JPH02267241A - Steel for line pipe having excellent hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance - Google Patents

Steel for line pipe having excellent hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance

Info

Publication number
JPH02267241A
JPH02267241A JP8678989A JP8678989A JPH02267241A JP H02267241 A JPH02267241 A JP H02267241A JP 8678989 A JP8678989 A JP 8678989A JP 8678989 A JP8678989 A JP 8678989A JP H02267241 A JPH02267241 A JP H02267241A
Authority
JP
Japan
Prior art keywords
less
steel
cracking resistance
resistance
ssc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8678989A
Other languages
Japanese (ja)
Other versions
JP2655911B2 (en
Inventor
Fumimaru Kawabata
文丸 川端
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13896535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02267241(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1086789A priority Critical patent/JP2655911B2/en
Publication of JPH02267241A publication Critical patent/JPH02267241A/en
Application granted granted Critical
Publication of JP2655911B2 publication Critical patent/JP2655911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To improve the hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance of the steel in a low pH environment by regulating the contents of C, Si, Mn, P, S, Al, N, etc., in a steel and specifying its ACR value. CONSTITUTION:The compsn. of the steel for line pipes is constituted of, by weight, <0.05% C, <=0.5% Si, 0.5 to 1.7% Mn, <=0.0070% P, <=0.0010% S, 0.01 to 0.10% Al, <=0.0050% N, <0.0010% O, 0.0010 to 0.0040% Ca and the balance Fe with inevitable impurities. Furthermore, the value of ACR found by the formula is regulated so as to satisfy 0.5<=ACR<=2.8. It required, optimum amounts of one or more kinds among Cu, Ni, Cr, Mo, Nb, V, Ti and B are moreover incorporated thereto. The steel material is suitable to the transportion of petroleum, natural gas, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、硫化水素(++xs )を含む湿潤環境(以
後サワー環境という)を形成する石油や天然ガスの輸送
に適した耐水素誘起割れ(耐111C)性および耐硫化
物応力腐食割れ(耐SSC)性の優れたラインパイプ用
鋼に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention provides hydrogen-induced cracking (hydrogen-induced cracking) suitable for transporting oil and natural gas that form a humid environment containing hydrogen sulfide (++xs) (hereinafter referred to as a sour environment). The present invention relates to a line pipe steel with excellent resistance to 111C) and sulfide stress corrosion cracking (SSC).

〈従来の技術〉 石油シ四ツク以来Hasを含むいわゆるサワーな石油や
天然ガスの採掘が活発化し、近年の主要なパイプライン
ではサワー環境を前提とした設計が一般化しつつある。
<Conventional Technology> Since the advent of oil mining, extraction of so-called sour oil and natural gas, including Has, has become more active, and in recent years major pipelines have been designed on the premise of sour environments.

この設計では、致命的な破壊を引き起こす旧c、 ss
cなどのサワー環境下特有の割れ発生防止が最大の課題
とされており、その解決方法は用いる材料選定ひいては
施工コストにも大きく係わる。対応策の中には、パイプ
の表面コーティングや輸送物の前処理あるいはインヒビ
ターと呼ばれる化学物の利用などが含まれるが、パイプ
の素材たる綱板自身の優れた耐+11C,SSC性は安
価でかつ安定した安全性を提供するうえでの基本である
In this design, old c, ss causing fatal destruction
The biggest challenge is to prevent the occurrence of cracks, which are unique to sour environments such as those found in sour environments such as C, and the solution to this problem has a great deal to do with the selection of materials to be used, as well as construction costs. Countermeasures include surface coating of pipes, pre-treatment of transported materials, and use of chemicals called inhibitors, but the excellent +11C and SSC resistance of the steel plate itself, which is the material of the pipe, is inexpensive and This is the basis for providing stable safety.

111c、SSCはともに輸送物中に含まれる■8Sの
表面での腐食作用により発生する水素(H)原子が鋼材
中に進入して引き起こされる割れである。
Both 111c and SSC are cracks caused by hydrogen (H) atoms generated by corrosion on the surface of 18S contained in the transported material entering the steel material.

1113は鋼材中に進入したHが、鋼材中のMnSやク
ラスター上の酸化物系介在物などに集積後、分子化して
H自身の脆化作用と分子化圧力が割れ開口を生じること
によって起こり、さらに鋼材の偏析帯は発生した割れの
伝播を助長し、大きく危険な割れに至らしめる。
1113 occurs when H that has entered the steel material accumulates in MnS in the steel material and oxide-based inclusions on clusters, and then becomes molecular, and the embrittlement effect of H itself and the pressure of molecularization cause crack openings. Furthermore, the segregation bands in steel facilitate the propagation of cracks that occur, leading to large and dangerous cracks.

111cの防止法としては、 (1)Ni、Cu、Crの添加により表面の腐食作用を
抑制する。
111c prevention methods include: (1) Suppressing surface corrosion by adding Ni, Cu, and Cr.

(2)圧延により伸長して割れ感受性を上げるMnSを
、Ca、Rf!Mの添加によりCaSやREMEI化物
にして圧延後も球状化状態を保ち割れ感受性を下げる。
(2) MnS is elongated by rolling to increase cracking susceptibility, and Ca, Rf! By adding M, it becomes a CaS or REMEI compound, which maintains a spheroidized state even after rolling and reduces cracking susceptibility.

(特開昭53−14606号、特開昭54−38214
号) (3)Mn、  P、  S量を減じるかあるいは均熱
拡散処理を圧延前に行い偏析度を軽減する。
(JP-A No. 53-14606, JP-A No. 54-38214
(3) Reduce the amount of Mn, P, and S, or perform soaking diffusion treatment before rolling to reduce the degree of segregation.

(特開昭52−111815号、特開昭50−9751
5号)(4)圧延後の熱処理あるいは最近では加工熱処
理技術(TMCP)により偏析部のミクロ&ll#sを
改善する。(特開昭62−112722号、特公昭62
−23056号、特公昭62−35452号)などの諸
法が堤案されている。
(JP-A No. 52-111815, JP-A No. 50-9751
No. 5) (4) Improving the micro&ll#s of the segregated part by heat treatment after rolling or recently by mechanical heat treatment technology (TMCP). (Unexamined Japanese Patent Application No. 112722/1983, Special Publication No. 112722/1983
-23056, Special Publication No. 62-35452) have been proposed.

いっぽうSSC問題も耐サワー処理をしない原油などと
接する油井管では古くから経験されていたが、用いられ
るパイプ素材は、例えば降伏点あるいは0.2%耐力で
60〜70kgf/閣茸を越えるような高強度鋼であっ
た。したがって主として表面硬さの低下(例えばNAC
[!基準によるRc(ロックウェルC硬度)≦22)が
その防止策として取られ、鋼材の炭素当量制限や溶接施
工時の条件制限などの形で実施されてきた。
On the other hand, the SSC problem has been experienced for a long time in oil country tubular goods that come in contact with crude oil, etc., which are not subjected to sour treatment, but the pipe materials used have a yield point or 0.2% proof stress that exceeds 60 to 70 kgf/Kakutake. It was made of high strength steel. Therefore, it mainly reduces the surface hardness (e.g. NAC
[! The standard Rc (Rockwell C hardness) ≦22) has been taken as a preventive measure, and has been implemented in the form of limiting the carbon equivalent of steel materials and limiting the conditions during welding work.

〈発明が解決しようとする課題〉 しかし現在はサワーな石油や天然ガスを輸送するそ−ズ
から、より高い水素濃度環境に耐える性能をAPI5L
のX46〜X65クラスのラインパイプに求めるように
なってきている。この厳しい環境での抵抗力の評価は、
低いpHのNACE溶液(5%NaCN+0.5%Cl
100H+飽和1IIS)を用いる浸漬試験で行われる
が、先に挙げたllIc、SSCの防止法が必ずしも効
果を発揮せず、まだ決定的な防止法は見いだされていな
い。
〈Problem to be solved by the invention〉 However, in order to transport sour oil and natural gas, API5L has the ability to withstand higher hydrogen concentration environments.
Increasingly, customers are looking for line pipes in the X46 to X65 class. Evaluation of resistance in this harsh environment is
Low pH NACE solution (5% NaCN + 0.5% Cl
100H+saturated 1IIS), but the methods for preventing llIc and SSC listed above are not necessarily effective, and no definitive method for preventing them has yet been found.

111cにおいて、(1)のNi+Cu+Crの添加法
では、例えばCuの場合pnが5以上でなければその効
果が発揮されない、(2)のCa、R[1M添加法につ
いても、よ、り厳しいサワー環境では、不純物が集積し
やすい鋼材の中心部でのMnSの完全な球状化が困難な
ため、十分な防止策とならない、 MnSの完全球状化
を目的にCa、REMを多量添加すると、それにより鋼
材中心部以外のクラスター状非金属介在物(以下介在物
という)の量を増加させ、却ってHIC感受性を上げて
しまう、(3)の偏析元素の均熱拡散処理はコスト面で
不利である。P、Sの減量を前提としても、Mnの減量
は鋼材強度の確保面から限度がありここで問題にする厳
しいサワー環境には対応困難である。(4)の圧延後の
熱処理やTMCPの利用は有効な場合があるが、前者は
特に大量生産時の能力面で限度があり、後者においても
制御能力には自ずと限度がる。
111c, (1) Ni+Cu+Cr addition method does not exhibit its effect unless pn is 5 or more in the case of Cu, and (2) Ca, R[1M addition method also requires a harsher sour environment. However, this is not a sufficient preventive measure because it is difficult to completely spheroidize MnS in the center of the steel where impurities tend to accumulate.If large amounts of Ca and REM are added for the purpose of completely spheroidizing MnS, it will cause the steel to become spherical. The soaking-diffusion treatment of segregated elements (3), which increases the amount of cluster-like nonmetallic inclusions (hereinafter referred to as inclusions) other than the central portion and even increases HIC susceptibility, is disadvantageous in terms of cost. Even if the reduction of P and S is assumed, there is a limit to the reduction of Mn from the viewpoint of ensuring the strength of the steel material, and it is difficult to cope with the severe sour environment discussed here. (4) Post-rolling heat treatment and the use of TMCP may be effective, but the former has a limit in terms of capacity, especially during mass production, and the latter naturally has a limit in control capacity.

ところでSSCはこれまでと異なり、^PI5L−X4
6〜−X65クラスの比較的低強度のラインパイプで、
硬さがRc−22を越えない材料でも起こることがわか
り、溶接などによる局部硬化部は別として、従来の硬さ
制限があまり意味を持たなくなってきている。
By the way, SSC is different from the previous ones, ^PI5L-X4
6~-X65 class relatively low strength line pipe,
It has been found that this phenomenon occurs even in materials whose hardness does not exceed Rc-22, and conventional hardness restrictions have become meaningless, with the exception of locally hardened parts due to welding and the like.

本発明の目的は、このように従来技術では十分に対処し
きれない、NAC[!i液のようなより厳しいサワー環
境での旧C及びSSC発生の防止を可能にしたラインパ
イプ用鋼を提供することである。
The purpose of the present invention is thus to address NAC [! It is an object of the present invention to provide a steel for line pipes that makes it possible to prevent the generation of old C and SSC in a more severe sour environment such as I-liquid.

<!Iffを解決するための手段〉 本発明者らの研究によれば、上述のより厳しいサワー環
境下での旧Cおよび5SCO問題は、主としてその発生
源として鋼材中の介在物が深く関与することに根ざして
おり、その量を減じると共に分布状態を最良に制御する
ことによって耐重C性及び耐SSC性を飛躍的に改善す
ることが可能であることが解った。そしてそれは鋼材の
成分コントロールによって達成できる。
<! Means for Solving Iff> According to the research conducted by the present inventors, the former C and 5SCO problems mentioned above under the more severe sour environment are mainly caused by inclusions in the steel material being deeply involved. It has been found that it is possible to dramatically improve the load C resistance and SSC resistance by reducing the amount and optimally controlling the distribution state. This can be achieved by controlling the composition of steel.

すなわち本発明は、C:0.05%未満、31:0.5
%以下、Mn量 0.5〜1.7%、P : 0.00
70%以下、S : 0.0010%以下、^J! (
soj! ) : 0.01−0.10%、N : 0
.0050%以下、On 0.0010%未満、Ca 
+ 0.0010〜0.0040%を含み、かつ次式(
+)、 (2)を満足し、必要に応じて、さらに、Cu
 : 0.5%以下、Nl F 0.5%以下、Cr:
  1.0%以下、No : 0.5%以下、Nb:0
.10%以下、v:o、to%以下、Tl ! 0.0
1〜0.10%、B : 0.0050%以下の1種ま
たは2種以上を含有し、残部がFeおよび不可避的不純
物からなることを特徴とする耐水素誘起割れ性および耐
硫化物応力腐食割れ性に優れるラインパイプ用鋼である
That is, in the present invention, C: less than 0.05%, 31:0.5
% or less, Mn amount 0.5-1.7%, P: 0.00
70% or less, S: 0.0010% or less, ^J! (
Soj! ): 0.01-0.10%, N: 0
.. 0.0050% or less, On less than 0.0010%, Ca
+ 0.0010 to 0.0040%, and the following formula (
+), (2), and if necessary, Cu
: 0.5% or less, Nl F 0.5% or less, Cr:
1.0% or less, No: 0.5% or less, Nb: 0
.. 10% or less, v:o, to% or less, Tl! 0.0
Hydrogen-induced cracking resistance and sulfide stress corrosion resistance characterized by containing one or more of 1 to 0.10%, B: 0.0050% or less, and the remainder consisting of Fe and inevitable impurities. A linepipe steel with excellent crackability.

0.5≦^CR≦2.8              
 (1)・−・−・・・−・−(2) この方法に従えば、従来法では十分に対応できなかった
低pHのNACE溶液のような厳しい環境でも、鋼材の
耐重C性、耐SSC性を飛躍的に向上することができる
0.5≦^CR≦2.8
(1)・−・−・・−・−(2) If this method is followed, the heavy C resistance and resistance of steel materials can be improved even in harsh environments such as low pH NACE solutions, which conventional methods could not adequately handle. SSC properties can be dramatically improved.

く作用〉 本発明の成分範囲の限定理由について説明する。Effect〉 The reason for limiting the component range of the present invention will be explained.

本発明は、鋼材中の介在物の制御を主眼としているが、
従来法の及ばない厳しいサワー環境に対応するため、基
本的にフェライト−パーライト組織を回避する必要があ
る。それを達成するために基本となる成分範囲はC:0
.05%未満、Sf:0.5%以下、Mn: 0.5〜
1.7%、P : 0.0070%以下1、S :  
0.010%以下、Aj!:0.01〜0,10%、N
:0゜ooso%以下でなければならない。
Although the present invention focuses on controlling inclusions in steel materials,
In order to cope with the harsh sour environment that conventional methods cannot reach, it is basically necessary to avoid the ferrite-pearlite structure. The basic ingredient range to achieve this is C:0
.. Less than 0.05%, Sf: 0.5% or less, Mn: 0.5~
1.7%, P: 0.0070% or less1, S:
0.010% or less, Aj! :0.01~0.10%, N
: Must be 0°ooso% or less.

母材の強度向上に不利であるが、あえてC量を0.05
%未満としたのは、C量が高いとTMCPによる制御冷
却をした場合にマルテンサイトが生成し、靭性や延性に
悪影響を及ぼし、溶接継手部の局部的な硬さ上昇を助長
し冷間割れ感受性が上昇するためである。さらに、多す
ぎるCは凝固時にデンドライトの樹間に濃縮して、凝固
現象をPやSひいてはhなどの偏析を助長する形態に変
えるが、0.05%未満にCの上限量を制限することで
この現象を抑制できる。
Although it is disadvantageous for improving the strength of the base material, the amount of C is intentionally set to 0.05.
The reason for setting it below % is that if the C content is high, martensite will be generated when controlled cooling is performed by TMCP, which will have a negative effect on toughness and ductility, promote a local increase in hardness of the welded joint, and cause cold cracking. This is because sensitivity increases. Furthermore, too much C concentrates between the dendrite trees during solidification, changing the solidification phenomenon into a form that promotes the segregation of P, S, and even h, but the upper limit of C should be limited to less than 0.05%. This phenomenon can be suppressed.

Slは鋼の脱酸過程で必然的に含まれる元素であるが、
溶接継手熱影響部(IIAZ )の靭性向上のためには
0,5%以下に制限する必要がる。
Sl is an element that is inevitably included in the deoxidation process of steel,
In order to improve the toughness of the heat affected zone (IIAZ) of welded joints, it is necessary to limit it to 0.5% or less.

Mnは強度、靭性を同時に向上する極めて重要な元素で
あるが、本発明の範囲のC量で必要強度(ここでは^P
IA5L規格のX46〜X70相当強度)を得るために
は0.5%以上が必要である。しかし、Mn量が1.7
%越えるとマルテンサイトが多量に生成し、かつ先に述
べた偏析が極めて顕著になるためutc、sscの伝播
が助長され逆効果となる。
Mn is an extremely important element that improves strength and toughness at the same time, but the required strength (here ^P
In order to obtain a strength equivalent to X46 to X70 of the IA5L standard, 0.5% or more is required. However, the amount of Mn is 1.7
%, a large amount of martensite will be produced and the above-mentioned segregation will become extremely pronounced, promoting the propagation of utc and ssc, resulting in an opposite effect.

Pは中心偏析を助長する元素であり低いことが好ましい
が、経済性の観点から0.0070%以下とした。この
量を超えると軽度の中心偏析でも局部的に異常組織とな
り割れを助長する。
P is an element that promotes center segregation and is preferably low in content, but from the viewpoint of economy it is set to 0.0070% or less. If this amount is exceeded, even mild center segregation will cause locally abnormal structures and promote cracking.

Alは脱酸上必然的に含有される元素であるが、0.0
1%未満では脱酸が不十分となり、母材靭性が劣化する
ため下限を0.01%とした。Alはまた0゜10%を
越えるとHAZ靭性を劣化させるとともにクラスター状
の酸化物系介在物を作り1lIc、ssc感受性を上げ
る。このため上限は0.10%とした。
Al is an element that is inevitably included for deoxidation, but 0.0
If it is less than 1%, deoxidation will be insufficient and the toughness of the base material will deteriorate, so the lower limit was set at 0.01%. Moreover, when Al exceeds 0°10%, it deteriorates the HAZ toughness and forms cluster-like oxide-based inclusions, increasing the 1lIc and ssc susceptibility. Therefore, the upper limit was set at 0.10%.

Nは粗大な窒化物系介在物を生成し旧c、ssc感受性
を上げることも考えられるが、溶接継手の靭性とくに溶
接金属の靭性111保の点で0.0050%以下にする
必要がある。 o、ooso%を超えるNlでは、母材
の希釈から溶接金属中に溶は込むNにより溶接継金属の
固溶Nが増え、Bなどの少量で靭性向上効果が大きい添
加元素を有効に活かせない。
Although N may generate coarse nitride-based inclusions and increase sensitivity to old C and SSC, it must be kept at 0.0050% or less in order to maintain the toughness of the welded joint, especially the toughness of the weld metal. When Nl exceeds o, ooso%, solid solution N in the weld joint metal increases due to N dissolving into the weld metal from dilution of the base metal, and additive elements such as B, which have a large effect on improving toughness in small amounts, cannot be effectively utilized. .

さて、次に本発明の中で最も重要な組成であるS、 O
,Caの成分範囲について述べる。SとCaは、従来か
ら言われているようにllIc、SSCの伝播を助長す
る圧延による伸長MnSの球状化形態制御の上で大きな
関連性がある。 llIc、SSC感受性が最も低い球
状にし、かつ微細なものが集まってクラスター化しない
ためには式(2)で定義されるへCR値を式(1)ノ範
囲ニll1llrnすル必要カアル、 ACR4! S
 トCaりけではなく0の量も考慮されている。これは
0の量によってMnSのCaS化による球状化形態制’
<8能力が影響されるためである。
Now, next, the most important compositions in the present invention, S, O
, Ca component range will be described. As has been conventionally said, S and Ca have a great relationship in controlling the spheroidization form of elongated MnS by rolling, which promotes the propagation of llIc and SSC. In order to create a spherical shape with the lowest SSC sensitivity and to prevent fine particles from gathering and clustering, it is necessary to change the CR value to the range defined by equation (2) to the range of equation (1), ACR4! S
The amount of 0 is also taken into account, rather than the amount of Ca. This is due to the spheroidal morphology caused by conversion of MnS to CaS depending on the amount of 0.
This is because <8 abilities are affected.

0.5≦ACR≦2.8              
(1)ACRが0.5よりも小さいときにはCaが少な
くあるいはSが多いためにCaS生成によるHnSの球
状化が不十分であり伸長MnSが残る。逆に八CRが2
.8を越える場合には球状化は促進されるが、生成され
るCaSが大きく、かつクラスター状に生成して111
c、 SSC感受性を上げてしまう。
0.5≦ACR≦2.8
(1) When ACR is smaller than 0.5, the amount of Ca is small or the amount of S is large, so that the spheroidization of HnS due to CaS formation is insufficient, and elongated MnS remains. On the other hand, 8CR is 2
.. If it exceeds 8, spheroidization is promoted, but the generated CaS is large and clustered, resulting in 111
c. Increases SSC sensitivity.

これら諸条件を満たしてもまだ最近の厳しいサワー環境
への対応は難しい、酸化物系の介在物の量がまだ多いの
である。酸化物系介在物は、0量にして0.0010%
未満になるまで低減する必要がある。0量が0.001
0%以上の場合には、微小の球状酸化物系介在物(Ca
b、^280.あるいはそれらの複合化合物)のクラス
ターが発生起点となりllIC。
Even if these conditions are met, it is still difficult to cope with today's harsh sour environments, as the amount of oxide-based inclusions is still large. Oxide inclusions are 0.0010%
It is necessary to reduce it to below. 0 amount is 0.001
If it is 0% or more, minute spherical oxide inclusions (Ca
b, ^280. or a complex compound thereof) serves as the origin of llIC.

SSCが発生する。SSC occurs.

本発明においては以上の成分の他に、必要に応じて、さ
らにCu:0.5%以下、N1j0.5%以下、Cr:
1.0%以下、Mo:0.5%以下、Nb : 0.1
0%以下、V : 0.10%以下、Tl : 0.0
1〜0.10%、B:0゜0050%以下の1種または
211以上を含有させることができる。
In the present invention, in addition to the above components, Cu: 0.5% or less, N1j 0.5% or less, Cr:
1.0% or less, Mo: 0.5% or less, Nb: 0.1
0% or less, V: 0.10% or less, Tl: 0.0
1 to 0.10%, B: 0°0050% or less, or 211 or more.

これらの元素を含有させる主たる目的は本発明鋼の特徴
を損なうことなく、強度と靭性の向上及び適用板厚の拡
大を可能とすることにあり、その添加量は自ら制限され
るべきものである。
The main purpose of including these elements is to improve the strength and toughness and to expand the applicable plate thickness without impairing the characteristics of the steel of the present invention, and the amount of addition should be limited by oneself. .

Niは耐食性、耐重C特性向上に効果的な元素であり、
しかも母材の強度と靭性を向上させる。しかし、硬化元
素でもあり0.5%を越えると従来問題にされた硬さの
面で耐SSC性が劣化するため上限は0.5%とした。
Ni is an effective element for improving corrosion resistance and heavy carbon resistance.
Moreover, it improves the strength and toughness of the base material. However, it is also a hardening element, and if it exceeds 0.5%, the SSC resistance deteriorates in terms of hardness, which has been a problem in the past, so the upper limit was set at 0.5%.

Cuは、前述のように比較的高いpnのサワー環境下で
の水素侵入防止に有効であるが、0.5%を越えるとM
lを添加しても圧延中にクランクが発生して製造が難し
くなる。同時にCuもXiと同様、硬化元素であり少な
いほうが好ましく上限を0.5%とした。
As mentioned above, Cu is effective in preventing hydrogen intrusion in a relatively high pn sour environment, but if it exceeds 0.5%, M
Even if 1 is added, cranks occur during rolling, making manufacturing difficult. At the same time, like Xi, Cu is also a hardening element, and the lower the content, the better, and the upper limit was set at 0.5%.

Crは母材、溶接部ともにその強度を高める元素であ、
り適用板厚範囲の拡大に利用できるが、硬化元素であり
溶接性の観点からは制限が必要で、その上限は1.0%
である。
Cr is an element that increases the strength of both the base metal and the welded part.
Although it can be used to expand the applicable plate thickness range, it is a hardening element and must be limited from the viewpoint of weldability, and the upper limit is 1.0%.
It is.

Moは鋼のミクロ組織におけるパーライトの生成を抑制
して、旧c、sscに良しとされるベイナイト化を促進
するため添加効果が大きい、しかしマルテンサイトも生
成しやすくするため鯛が硬化しやすくなり、溶接継手H
AZの硬化を考慮すると制限が必要であり上限を0.5
%とした。
Mo has a great addition effect because it suppresses the formation of pearlite in the microstructure of steel and promotes bainite formation, which is good for old C and SSC.However, it also makes it easier to generate martensite, making it easier for sea bream to harden. , welded joint H
Considering the hardening of AZ, a limit is necessary and the upper limit is 0.5
%.

Nbは圧延組織の細粒化、焼き入れ性の向上と析出硬化
のために含有させるもので、強度と靭性を共に向上させ
る重要な元素であるが、0.10%までその効果が大き
いがO,10%を越えて添加しても材質への効果は小さ
い、かえって溶接継手+1AZの靭性を劣化させる。従
って、上限を0.10%とした。
Nb is included to refine the rolling structure, improve hardenability, and precipitation harden. It is an important element that improves both strength and toughness. Although its effect is large up to 0.10%, , even if it is added in excess of 10%, the effect on the material quality is small, and on the contrary it deteriorates the toughness of the welded joint +1AZ. Therefore, the upper limit was set at 0.10%.

VはNbとほぼ同様の効果を持つが、上限は0.01%
まで許容できる。
V has almost the same effect as Nb, but the upper limit is 0.01%
It is acceptable up to

TiはNとの親和力が極めて強<TiHの形成によって
、靭性に悪影響を及ぼすフリー窒素を固定し母材および
溶接継手+1AZの靭性改善効果があるが0.01%よ
りも少ないとその効果が得られない、また0、10%よ
りも多すぎると却って固t!87 Hにより靭性を劣化
させる。
Ti has an extremely strong affinity with N. The formation of TiH fixes free nitrogen, which has a negative effect on toughness, and has the effect of improving the toughness of the base metal and welded joint +1AZ, but this effect is not obtained when the amount is less than 0.01%. It is impossible to do so, and if it is more than 0 or 10%, it is hard! 87 H deteriorates toughness.

Bは圧延中にオーステナイト粒界に偏析して、焼き入れ
性を上げパーライト組織を生成しにくくするが、o、o
oso%を越えるとBNやB−constituent
を生成するようになり、母材および溶接継手11AZの
靭性を劣化させる。このため上限をo、ooso%とし
た。
B segregates at austenite grain boundaries during rolling, improving hardenability and making it difficult to form a pearlite structure;
If oso% is exceeded, BN or B-constituent
The toughness of the base metal and the welded joint 11AZ deteriorates. Therefore, the upper limit was set to o, ooso%.

〈実施例〉 本発明の実施例について説明する。<Example> Examples of the present invention will be described.

転炉一連鋳工程で製造した第1表の化学成分の鋳片を1
100℃〜1200℃に再加熱した後、850℃以下の
未再結晶温度域で65%以上の圧下量を与えそれぞれの
鋳片の成分で決まるAr3温度直上(+10°C以内)
から制御冷却した。冷却速度は10〜b/see、冷却
停止温度は550℃未満350°C以上とした。この圧
延プロセスにより10〜32■の綱板を製造した。第1
表中8111−N11ilの鯛は本発明鋼であり、漱1
2〜磁21は比較鋼である。第2表には、発明鋼および
比較鋼の機械的性質と、耐重C性、耐SSC性を示す。
A slab with the chemical composition shown in Table 1 manufactured in the converter series casting process is
After reheating to 100°C to 1200°C, apply a reduction of 65% or more in the non-recrystallized temperature range of 850°C or lower, just above the Ar3 temperature (within +10°C) determined by the composition of each slab.
Controlled cooling was performed from The cooling rate was 10 to b/see, and the cooling stop temperature was less than 550°C and 350°C or more. This rolling process produced steel plates of 10 to 32 inches. 1st
The sea bream 8111-N11il in the table is the steel of the present invention,
2 to 21 are comparative steels. Table 2 shows the mechanical properties, heavy C resistance, and SSC resistance of the invention steel and comparative steel.

111C試験は鋼板表裏面からそれぞれ1mづつ、切削
した厚さで、幅20鰭、長さ100謹の試験片を、圧延
方向が試片の長手方向と一敗するように採取した。また
SSC試験は、板表面にできるだけ近いところから、平
行部25■、直径6mの丸棒引張試験片を採取した。
In the 111C test, specimens with a thickness of 20 fins and a length of 100 fins were cut from the front and back surfaces of the steel plate, each 1 m thick, with the rolling direction aligned with the longitudinal direction of the specimen. In addition, for the SSC test, a round bar tensile test piece with a parallel part of 25 cm and a diameter of 6 m was taken from a place as close as possible to the plate surface.

試験条件として、旧C試験は外部応力を負荷せず行い、
SSC試験は定荷重型の引張試験機により母材降伏強さ
の80%の引張応力を負荷して行った。
As for the test conditions, the old C test was conducted without applying external stress.
The SSC test was conducted by applying a tensile stress of 80% of the yield strength of the base material using a constant load type tensile tester.

浸漬溶液は、一般にNACE溶液と呼ばれる25°Cの
5%NaCl−0,5%CH3CO0IIにIl、Sを
飽和させたもの(911ζ3)を用い、浸漬時間は、I
IIGの場合96時間、SSCの場合720時間とした
The dipping solution used was 5% NaCl-0.5% CH3CO0II at 25°C, generally called NACE solution, saturated with Il and S (911ζ3), and the dipping time was I
The time was 96 hours for IIG and 720 hours for SSC.

N[L12〜Na16はO量が多すぎる鋼板である。o
lが多すぎるとたとえ八CRを満足していても(Na1
2゜13.16 ) 、耐重c、ssc両特性を満足し
ない、 No、12+13はACR値が適正でありll
Ic特性は満足するが耐SSC特性が悪い、磁】4はC
a、 O量が適正値を超えており、たとえslが少な(
でも耐111C,SSC特性の両方が悪い、いっぽうN
1115はCa量は適正であるがS、0量が多く AC
Rが小さすぎ、十分な介在物の形態制御が達成されてお
らず耐1110.ssc特性が悪い、 Na16はP量
が多すぎるためACR値が適正でも耐HIC特性が悪い
、律17〜21はOfは適正である。しかし、8cL1
7はS量がやや高すぎるがなによりもN量が80ρps
+と高く第2表に示すようにWI4Fj。
N[L12 to Na16 are steel plates with too large an amount of O. o
If l is too large, even if 8CR is satisfied (Na1
2゜13.16), does not satisfy both the weight resistance C and SSC characteristics, No, 12+13, the ACR value is appropriate.
Satisfied with Ic characteristics but poor SSC resistance, magnetic】4 is C
a. The O amount exceeds the appropriate value, even if the sl is small (
However, both the 111C resistance and SSC characteristics are poor, while the N
1115 has an appropriate amount of Ca, but a large amount of S and 0 AC
R is too small, and sufficient control of the shape of inclusions is not achieved, resulting in a resistance of 1110. SSC characteristics are poor. Na16 has too much P, so HIC resistance is poor even if the ACR value is appropriate. Rules 17 to 21, Of is appropriate. However, 8cL1
In 7, the S amount is a little too high, but above all the N amount is 80ρps.
As shown in Table 2, WI4Fj is as high as +.

の低温靭性が掻めて悪い。NcL18はCa、Slが高
すぎる。 81119はCa量がやや高すぎACR値も
適正値を趨えている。漱20はC,Nil以外は適正で
ある。
Low-temperature toughness is poor. NcL18 has too high Ca and Sl. In 81119, the Ca content is slightly too high and the ACR value is beyond the appropriate value. Sou 20 is appropriate except for C and Nil.

しかしまずN量過多により靭性が極めて悪く、かつ高い
C量によって中心偏析が助長され耐111cはいいもの
の、SSC特性が劣化した。漱21はC量販外は適正で
あるがMnlがNct20よりも多く高い+4によって
+41120以上に中心偏析が助長されるため耐重Cも
劣化した。すなわち本発明の晴求範囲を満たさない比較
調では、機械的性質、耐重c、 SSC特性のすべてを
同時に満足できているものがない。
However, the toughness was extremely poor due to the excessive amount of N, and center segregation was promoted due to the high amount of C, and although the 111c resistance was good, the SSC characteristics were deteriorated. Sou 21 is suitable for non-mass sales of C, but the Mnl is higher than Nct20 at +4, which promotes center segregation above +41120, so the weight resistance of C is also deteriorated. In other words, among the comparative samples that do not meet the scope of the present invention, there is no one that simultaneously satisfies all of the mechanical properties, weight resistance c, and SSC properties.

〈発明の効果〉 上述したように、従来十分に対応できなかった低piの
NAC[!溶液のような厳しい環境でも、本発明により
鋼材の耐重C性、耐SSC性を飛躍的に向上することが
できた。
<Effects of the invention> As mentioned above, low pi NAC [! Even in harsh environments such as solutions, the present invention has been able to dramatically improve the heavy C resistance and SSC resistance of steel materials.

Claims (1)

【特許請求の範囲】 (1)C:0.05%未満、Si:0.5%以下、Mn
:0.5〜1.7%、P:0.0070%以下、S:0
.0010%以下、Al:0.01〜0.10%、N:
0.0050%以下、O:0.0010%未満、Ca:
0.0010〜0.0040%を含み、かつ次式(1)
、(2)を満足し、残部がFeおよび不可避的不純物か
らなることを特徴とする耐水素誘起割れ性および耐硫化
物応力腐食割れ性に優れるラインパイプ用鋼。 0.5≦ACR≦2.8・・・・・・・・・・(1)A
CR=(Ca(%)−O(%)×{0.18+0.01
3×Ca(%)})/(1.25×S(%))・・・・
・・・・・・(2) (2)C:0.05%未満、Si:0.5%以下、Mn
:0.5〜1.7%、P:0.0070%以下、S:0
.0010%以下、Al:0.01〜0.10%、N:
0.0050%以下、O:0.0010%未満、Ca:
0.0010〜0.0040%を含み、かつ次式(1)
、(2)を満足し、さらにCu:0.5%以下、Ni:
0.5%以下、Cr:1.0%以下、Mo:0.5%以
下、Nb:0.10%以下、V:0.10%以下、Ti
:0.01〜0.10%、B:0.0050%以下の1
種または2種以上を含有し、残部がFeおよび不可避的
不純物からなることを特徴とする耐水素誘起割れ性およ
び耐硫化物応力腐食割れ性に優れるラインパイプ用鋼。 0.5≦ACR≦2.8・・・・・・・・・・(1)A
CR=(Ca(%)−O(%)×{0.18+0.01
3×Ca(%)})/(1.25×S(%))・・・・
・・・・・・(2)
[Claims] (1) C: less than 0.05%, Si: 0.5% or less, Mn
: 0.5-1.7%, P: 0.0070% or less, S: 0
.. 0010% or less, Al: 0.01-0.10%, N:
0.0050% or less, O: less than 0.0010%, Ca:
Contains 0.0010 to 0.0040%, and the following formula (1)
, (2), and the remainder consists of Fe and unavoidable impurities, and the steel has excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance. 0.5≦ACR≦2.8・・・・・・・・・(1)A
CR=(Ca(%)-O(%)×{0.18+0.01
3×Ca(%)})/(1.25×S(%))・・・・
......(2) (2) C: less than 0.05%, Si: 0.5% or less, Mn
: 0.5-1.7%, P: 0.0070% or less, S: 0
.. 0010% or less, Al: 0.01-0.10%, N:
0.0050% or less, O: less than 0.0010%, Ca:
Contains 0.0010 to 0.0040%, and the following formula (1)
, (2), Cu: 0.5% or less, Ni:
0.5% or less, Cr: 1.0% or less, Mo: 0.5% or less, Nb: 0.10% or less, V: 0.10% or less, Ti
: 0.01 to 0.10%, B: 0.0050% or less 1
A steel for line pipes having excellent resistance to hydrogen-induced cracking and resistance to sulfide stress corrosion cracking, characterized in that the steel contains one or more of the following: Fe and unavoidable impurities. 0.5≦ACR≦2.8・・・・・・・・・(1)A
CR=(Ca(%)-O(%)×{0.18+0.01
3×Ca(%)})/(1.25×S(%))・・・・
・・・・・・(2)
JP1086789A 1989-04-07 1989-04-07 Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance Expired - Lifetime JP2655911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086789A JP2655911B2 (en) 1989-04-07 1989-04-07 Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086789A JP2655911B2 (en) 1989-04-07 1989-04-07 Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPH02267241A true JPH02267241A (en) 1990-11-01
JP2655911B2 JP2655911B2 (en) 1997-09-24

Family

ID=13896535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086789A Expired - Lifetime JP2655911B2 (en) 1989-04-07 1989-04-07 Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP2655911B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053110A1 (en) * 1997-05-19 1998-11-26 American Cast Iron Pipe Company Linepipe and structural steel produced by high speed continuous casting
WO2004022807A1 (en) * 2002-09-04 2004-03-18 Jfe Steel Corporation Steel product for high heat input welding and method for production thereof
JP2004346355A (en) * 2003-05-21 2004-12-09 Jfe Steel Kk Method for producing electroseamed steel pipe for high-strength line pipe excellent in hydrogen-crack resistance
WO2007111285A1 (en) * 2006-03-16 2007-10-04 Jfe Steel Corporation High-strength pearlite rail with excellent delayed-fracture resistance
JP2007277716A (en) * 2006-03-16 2007-10-25 Jfe Steel Kk High-strength perlitic rail with excellent delayed-fracture resistance
JP2008056962A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor
JP2010100872A (en) * 2008-10-21 2010-05-06 Kobe Steel Ltd Steel used for vessel storing mineral
JP2013007079A (en) * 2011-06-23 2013-01-10 Jfe Steel Corp Thermal refining type low yield ratio thick steel sheet having excellent sour resistance and method for manufacturing the same
JP2013007080A (en) * 2011-06-23 2013-01-10 Jfe Steel Corp Thermal refining type low yield ratio thick steel sheet having excellent sour resistance and method for manufacturing the same
CN111500941A (en) * 2020-05-15 2020-08-07 佛山科学技术学院 HIC (hydrogen induced cracking) resistant pipeline steel based on structure regulation and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112722A (en) * 1985-11-13 1987-05-23 Nippon Steel Corp Production of steel sheet having excellent resistance to hydrogen induced cracking and resistance to sulfide stress corrosion cracking

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112722A (en) * 1985-11-13 1987-05-23 Nippon Steel Corp Production of steel sheet having excellent resistance to hydrogen induced cracking and resistance to sulfide stress corrosion cracking

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053110A1 (en) * 1997-05-19 1998-11-26 American Cast Iron Pipe Company Linepipe and structural steel produced by high speed continuous casting
CN100402688C (en) * 2002-09-04 2008-07-16 杰富意钢铁株式会社 Steel material for high heat input welding and its manufacturing method
WO2004022807A1 (en) * 2002-09-04 2004-03-18 Jfe Steel Corporation Steel product for high heat input welding and method for production thereof
JP2004346355A (en) * 2003-05-21 2004-12-09 Jfe Steel Kk Method for producing electroseamed steel pipe for high-strength line pipe excellent in hydrogen-crack resistance
WO2007111285A1 (en) * 2006-03-16 2007-10-04 Jfe Steel Corporation High-strength pearlite rail with excellent delayed-fracture resistance
JP2007277716A (en) * 2006-03-16 2007-10-25 Jfe Steel Kk High-strength perlitic rail with excellent delayed-fracture resistance
AU2007230254B2 (en) * 2006-03-16 2010-12-02 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
US8361382B2 (en) 2006-03-16 2013-01-29 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
US8404178B2 (en) 2006-03-16 2013-03-26 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
EP3072988A1 (en) * 2006-03-16 2016-09-28 JFE Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
JP2008056962A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor
JP2010100872A (en) * 2008-10-21 2010-05-06 Kobe Steel Ltd Steel used for vessel storing mineral
JP2013007079A (en) * 2011-06-23 2013-01-10 Jfe Steel Corp Thermal refining type low yield ratio thick steel sheet having excellent sour resistance and method for manufacturing the same
JP2013007080A (en) * 2011-06-23 2013-01-10 Jfe Steel Corp Thermal refining type low yield ratio thick steel sheet having excellent sour resistance and method for manufacturing the same
CN111500941A (en) * 2020-05-15 2020-08-07 佛山科学技术学院 HIC (hydrogen induced cracking) resistant pipeline steel based on structure regulation and preparation method thereof

Also Published As

Publication number Publication date
JP2655911B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
AU2003264947B2 (en) High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
US8007603B2 (en) High-strength steel for seamless, weldable steel pipes
US5798004A (en) Weldable high strength steel having excellent low temperature toughness
JPWO2011052095A1 (en) Steel sheet for line pipe with good strength and ductility and method for producing the same
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
JPH02267241A (en) Steel for line pipe having excellent hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPS62112722A (en) Production of steel sheet having excellent resistance to hydrogen induced cracking and resistance to sulfide stress corrosion cracking
JPS631369B2 (en)
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
RU2136776C1 (en) High-strength steel for main pipelines with low yield factor and high low-temperature ductility
JPH05295434A (en) Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JP3666388B2 (en) Martensitic stainless steel seamless pipe
NO300552B1 (en) Process for the manufacture of low alloy steel with high corrosion resistance for pipelines
JPH03236420A (en) Production of steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JP3887161B2 (en) High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same
JP2721420B2 (en) Sour-resistant steel for electric resistance welded steel
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JPS61213346A (en) Steel having superior resistance to hydrogen induced cracking and sulfide stress corrosion cracking
JPS58120726A (en) Manufacture of nontemper steel superior in sulfide corrosion crack resistance
RU2136775C1 (en) High-strength weldable steel and its versions

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

EXPY Cancellation because of completion of term