15,低温再生器16でそれぞれ濃縮された溶
液は、濃溶液管34,35により溶液熱交換器29を経たのち
濃溶液配管36を介して空冷吸収器14の上部ヘッダへ送ら
れ撒布され、再び吸収過程がくり返される。
The solutions concentrated in the high-temperature regenerator 15 and the low-temperature regenerator 16 respectively pass through the solution heat exchanger 29 by the concentrated solution pipes 34 and 35, and then are sent to the upper header of the air-cooled absorber 14 via the concentrated solution pipe 36 and dispersed. And the absorption process is repeated again.

次に、本実施例の特徴点についてより詳しく説明す
る。
Next, the features of this embodiment will be described in more detail.

運転中の蒸発器液面2は、空冷凝縮器液面4より作動
圧力差(例えば、凝縮器50mmHg−蒸発器7mmHg=42mmHg
=571mmAg)以上に高い。両者の差圧では凝縮冷媒が空
冷凝縮器3から蒸発器1へ戻らない。
During operation, the evaporator liquid level 2 is higher than the air-cooled condenser liquid level 4 by the operating pressure difference (for example, condenser 50 mmHg-evaporator 7 mmHg = 42 mmHg).
= 571mmAg) or higher. At the pressure difference between the two, the condensed refrigerant does not return from the air-cooled condenser 3 to the evaporator 1.

そこで、第1図の実施例では、作動圧液柱高さを超え
る能力の冷媒送給手段として、冷媒戻り配管5に冷媒ポ
ンプ6を設け、ポンプ動力により凝縮冷媒を空冷凝縮器
3から蒸発器1へ戻すようにしている。
Therefore, in the embodiment of FIG. 1, a refrigerant pump 6 is provided in the refrigerant return pipe 5 as a refrigerant supply means having a capacity exceeding the working pressure liquid column height, and the condensed refrigerant is pumped from the air-cooled condenser 3 to the evaporator. I'm going back to 1.

冷媒ポンプ6の吸込圧力のバランスをとりキヤビテー
ションを防止するため、この冷媒ポンプ6の前後に、オ
リフイス8(あるいは絞り弁)を具備したバイパス配管
7を設けている。
In order to balance suction pressure of the refrigerant pump 6 and prevent cavitation, a bypass pipe 7 having an orifice 8 (or a throttle valve) is provided before and after the refrigerant pump 6.

一方、溶液が高濃度となり、冷媒が異常に分離したと
きには、蒸発器1の冷媒容器部に形成した開口堰9によ
り冷媒をオーバーフローさせ、オーバーフロー配管10を
経由して冷媒が空冷吸収器14の溶液容器部へ流れ溶液を
稀釈する。
On the other hand, when the concentration of the solution becomes high and the refrigerant is abnormally separated, the refrigerant overflows through the opening weir 9 formed in the refrigerant container of the evaporator 1, and the refrigerant flows into the solution of the air-cooled absorber 14 via the overflow pipe 10. Dilute the solution flowing into the container.

第1図の実施例によれば、蒸発器液面2が空冷凝縮器
液面4より高く、かつ、差動圧液柱ヘッドより高い場合
でも、液冷媒を空冷凝縮器3から蒸発器1へ確実に戻す
ことができるとともに、蒸発器1における冷媒オーバー
フローを適正に機能させ、二重効用空冷吸収式冷凍機を
安全に運転することができる。
According to the embodiment of FIG. 1, the liquid refrigerant flows from the air-cooled condenser 3 to the evaporator 1 even when the evaporator liquid level 2 is higher than the air-cooled condenser liquid level 4 and higher than the differential pressure liquid column head. It is possible to reliably return the refrigerant, and to make the refrigerant overflow in the evaporator 1 function properly, so that the double-effect air-cooled absorption refrigerator can be safely operated.

なお、第1図の実施例では、オーバーフローさせた冷
媒はすべて空冷吸収器へ送る例を説明したが、他の溶液
系へ戻して溶液を稀釈するようにしても差支えない。
In the embodiment shown in FIG. 1, an example has been described in which all the overflowed refrigerant is sent to the air-cooled absorber. However, the refrigerant may be returned to another solution system to dilute the solution.

次に、第2図は、第1の発明の他の実施例に係る二重
効用空冷吸収式冷凍機のサイクル系統図である。第2図
中、第1図と同一符号のものは同等部分であるから、そ
の説明を省略する。
Next, FIG. 2 is a cycle diagram of a double-effect air-cooling absorption refrigerator according to another embodiment of the first invention. In FIG. 2, the same reference numerals as those in FIG. 1 denote the same parts, and a description thereof will be omitted.

第2図の実施例が第1図の実施例と相違するところ
は、冷媒送給手段として、空冷凝縮器3からの冷媒戻り
配管5Aと、冷媒スプレー配管12の冷媒スプレーポンプ11
の吐出側に、冷媒エゼクター13を介して接続したもので
ある。
2 differs from the embodiment of FIG. 1 in that the refrigerant supply means includes a refrigerant return pipe 5A from the air-cooled condenser 3 and a refrigerant spray pump 11 of a refrigerant spray pipe 12.
Is connected via a refrigerant ejector 13 to the discharge side of the.

第2図の実施例によれば、凝縮冷媒は冷媒エゼクター
13の作動によって冷媒スプレー配管12を介して蒸発器1
へ戻すことができ、先の第1図の実施例で説明したと全
く同様の効果が期待される。
According to the embodiment of FIG. 2, the condensed refrigerant is a refrigerant ejector.
The evaporator 1 is operated via the refrigerant spray pipe 12 by the operation of 13.
The same effect as that described in the embodiment of FIG. 1 can be expected.

次に、第3図は、第2の発明の一実施例に係る二重効
用空冷吸収式冷凍機のサイクル系統図である。第3図
中、第1図と同一符号のものは同等部分であるから、そ
の説明を省略する。
Next, FIG. 3 is a cycle system diagram of a double effect air-cooled absorption refrigerator according to one embodiment of the second invention. In FIG. 3, the same reference numerals as those in FIG. 1 denote the same parts, and a description thereof will be omitted.

第3図において、18は、蒸発器1の冷媒容器に連通す
る冷媒タンクで、この冷媒タンク中の冷媒液面2′(蒸
発器液面に相当)は、空冷凝縮器液面4とほぼ同レベル
に保ちうる位置に設けられている。19は空冷吸収器液
面、20は、前記冷媒液面2′を空冷凝縮器液面4と同レ
ベルに制御する液面スイッチ、21は電磁弁、23は、冷媒
スプレー配管12Bから分岐し電磁弁21を具備して空冷吸
収器14に接続する冷媒ブロー配管である。
In FIG. 3, reference numeral 18 denotes a refrigerant tank which communicates with the refrigerant container of the evaporator 1. The refrigerant liquid level 2 '(corresponding to the evaporator liquid level) in this refrigerant tank is substantially the same as the air-cooled condenser liquid level 4. It is provided at a position that can be maintained at the level. 19 is an air-cooled absorber liquid level, 20 is a liquid-level switch for controlling the refrigerant liquid level 2 'to the same level as the air-cooled condenser liquid level 4, 21 is an electromagnetic valve, and 23 is an electromagnetic valve branched from the refrigerant spray pipe 12B. This is a refrigerant blowpipe provided with a valve 21 and connected to the air-cooled absorber 14.

第3図に示す二重効用空冷吸収式冷凍機において、運
転が始まると、凝縮冷媒が空冷凝縮器2の冷媒容器に溜
まり、液位が高くなり冷媒U字状冷媒戻り配管5Bを経て
冷媒タンク18に戻る。また、動作により差圧が生じ、そ
の圧力によっても戻る。
In the double effect air-cooled absorption refrigerator shown in FIG. 3, when the operation is started, the condensed refrigerant collects in the refrigerant container of the air-cooled condenser 2, the liquid level rises, and the refrigerant tank passes through the refrigerant U-shaped refrigerant return pipe 5B. Return to 18. Further, a differential pressure is generated by the operation, and the pressure also returns by the pressure.

一方、空冷吸収器液面19もほぼ同レベルなので、オー
バーフロー配管を冷媒タンクの冷媒液面から設けるよう
にすると、溶液が逆流して冷媒が汚れることになる。
On the other hand, the liquid level 19 of the air-cooled absorber is almost the same level. Therefore, if the overflow pipe is provided from the liquid level of the refrigerant in the refrigerant tank, the solution flows backward and the refrigerant is contaminated.

そこで、冷媒タンク18の冷媒液面2′(設定液面高
さ)に液面センサーとして液面スイッチ20を設けた。
Therefore, a liquid level switch 20 is provided as a liquid level sensor at the refrigerant liquid level 2 '(set liquid level) of the refrigerant tank 18.

冷媒液面2′が上がると液面スイッチ20の信号により
電磁弁21が開き、冷媒スプレーポンプ11の動力により、
溶液の逆流が心配のない高い位置から冷媒ブロー配管23
を介して冷媒は空冷吸収器14へ流れ、溶液を稀釈する。
When the refrigerant liquid level 2 'rises, the solenoid valve 21 is opened by the signal of the liquid level switch 20, and the power of the refrigerant spray pump 11 causes
Refrigerant blow pipe 23 from a high position where there is no concern about backflow of the solution
The refrigerant flows to the air-cooled absorber 14 via to dilute the solution.

第3図の実施例によれば、蒸発器液面に相当する冷媒
タンク18の冷媒液面2′が空冷凝縮器液面4と同等レベ
ルの場合でも、液冷媒を空冷凝縮器3から蒸発器1側の
冷媒タンク18へ確実に戻すことができるとともに、設定
冷媒液面を超える冷媒を溶液の逆流なしに確実に空冷吸
収器14へ送り冷媒オーバーフロー機能を果たして、二重
効用空冷吸収式冷凍機を安全に運転することができる。
According to the embodiment of FIG. 3, even when the refrigerant liquid level 2 'of the refrigerant tank 18 corresponding to the evaporator liquid level is at the same level as the air-cooled condenser liquid level 4, the liquid refrigerant is supplied from the air-cooled condenser 3 to the evaporator. In addition to being able to reliably return the refrigerant to the refrigerant tank 18 on the first side, the refrigerant that exceeds the set refrigerant level is reliably sent to the air-cooled absorber 14 without backflow of the solution, and fulfills the refrigerant overflow function. Can be safely driven.

次に、第4図は、第3の発明の一実施例に係る二重効
用空冷吸収式冷凍機のサイクル系統図である。図中、第
1図,第3図と同一符号のものは、それらの実施例と同
等部分であるから、その説明を省略する。
Next, FIG. 4 is a cycle diagram of a double-effect air-cooled absorption refrigerator according to one embodiment of the third invention. In the drawings, those having the same reference numerals as those in FIGS. 1 and 3 are the same parts as those of the embodiments, and the description thereof will be omitted.

第4図の実施例では、運転中の冷媒タンクの冷媒液面
が、先の第1図の蒸発器液面2と第2図の冷媒タンクの
冷媒液面2′との中間に位置するものである。
In the embodiment of FIG. 4, the refrigerant liquid level of the operating refrigerant tank is located between the evaporator liquid level 2 of FIG. 1 and the refrigerant liquid level 2 ′ of the refrigerant tank of FIG. It is.

第4図において、18′は、蒸発器1の冷媒容器に連通
する冷媒タンクで、この冷媒タンク18′は主冷媒タンク
と当該主冷媒タンクの断面積より小さい断面積の補助冷
媒タンク18aとで一体形成されている。この補助冷媒タ
ンク18aにおける冷媒液面2″は、空冷凝縮器液面4よ
りHmmAg高いレベルにある。
In FIG. 4, reference numeral 18 'denotes a refrigerant tank which communicates with the refrigerant container of the evaporator 1. This refrigerant tank 18' is composed of a main refrigerant tank and an auxiliary refrigerant tank 18a having a smaller sectional area than that of the main refrigerant tank. It is formed integrally. The refrigerant liquid level 2 ″ in the auxiliary refrigerant tank 18a is at a level higher by HmmAg than the air-cooled condenser liquid level 4.

冷媒タンク18′は、低負荷のとき、その冷媒液面が空
冷凝縮器14の液面とほぼ同じ高さとなり、高負荷になる
と、その冷媒液面が高くなるように、主冷媒タンク上部
に断面積の小さい補助冷媒タンク18aを形成している。
When the load is low, the refrigerant liquid level of the refrigerant tank 18 ′ is substantially the same as the liquid level of the air-cooled condenser 14, and when the load is high, the refrigerant liquid level is higher at the upper part of the main refrigerant tank. An auxiliary refrigerant tank 18a having a small sectional area is formed.

9Aは、補助冷媒タンク18aに設けた開口堰で、開口堰9
Aは、冷媒が設定液面をこえたときオーバーフローする
堰手段である。10Aは、開口堰9Aから空冷吸収器14へ接
続するオーバーフロー配管である。前記開口堰9Aは、溶
液のもっとも低濃度のときの空冷吸収器液面19、すなわ
ち空冷吸収器14の最大液面高さより高く配置されてい
る。
9A is an open weir provided in the auxiliary refrigerant tank 18a.
A is a weir means that overflows when the refrigerant exceeds the set liquid level. 10A is an overflow pipe connected from the opening weir 9A to the air-cooled absorber 14. The opening weir 9A is arranged higher than the liquid level 19 of the air-cooled absorber at the lowest concentration of the solution, that is, the maximum liquid level of the air-cooled absorber 14.

第4図に示す二重効用空冷吸収式冷凍機においては、
前述のように空冷凝縮器液面4は、補助冷媒タンクの冷
媒液面2″よりHmmAg低い。そこで、運転中の両者区の
圧力差が、H/13.6mmHgを超えたとき、初めて凝縮冷媒が
空冷凝縮器3からU字状冷媒戻り配管5Bを経て冷媒タン
ク18′へ流れる(例えば、H=200mmAgとすると、圧力
差14.7mmHg)。いうまでもなく、冷媒が冷媒タンク18′
へ流れ出すまでは空冷凝縮器3の冷媒容器に冷媒が溜ま
り液面が上がり、Hがやがて小さくなる。
In the double-effect air-cooled absorption refrigerator shown in FIG.
As described above, the liquid level 4 of the air-cooled condenser is lower than the refrigerant level 2 ″ of the auxiliary refrigerant tank by HmmAg. Therefore, when the pressure difference between the two sections during operation exceeds H / 13.6mmHg, the condensed refrigerant is not generated until the liquid level increases. The air flows from the air-cooled condenser 3 to the refrigerant tank 18 'via the U-shaped refrigerant return pipe 5B (for example, if H = 200 mmAg, the pressure difference is 14.7 mmHg).
Until the refrigerant flows into the air-cooled condenser 3, the refrigerant accumulates in the refrigerant container of the air-cooled condenser 3 and the liquid level rises.

また、冷媒の異常な分離の際には、補助冷媒タンク18
aに設けた開口堰9Aから冷媒をオーバーフローさせ、オ
ーバーフロー配管10Aを介して冷媒を空冷吸収器14へ戻
し溶液を稀釈する。このとき、前述のように、開口堰9A
は吸収器最大液面高さより高く配置されているので、溶
液の逆流により冷媒が汚れることはない。
In case of abnormal separation of the refrigerant, the auxiliary refrigerant tank 18
The refrigerant overflows from the opening weir 9A provided in a, and the refrigerant is returned to the air-cooled absorber 14 via the overflow pipe 10A to dilute the solution. At this time, as described above, the opening weir 9A
Is arranged higher than the maximum liquid level of the absorber, so that the refrigerant is not contaminated by the backflow of the solution.

次に、第5図は、第1の発明のさらに他の実施例に係
る二重効用空冷吸収式冷凍機のサイクル系統図である。
図中、第1図と同一符号のものは第1図の実施例と同等
部分であるから、その説明を省略する。
Next, FIG. 5 is a cycle system diagram of a double-effect air-cooled absorption refrigerator according to still another embodiment of the first invention.
In the figure, components having the same reference numerals as those of FIG. 1 are the same as those of the embodiment of FIG. 1, and the description thereof will be omitted.

第5図の実施例が、第1図の実施例と異なるところ
は、第1図の実施例においてバイパス配管により冷媒ポ
ンプ6のキヤビテーション防止を図っていたのに代わ
り、空冷凝縮器3の冷媒容器に液面スイッチ22を設け、
冷媒戻り配管5Cの冷媒ポンプ6吐出側に前記液面スイッ
チ22と連動する流量制御弁24を設けて、冷媒戻り配管5C
の循環量を制御し、キヤビテーションの防止を図ったこ
とである。
5 is different from the embodiment of FIG. 1 in that the cavitation of the refrigerant pump 6 is prevented by the bypass pipe in the embodiment of FIG. A liquid level switch 22 is provided in the refrigerant container,
A flow control valve 24 interlocked with the liquid level switch 22 is provided on the refrigerant return pipe 5C discharge side of the refrigerant return pipe 5C.
Of circulating air to prevent cavitation.

すなわち、空冷凝縮器液面4が低下すると冷媒ポンプ
6にキヤビテーションを発生する恐れがあるので、液面
スイッチ22で液面を検出し、液面が低下したときは流量
制御弁24の開度を絞って冷媒循環量を制御するものであ
る。
That is, if the liquid level of the air-cooled condenser 4 drops, cavitation may occur in the refrigerant pump 6. Therefore, the liquid level is detected by the liquid level switch 22, and when the liquid level is lowered, the flow control valve 24 is opened. The refrigerant circulation amount is controlled with a small degree.

第5図の実施例によれば、先の第1図で説明したと同
様の効果が期待される。
According to the embodiment of FIG. 5, the same effect as that described in FIG. 1 is expected.

[発明の効果] 以上述べたように、本発明によれば、空冷凝縮器の液
面が蒸発器の液面より低い位置にある場合、凝縮冷媒を
蒸発器へ戻す冷媒戻り系、および冷媒オーバーフロー系
の冷媒配管系を最適に機能させうる二重効用空冷吸収式
冷凍機を提供することができる。
[Effects of the Invention] As described above, according to the present invention, when the liquid level of the air-cooled condenser is lower than the liquid level of the evaporator, the refrigerant return system for returning the condensed refrigerant to the evaporator, and the refrigerant overflow It is possible to provide a double-effect air-cooled absorption refrigerator capable of optimally functioning a system refrigerant piping system.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、第1の発明の一実施例に係る二重効用空冷吸
収式冷凍機のサイクル系統図、第2図は、第1の発明の
他の実施例に係る二重効用空冷吸収式冷凍機のサイクル
系統図、第3図は、第2の発明の一実施例に係る二重効
用空冷吸収式冷凍機のサイクル系統図、第4図は、第3
の発明の一実施例に係る二重効用空冷吸収式冷凍機のサ
イクル系統図、第5図は、第1の発明のさらに他の実施
例に係る二重効用空冷吸収式冷凍機のサイクル系統図で
ある。 1……蒸発器、2……蒸発器液面、2′,2″……冷媒液
面、3……空冷凝縮器、4……空冷凝縮器液面、5,5A,5
C……冷媒戻り配管、5B,……U字状冷媒戻り配管、6…
…冷媒ポンプ、7……バイパス配管、8……オリフイ
ス、9,9A……開口堰、10,10A……オーバーフロー配管、
11……冷媒スプレーポンプ、12,12B……冷媒スプレー配
管、13……冷媒エゼクター、14……空冷吸収器、15……
高温再生器、16……低温再生器、17……フアン、18,1
8′……冷媒タンク、18a……補助冷媒タンク、19……空
冷吸収器液面、20,22……液面スイッチ、23……冷媒ブ
ロー配管、24……流量制御弁、27……溶液循環ポンプ、
29……溶液熱交換器。
FIG. 1 is a cycle system diagram of a double-effect air-cooled absorption refrigerator according to one embodiment of the first invention, and FIG. 2 is a double-effect air-cooled absorption refrigerator according to another embodiment of the first invention. FIG. 3 is a cycle system diagram of a refrigerator, FIG. 3 is a cycle system diagram of a double-effect air-cooled absorption refrigerator according to one embodiment of the second invention, and FIG.
FIG. 5 is a cycle diagram of a double-effect air-cooled absorption refrigerator according to an embodiment of the present invention. FIG. 5 is a cycle diagram of a double-effect air-cooled absorption refrigerator according to still another embodiment of the first invention. It is. 1 ... evaporator, 2 ... evaporator liquid level, 2 ', 2 "... refrigerant liquid level, 3 ... air-cooled condenser, 4 ... air-cooled condenser liquid level, 5,5A, 5
C: refrigerant return line, 5B, U-shaped refrigerant return line, 6
... refrigerant pump, 7 ... bypass pipe, 8 ... orifice, 9, 9A ... open weir, 10, 10A ... overflow pipe,
11 ... refrigerant spray pump, 12, 12B ... refrigerant spray pipe, 13 ... refrigerant ejector, 14 ... air-cooled absorber, 15 ...
High temperature regenerator, 16 …… Low temperature regenerator, 17 …… Juan, 18,1
8 ': refrigerant tank, 18a: auxiliary refrigerant tank, 19: air-cooled absorber liquid level, 20, 22, liquid level switch, 23: refrigerant blow pipe, 24: flow control valve, 27: solution Circulation pump,
29 …… Solution heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 茂吉 東京都豊島区要町2丁目26番地 (72)発明者 永岡 義一 東京都世田谷区上祖師谷5―22―4 上 祖師谷ハイツ302号 (72)発明者 閑納 真一 大阪府羽曳野市高鷲4丁目9―4―303 (72)発明者 竹本 貞寿 愛知県名古屋市千種区豊年町11―8 (72)発明者 清水 民男 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 大内 富久 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (56)参考文献 特開 平2−50058(JP,A) 実開 平1−63965(JP,U) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shigeyoshi Kurosawa 2-26 Kanamecho, Toshima-ku, Tokyo (72) Inventor Yoshikazu Nagaoka 5-22-4 Kami-Soshigaya Heights 302, Kami-Soshigaya Heights 302 (72) Inventor Shinichi Kanou 4-9-1-4-303 Takawashi, Habikino-shi, Osaka (72) Inventor Sadatoshi Takemoto 11-8, Tonencho, Chigusa-ku, Nagoya, Aichi Prefecture 603 Hitachi, Ltd. Tsuchiura Plant (72) Inventor Tomohisa Ouchi 502, Kunitachi-cho, Tsuchiura-shi, Ibaraki Pref. Hitachi, Ltd. Machinery Research Institute (56) References JP-A-2-50058 (JP, A) Hei 1-63965 (JP, U)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸発器、空冷吸収器、空冷凝縮器、低温再
生器、高温再生器、溶液熱交換器、溶液循環ポンプ、冷
媒スプレーポンプ、およびこれらを作動的に接続する配
管系からなり、前記空冷吸収器、空冷凝縮器へ冷却空気
を供給するフアンを備えた二重効用空冷吸収式冷凍機に
おいて、空冷凝縮器と蒸発器とを接続する冷媒戻り配管
の途中に、蒸発器が空冷凝縮器より高く位置して空冷凝
縮器の液面と蒸発器液面との高さの差が差動圧液柱高さ
を超える場合の冷媒送給手段を設けるとともに、前記蒸
発器に、あらかじめ設定した冷媒液面より作動液面が高
くなったときオーバーフローする堰手段と、その堰手段
から空冷吸収器または溶液系へ戻す冷媒配管を設けたこ
とを特徴とする二重効用空冷吸収式冷凍機。
An evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system for operatively connecting these, In the double-effect air-cooled absorption refrigerator having a fan for supplying cooling air to the air-cooled absorber and the air-cooled condenser, in the middle of a refrigerant return pipe connecting the air-cooled condenser and the evaporator, the evaporator has an air-cooled condenser. A refrigerant supply means is provided when the height difference between the liquid level of the air-cooled condenser and the liquid level of the evaporator exceeds the differential pressure liquid column height, and is set in advance in the evaporator. A double-effect air-cooled absorption refrigerator comprising: a weir means that overflows when the working fluid level becomes higher than the refrigerant fluid level, and a refrigerant pipe returning from the weir means to an air-cooled absorber or a solution system.
【請求項2】特許請求の範囲第1項記載のものにおい
て、冷媒送給手段は、空冷凝縮器と蒸発器とを接続する
冷媒戻り配管に冷媒ポンプを設けるものとし、この冷媒
ポンプの前後に、オリフイスを具備したバイパス管を設
けたことを特徴とする二重効用空冷吸収式冷凍機。
2. The refrigerant supply device according to claim 1, wherein the refrigerant supply means includes a refrigerant pump in a refrigerant return pipe connecting the air-cooled condenser and the evaporator. A double-effect air-cooled absorption refrigerator comprising a bypass pipe provided with an orifice.
【請求項3】特許請求の範囲第1項記載のものにおい
て、冷媒送給手段は、空冷凝縮器からの冷媒戻り配管
を、冷媒スプレー配管の冷媒スプレーポンプ吐出側に冷
媒エゼクターを介して接続したことを特徴とする二重効
用空冷吸収式冷凍機。
3. The refrigerant supply means according to claim 1, wherein the refrigerant supply means connects a refrigerant return pipe from the air-cooled condenser to a refrigerant spray pump discharge side of the refrigerant spray pipe via a refrigerant ejector. A double-effect air-cooled absorption refrigerator.
【請求項4】特許請求の範囲第1項記載のものにおい
て、空冷凝縮器の冷媒液容器に液面スイッチを設け、前
記空冷凝縮器からの冷媒戻り配管の冷媒ポンプ吐出側に
前記液面スイッチと連動する流量制御弁を設けたことを
特徴とする二重効用空冷吸収式冷凍機。
4. A liquid level switch is provided in a refrigerant liquid container of an air-cooled condenser according to claim 1, and said liquid level switch is provided on a refrigerant pump discharge side of a refrigerant return pipe from said air-cooled condenser. A double-effect air-cooled absorption chiller characterized by having a flow control valve interlocked with the chiller.
【請求項5】蒸発器、空冷吸収器、空冷凝縮器、低温再
生器、高温再生器、溶液熱交換器、溶液循環ポンプ、冷
媒スプレーポンプ、およびこれらを作動的に接続する配
管系からなり、前記空冷吸収器、空冷凝縮器へ冷却空気
を供給するフアンを備えた二重効用空冷吸収式冷凍機に
おいて、蒸発器の冷媒容器に連通する冷媒タンクを備
え、その冷媒液面を空冷凝縮器の液面とほぼ同レベルに
保ちうるように液面スイッチを具備し、前記空冷凝縮器
と前記冷媒タンクとを接続するU字管状の冷媒戻り配管
を設けるとともに、前記冷媒タンクに接続し冷媒スプレ
ーポンプを具備した冷媒スプレー配管と、この冷媒スプ
レー配管から分岐し電磁弁を具備して空冷吸収器あるい
は溶液系の一部に接続する冷媒ブロー配管とを設け、前
記液面スイッチの信号により前記電磁弁を開閉するよう
にしたことを特徴とする二重効用空冷吸収式冷凍機。
5. An evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system for operatively connecting these, The air-cooled absorber, a double-effect air-cooled absorption refrigerator including a fan for supplying cooling air to the air-cooled condenser, includes a refrigerant tank communicating with a refrigerant container of the evaporator, and the refrigerant liquid level of the air-cooled condenser. A liquid level switch is provided so as to maintain the liquid level at substantially the same level, a U-shaped tubular refrigerant return pipe connecting the air-cooled condenser and the refrigerant tank is provided, and a refrigerant spray pump connected to the refrigerant tank. And a refrigerant blow pipe branched from the refrigerant spray pipe and provided with an electromagnetic valve and connected to an air-cooled absorber or a part of the solution system. Double-effect air-cooled absorption type refrigerating machine, characterized in that so as to open and close the solenoid valve by.
【請求項6】蒸発器、空冷吸収器、空冷凝縮器、低温再
生器、高温再生器、溶液熱交換器、溶液循環ポンプ、冷
媒スプレーポンプ、およびこれらを作動的に接続する配
管系からなり、前記空冷吸収器、空冷凝縮器へ冷却空気
を供給するフアンを備えた二重効用空冷吸収式冷凍機に
おいて、蒸発器の冷媒容器に連通する冷媒タンクを備
え、その冷媒タンクを主冷媒タンクと当該主冷媒タンク
の断面積より小さい断面積の補助冷媒タンクとで一体形
成したものとし、前記補助冷媒タンクに、冷媒が設定液
面をこえたときオーバーフローする堰手段と、その堰手
段から空冷吸収器へ接続する冷媒配管を設けるととも
に、そのオーバーフロー堰が、溶液のもっとも低濃度の
ときの空冷吸収器液面よりも高く配置され、上記空冷凝
縮器と前記冷媒タンクとを接続するU字状の冷媒戻り配
管を設けたことを特徴とする二重効用空冷吸収式冷凍
機。
6. An evaporator, an air-cooled absorber, an air-cooled condenser, a low-temperature regenerator, a high-temperature regenerator, a solution heat exchanger, a solution circulation pump, a refrigerant spray pump, and a piping system for operatively connecting these. The air-cooled absorber, the double-effect air-cooled absorption refrigerator having a fan for supplying cooling air to the air-cooled condenser, a refrigerant tank communicating with a refrigerant container of an evaporator, the refrigerant tank is a main refrigerant tank and An auxiliary refrigerant tank having a cross-sectional area smaller than that of the main refrigerant tank is formed integrally with the auxiliary refrigerant tank, and the auxiliary refrigerant tank has a weir means that overflows when the refrigerant exceeds a set liquid level, and an air-cooled absorber from the weir means. And an overflow weir is disposed higher than the liquid level of the air-cooled absorber at the lowest concentration of the solution, and the air-cooled condenser and the refrigerant tank Double-effect air-cooled absorption type refrigerating machine, characterized in that a U-shaped refrigerant return pipe connecting the.
JP8704989A 1989-04-07 1989-04-07 Double-effect air-cooled absorption refrigerator Expired - Lifetime JP2651239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8704989A JP2651239B2 (en) 1989-04-07 1989-04-07 Double-effect air-cooled absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8704989A JP2651239B2 (en) 1989-04-07 1989-04-07 Double-effect air-cooled absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH02267474A JPH02267474A (en) 1990-11-01
JP2651239B2 true JP2651239B2 (en) 1997-09-10

Family

ID=13904087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8704989A Expired - Lifetime JP2651239B2 (en) 1989-04-07 1989-04-07 Double-effect air-cooled absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2651239B2 (en)

Also Published As

Publication number Publication date
JPH02267474A (en) 1990-11-01

Similar Documents

Publication Publication Date Title
KR100343845B1 (en) Absorption Chiller
JP2651239B2 (en) Double-effect air-cooled absorption refrigerator
JP3554858B2 (en) Absorption refrigerator
JPH0733937B2 (en) Absorption refrigerator
JP2883372B2 (en) Absorption chiller / heater
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JP2639969B2 (en) Absorption refrigerator
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP2777450B2 (en) Absorption refrigerator
JPS6021727Y2 (en) Double effect absorption chiller
JPH0198865A (en) Absorption refrigerator
JP3084650B2 (en) Absorption chiller / heater and its control method
JP2828700B2 (en) Absorption refrigerator
JPS6148067B2 (en)
JPH11281187A (en) Absorption refrigerating machine
JP2823295B2 (en) Absorption refrigerator
JP3182233B2 (en) Operation control method in absorption refrigerator
CN114061172A (en) High-temperature generator, control method thereof and refrigerator
JP3434284B2 (en) Absorption refrigerator
JPH08105661A (en) Absorption chilled and warm water generator and controlling method therefor
JPH0635905B2 (en) Absorption refrigerator
JPH0444177B2 (en)
JP2000171120A (en) Absorption refrigerating machine
JP2000171121A (en) Absorption refrigerating machine
JPH0763436A (en) Absorption refrigerating machine