JP2007277716A - High-strength perlitic rail with excellent delayed-fracture resistance - Google Patents

High-strength perlitic rail with excellent delayed-fracture resistance Download PDF

Info

Publication number
JP2007277716A
JP2007277716A JP2007068212A JP2007068212A JP2007277716A JP 2007277716 A JP2007277716 A JP 2007277716A JP 2007068212 A JP2007068212 A JP 2007068212A JP 2007068212 A JP2007068212 A JP 2007068212A JP 2007277716 A JP2007277716 A JP 2007277716A
Authority
JP
Japan
Prior art keywords
rail
less
delayed fracture
strength
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007068212A
Other languages
Japanese (ja)
Other versions
JP5401762B2 (en
Inventor
Minoru Honjo
稔 本庄
Tatsuki Kimura
達己 木村
Shinichi Suzuki
伸一 鈴木
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007068212A priority Critical patent/JP5401762B2/en
Publication of JP2007277716A publication Critical patent/JP2007277716A/en
Application granted granted Critical
Publication of JP5401762B2 publication Critical patent/JP5401762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength perlitic rail which is inexpensive and, despite this, has a tensile strength of 1,200 MPa or higher and excellent delayed-fracture resistance. <P>SOLUTION: The rail contains, in terms of mass%, 0.6-1.0% C, 0.1-1.5% Si, 0.4-2.0% Mn, up to 0.035% P, and 0.0005-0.010% S, the remainder being iron and unavoidable impurities. The rail has a tensile strength of 1,200 MPa or higher. In a lengthwise-direction section of at least the head part of the rail, A-type inclusions have a major-axis dimension of ≤250 μm and the number of A-type inclusions having a major-axis dimension of 1 to 250 μm is <25 per mm<SP>2</SP>of the area examined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は1200MPa以上の引張強度を有する耐遅れ破壊特性に優れた高強度パーライト系レールに関する。   The present invention relates to a high-strength pearlite rail having excellent delayed fracture resistance having a tensile strength of 1200 MPa or more.

鉱石の運搬等を主体とする鉱山鉄道等の、列車や貨車の積載量の大きい鉄道である高軸重鉄道では貨車の車軸にかかる荷重は客車に比べて遥かに大きく、レールの使用環境も過酷である。このような環境下で使用されるレールは、従来、耐摩耗性重視の観点から主としてパーライト組織を有する鋼が使用されている。しかし、近年においては鉄道による輸送の効率化のために貨車への積載重量の更なる増加が進められ、レールの使用環境はますます厳しいものになってきており、レールに対して、さらなる耐摩耗性や耐疲労損傷性の向上が求められている。   In high-axle heavy railways, such as mining railways that mainly transport ores, etc., which have large loads of trains and wagons, the load applied to the axles of freight cars is much larger than that of passenger cars, and the use environment of the rails is also severe. It is. Conventionally, steel having a pearlite structure has been used as a rail used in such an environment from the viewpoint of emphasizing wear resistance. However, in recent years, the load on freight cars has been further increased in order to improve the efficiency of transportation by rail, and the use environment of rails has become increasingly severe. There is a demand for improvement in fatigue resistance and fatigue damage resistance.

このような要求に対して、耐摩耗性や耐疲労損傷性を重視する観点から、レールの高強度化が指向されており、特許文献1に示すように引張強度が120kg/mm(1200MPa)以上の高強度パーライト系レールが提案されている。しかし、引張強度が1200MPa以上の高強度鋼は遅れ破壊の危険性が高くなることが知られており、特許文献1の技術では高強度ではあっても耐遅れ破壊特性が不十分である。 In order to meet such demands, from the viewpoint of emphasizing wear resistance and fatigue damage resistance, increasing the strength of the rail is directed, and as shown in Patent Document 1, the tensile strength is 120 kg / mm 2 (1200 MPa). The above high-strength pearlite rails have been proposed. However, it is known that a high strength steel having a tensile strength of 1200 MPa or more has a high risk of delayed fracture, and the technology of Patent Document 1 is insufficient in delayed fracture resistance even though the strength is high.

高強度パーライト鋼の遅れ破壊特性を改善する技術として、例えば、特許文献2,3には、高強度パーライト鋼を強伸線加工することにより耐遅れ破壊特性を向上させる技術が開示されている。しかし、この技術をレールに適用した場合には、強伸線加工により製造コストが増大するという問題が発生する。   As techniques for improving delayed fracture characteristics of high-strength pearlite steel, for example, Patent Documents 2 and 3 disclose techniques for improving delayed fracture resistance by high-strength pearlite steel by wire drawing. However, when this technique is applied to a rail, there arises a problem that the manufacturing cost increases due to the strong wire drawing.

上記以外の耐遅れ破壊特性を改善する手法としてA系介在物形態・量を制御することが有効であることが知られている。レール鋼中のA系介在物形態・量の制御については特許文献4〜7に開示されている。しかし、特許文献4〜7はレールの靭性や延性の改善を目的としており、例えば特許文献5では、A系介在物の大きさを0.1〜20μmおよびA系介在物の個数を1mmあたり25〜11000個に制御することでレールの靭性および延性を向上させる方法が開示されているのであって、靭性や延性は向上するものの耐遅れ破壊特性を考慮しておらず、必ずしも良好な耐遅れ破壊特性が得られるとは限らない。ここで、A系介在物とは、JISG0555付属書1で定義されているA系介在物である。
特開平7−18326号公報 特許第3648192号公報 特開平5−287450号公報 特開2000−328190号公報 特開平6−279928号公報 特許第3323272号公報 特開平6−279929号公報
It is known that it is effective to control the form and amount of the A-based inclusion as a technique for improving delayed fracture resistance other than the above. Patent Documents 4 to 7 disclose control of the form and amount of the A-based inclusion in the rail steel. However, Patent Documents 4 to 7 are intended to improve the toughness and ductility of the rail. For example, in Patent Document 5, the size of A-based inclusions is 0.1 to 20 μm and the number of A-based inclusions is 1 mm 2. A method of improving the toughness and ductility of the rail by controlling to 25 to 11,000 is disclosed, and although the toughness and ductility are improved, the delayed fracture resistance is not taken into consideration, and the good delay resistance is not necessarily considered. Destructive properties are not always obtained. Here, the A-type inclusion is an A-type inclusion defined in JIS G0555 Annex 1.
Japanese Patent Laid-Open No. 7-18326 Japanese Patent No. 3648192 JP-A-5-287450 JP 2000-328190 A JP-A-6-279928 Japanese Patent No. 3323272 JP-A-6-279929

本発明はかかる事情に鑑みてなされたものであって、安価でありながら、引張強度1200MPa以上であり、かつ、耐遅れ破壊特性に優れた高強度パーライト系レールを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a high-strength pearlite rail that is inexpensive but has a tensile strength of 1200 MPa or more and excellent delayed fracture resistance.

上記課題を解決するために、本発明は、以下の(1)〜(3)を提供する。
(1)質量%で、C:0.6〜1.0%、Si:0.1〜1.5%、Mn:0.4〜2.0%、P:0.035%以下、S:0.0005〜0.010%を含有し、残部がFeおよび不可避的不純物からなり、引張強度が1200MPa以上であり、さらに、レール頭部長手方向断面において、A系介在物の大きさが250μm以下であり、かつ1μm以上、250μm以下の大きさのA系介在物が被検面積1mm当たり25個未満存在することを特徴とする耐遅れ破壊特性に優れた高強度パーライト系レール。
(2)さらに、前記レール中の水素量が質量基準で2ppm以下であることを特徴とする上記(1)に記載の耐遅れ破壊特性に優れた高強度パーライト系レール。
(3)質量%で、さらに、V:0.5%以下、Cr:1.5%以下、Cu:1%以下、Ni:1%以下、Nb:0.05%以下、Mo:1%以下、W:1%以下から選択される1種または2種以上を含有することを特徴とする上記(1)または(2)に記載の耐遅れ破壊特性に優れた高強度パーライト系レール。
In order to solve the above problems, the present invention provides the following (1) to (3).
(1) By mass%, C: 0.6 to 1.0%, Si: 0.1 to 1.5%, Mn: 0.4 to 2.0%, P: 0.035% or less, S: It contains 0.0005 to 0.010%, the balance is made of Fe and inevitable impurities, the tensile strength is 1200 MPa or more, and the size of the A-based inclusion is 250 μm in the rail head longitudinal section. A high-strength pearlite rail excellent in delayed fracture resistance, characterized in that there are less than 25 A-type inclusions having a size of 1 μm or more and 250 μm or less per 1 mm 2 of test area.
(2) The high-strength pearlite rail excellent in delayed fracture resistance according to (1) above, wherein the amount of hydrogen in the rail is 2 ppm or less on a mass basis.
(3) In mass%, V: 0.5% or less, Cr: 1.5% or less, Cu: 1% or less, Ni: 1% or less, Nb: 0.05% or less, Mo: 1% or less W: One high-strength pearlite rail having excellent delayed fracture resistance according to (1) or (2) above, containing one or more selected from 1% or less.

本発明者らは、上記課題を解決するために、成分組成を最適化したうえで、A系介在物の形態および量、鋼中水素量を変化させたレールを調査した結果、レール中のA系介在物の大きさが、1μm未満では、ほぼ球状であるため、耐遅れ破壊特性に及ぼす影響は大きくないが、1μm以上では、伸長化するため、耐遅れ破壊特性に及ぼす影響が大きくなること、したがって、1μm以上のA系介在物の個数を制御することで、従来の亜共析、共析および過共析型パーライト系レールよりも耐遅れ破壊特性が向上することを見出した。また、耐遅れ破壊の原因となる鋼中水素を制限することによりさらに耐遅れ破壊特性が向上することを見出した。本発明は、このような知見に基づいて、レール中の成分を特定の範囲に規定したうえで、レール頭部の長手方向断面において、A系介在物の大きさが250μm以下とし、さらに1μm以上、250μm以下の大きさのA系介在物が被検面積1mm当たり25個未満存在するように制御するものであり、これにより、引張強度1200MPa以上でありながら、優れた耐遅れ破壊特性を有するパーライト系レールを実現することができる。また、これに加えて鋼中水素量を2ppm以下とすることにより耐遅れ破壊特性がさらに向上する。 In order to solve the above-mentioned problems, the present inventors have optimized the composition of the components and investigated the rail in which the form and amount of the A-based inclusions and the amount of hydrogen in the steel are changed. If the size of the inclusions is less than 1 μm, it is almost spherical, so the effect on delayed fracture resistance is not significant, but if it is greater than 1 μm, it will elongate and the effect on delayed fracture resistance will increase. Therefore, it has been found that by controlling the number of A-type inclusions having a size of 1 μm or more, the delayed fracture resistance is improved over conventional hypoeutectoid, eutectoid and hypereutectoid pearlite rails. It was also found that the delayed fracture resistance is further improved by limiting the hydrogen in the steel that causes delayed fracture resistance. In the present invention, based on such knowledge, the components in the rail are defined in a specific range, and in the longitudinal section of the rail head, the size of the A-based inclusion is 250 μm or less, and further 1 μm or more. , And control so that there are less than 25 A-type inclusions having a size of 250 μm or less per 1 mm 2 of the test area, thereby having excellent delayed fracture resistance while having a tensile strength of 1200 MPa or more. Perlite rails can be realized. In addition to this, by setting the amount of hydrogen in the steel to 2 ppm or less, the delayed fracture resistance is further improved.

本発明によれば、引張強度が1200MPa以上であり、かつ、鋼中のA系介在物の大きさおよび個数を制御することで、コストがかかる強伸線加工を施す必要がなく耐遅れ破壊特性を向上させることができるため、安価でありながら、耐遅れ破壊特性に優れた高強度パーライト系レールを提供することができる。   According to the present invention, the tensile strength is 1200 MPa or more, and by controlling the size and number of the A-based inclusions in the steel, there is no need to perform costly strong wire drawing, and delayed fracture resistance Therefore, it is possible to provide a high-strength pearlite rail excellent in delayed fracture resistance while being inexpensive.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

まず、化学成分について説明する。
本発明のレールは、質量%で、C:0.6〜1.0%、Si:0.1〜1.5%、Mn:0.4〜2.0%、P:0.035%以下、S:0.0005〜0.010%を含有し、残部がFeおよび不可避的不純物から構成される。また、必要に応じて、さらに、V:0.5%以下、Cr:1.5%以下、Cu:1%以下、Ni:1%以下、Nb:0.05%以下、Mo:1%以下、W:1%以下から選択される1種または2種以上を含有する。また、鋼中水素量が質量基準で2ppm以下であることが好ましい。
First, chemical components will be described.
The rail of the present invention is mass%, C: 0.6 to 1.0%, Si: 0.1 to 1.5%, Mn: 0.4 to 2.0%, P: 0.035% or less , S: 0.0005 to 0.010%, with the balance being composed of Fe and inevitable impurities. If necessary, V: 0.5% or less, Cr: 1.5% or less, Cu: 1% or less, Ni: 1% or less, Nb: 0.05% or less, Mo: 1% or less , W: 1 type or 2 types or more selected from 1% or less. Moreover, it is preferable that the amount of hydrogen in steel is 2 ppm or less on a mass basis.

C:0.6〜1.0%
Cはパーライト組織においてセメンタイトを形成し、レールの強度を確保するための必須元素であり、含有量の増加に伴い強度が向上する。C含有量が0.6%未満では従来の熱処理型パーライト鋼レールと比較して優れた強度を得ることが難しい。一方、1.0%を超えると熱間圧延後の変態時に初析セメンタイトがオーステナイト粒界に生成して遅れ破壊特性が著しく低下する。したがって、C含有量を0.6〜1.0%とする。好ましくは、C含有量を0.6〜0.9%とする。
C: 0.6 to 1.0%
C forms cementite in the pearlite structure and is an essential element for securing the strength of the rail, and the strength improves as the content increases. When the C content is less than 0.6%, it is difficult to obtain excellent strength as compared with the conventional heat-treated pearlite steel rail. On the other hand, if it exceeds 1.0%, pro-eutectoid cementite is generated at the austenite grain boundary during transformation after hot rolling, and the delayed fracture characteristics are remarkably lowered. Therefore, the C content is set to 0.6 to 1.0%. Preferably, the C content is 0.6 to 0.9%.

Si:0.1〜1.5%
Siは脱酸剤として添加する元素であり、そのために0.1%以上含有する必要がある。また、Siはパーライト中のフェライトへの固溶強化により、強度を向上させる効果を有するため、積極的に添加する。しかし、Siの量が1.5%を超えるとSiの有する酸素との高い結合力のため、酸化物系介在物が多量に生成し、耐遅れ破壊特性が低下する。したがって、Si含有量を0.1〜1.5%とする。好ましくは、Si含有量を0.2〜1.2%とする。さらに好ましくは、Si含有量を0.2〜0.9%とする。
Si: 0.1 to 1.5%
Si is an element added as a deoxidizer, and for that purpose, it is necessary to contain 0.1% or more. Further, since Si has an effect of improving strength by solid solution strengthening to ferrite in pearlite, it is positively added. However, if the amount of Si exceeds 1.5%, a large amount of oxide inclusions are generated due to the high bonding strength with oxygen of Si, and the delayed fracture resistance is deteriorated. Therefore, the Si content is set to 0.1 to 1.5%. Preferably, the Si content is 0.2 to 1.2%. More preferably, the Si content is 0.2 to 0.9%.

Mn:0.4〜2.0%
Mnはパーライト変態温度を低下させてパーライト組織のラメラー間隔を細かくすることにより、レールの高強度化、高延性化に寄与する元素である。しかし、その含有量が0.4%未満では十分な効果が得られず、2.0%を超えると鋼のミクロ偏析によるマルテンサイト組織が生じ易くなり、熱処理時および溶接時に硬化や脆化を生じ材質が劣化する。したがって、Mn含有量を0.4〜2.0%とする。好ましくは、Mn含有量を0.4〜1.5%とする。
Mn: 0.4 to 2.0%
Mn is an element that contributes to increasing the strength and ductility of the rail by reducing the pearlite transformation temperature and reducing the lamellar spacing of the pearlite structure. However, if the content is less than 0.4%, a sufficient effect cannot be obtained. If the content exceeds 2.0%, a martensitic structure due to microsegregation of steel tends to occur, and hardening and embrittlement occur during heat treatment and welding. The resulting material deteriorates. Therefore, the Mn content is set to 0.4 to 2.0%. Preferably, the Mn content is 0.4 to 1.5%.

P:0.035%以下
0.035%を超えるPの含有は延性を劣化する。したがって、P含有量を0.035%以下とする。好ましくは、P含有量を0.020%とする。
P: 0.035% or less The inclusion of P exceeding 0.035% deteriorates ductility. Therefore, the P content is 0.035% or less. Preferably, the P content is 0.020%.

S:0.0005〜0.010%
Sは主にA系介在物の形態で鋼中に存在するが、その含有量が0.010%を超えるとこの介在物量が著しく増加し、同時に、粗大な介在物を生成するため、耐遅れ破壊特性の低下を引き起こす。一方、0.0005%未満では、レールのコストの増大を招く。したがって、S含有量を0.0005〜0.010%とする。好ましくは、S含有量を0.0005〜0.008%とする。さらに好ましくは0.0005〜0.006%とする。
S: 0.0005 to 0.010%
S is present in steel mainly in the form of A-based inclusions, but when the content exceeds 0.010%, the amount of inclusions increases remarkably, and at the same time, coarse inclusions are produced, so that the resistance to delay is increased. Causes degradation of fracture characteristics. On the other hand, if it is less than 0.0005%, the cost of the rail is increased. Therefore, the S content is set to 0.0005 to 0.010%. Preferably, the S content is 0.0005 to 0.008%. More preferably, it is 0.0005 to 0.006%.

V:0.5%以下
Vは圧延中および圧延後に炭窒化物として析出し、水素のトラップサイトとしての機能を果たし、遅れ破壊特性が向上するため、必要に応じて添加する。その効果を得るためには、V含有量は0.005%以上が好ましい。ただし、0.5%を超えて添加すると、粗大な炭窒化物が多量に析出するため、耐遅れ破壊特性の低下を招く。したがって、Vを添加する場合には、その含有量を0.5%以下とする。
V: 0.5% or less V is precipitated as carbonitride during and after rolling, functions as a hydrogen trap site, and improves delayed fracture characteristics. Therefore, V is added as necessary. In order to obtain the effect, the V content is preferably 0.005% or more. However, if added over 0.5%, a large amount of coarse carbonitride precipitates, resulting in a decrease in delayed fracture resistance. Therefore, when adding V, the content is made 0.5% or less.

Cr:1.5%以下
Crは固溶強化によりさらなる高強度化を図るための元素であり、必要に応じて添加する。その効果を得るためには、Cr含有量は0.2%以上が好ましい。ただし、その含有量が1.5%を超えると焼入れ性が高くなり、マルテンサイトが生成し延性が低下する。したがって、Crを添加する場合には、その含有量を1.5%以下とする。
Cr: 1.5% or less Cr is an element for further strengthening by solid solution strengthening, and is added as necessary. In order to obtain the effect, the Cr content is preferably 0.2% or more. However, if its content exceeds 1.5%, the hardenability becomes high, martensite is generated, and the ductility is lowered. Therefore, when adding Cr, the content is made 1.5% or less.

Cu:1%以下
CuはCrと同様に固溶強化によりさらなる高強度化を図るための元素であり、必要に応じて添加する。その効果を得るためには、Cu含有量は0.005%以上が好ましい。ただし、その含有量が1%を超えるとCu割れが生じる。したがって、Cuを添加する場合には、その含有量を1%以下とする。
Cu: 1% or less Cu, like Cr, is an element for further strengthening by solid solution strengthening, and is added as necessary. In order to obtain the effect, the Cu content is preferably 0.005% or more. However, if the content exceeds 1%, Cu cracking occurs. Therefore, when adding Cu, the content is made 1% or less.

Ni:1%以下
Niは延性を劣化することなく高強度化を図るための元素であり、必要に応じて添加する。また、Cuと複合添加することによりCu割れを抑制するため、Cuを添加した場合にはNiも添加することが望ましい。その効果を得るためには、Ni含有量は0.005%以上が好ましい。ただし、その含有量が1%を超えると焼入れ性が上昇し、マルテンサイトが生成するようになり、延性が低下する。したがって、Niを添加する場合には、その含有量を1%以下とする。
Ni: 1% or less Ni is an element for increasing the strength without deteriorating ductility, and is added as necessary. Moreover, in order to suppress Cu cracking by adding Cu together, it is desirable to add Ni when Cu is added. In order to obtain the effect, the Ni content is preferably 0.005% or more. However, if the content exceeds 1%, the hardenability is increased, martensite is generated, and the ductility is lowered. Therefore, when adding Ni, the content is made 1% or less.

Nb:0.05%以下
Nbは圧延中および圧延後に炭窒化物として析出し、水素のトラップサイトとしての機能を果たし、遅れ破壊特性が向上するため、必要に応じて添加する。その効果を得るためには、Nb含有量は0.005%以上が好ましい。ただし、0.05%を超えて添加すると、粗大な炭窒化物が多量に析出するため、耐遅れ破壊特性の低下を招く。したがって、Nbを添加する場合には、その含有量を0.05%以下とする。好ましくは、Nb含有量を0.005〜0.03%とする。
Nb: 0.05% or less Nb precipitates as carbonitride during and after rolling, functions as a hydrogen trap site, and improves delayed fracture characteristics. Therefore, Nb is added as necessary. In order to obtain the effect, the Nb content is preferably 0.005% or more. However, if added over 0.05%, a large amount of coarse carbonitride precipitates, resulting in a decrease in delayed fracture resistance. Therefore, when adding Nb, the content is made 0.05% or less. Preferably, the Nb content is 0.005 to 0.03%.

Mo:1%以下、W:1%以下
Mo,Wは、圧延中および圧延後に炭化物として析出し、水素のトラップサイトとしての機能を果たし、遅れ破壊特性が向上するため、かつ、固溶強化によりさらなる高強度化を図ることができるため、必要に応じて添加する。その効果を得るためには、Mo,W含有量は、それぞれ0.005%以上が好ましい。ただし、Mo,Wのいずれも、1%を超えて添加すると、マルテンサイトが生成するようになり、延性が低下する。したがって、Moを添加する場合およびWを添加する場合のいずれも、その含有量を1%以下する。より好ましくは、Moは0.25%以下、Wは0.50%以下とする。
Mo: 1% or less, W: 1% or less Mo and W are precipitated as carbides during and after rolling, function as hydrogen trap sites, improve delayed fracture characteristics, and by solid solution strengthening Since further increase in strength can be achieved, it is added as necessary. In order to obtain the effect, the Mo and W contents are each preferably 0.005% or more. However, when both Mo and W are added in excess of 1%, martensite is generated and ductility is lowered. Therefore, in both cases of adding Mo and adding W, the content is made 1% or less. More preferably, Mo is 0.25% or less and W is 0.50% or less.

鋼中水素量:2ppm以下
水素は遅れ破壊の原因となる元素である。鋼中水素量が2ppmを超えると介在物界面に多量の水素が集積し、遅れ破壊が発生しやすくなる。したがって、鋼中水素量は2ppm以下に制限することが好ましい。
Hydrogen content in steel: 2 ppm or less Hydrogen is an element that causes delayed fracture. If the amount of hydrogen in steel exceeds 2 ppm, a large amount of hydrogen accumulates at the inclusion interface, and delayed fracture tends to occur. Therefore, it is preferable to limit the amount of hydrogen in steel to 2 ppm or less.

なお、残部は、Feおよび不可避的不純物である。ここで、不純物としては、P、N、O等が挙げられ、Pは上述の通り0.035%まで許容され、Nは0.005%、Oは0.004%まで許容される。さらに本発明では、不純物として混入するAlおよびTiは、それぞれ0.0010%まで許容される。すなわち、AlおよびTiは酸化物を形成し、鋼中の介在物量が増大し、耐遅れ破壊特性の低下を招き、また、レールの基本特性である耐疲労損傷性の低下を招くため、AlおよびTiをそれぞれ0.0010%以下になるように制御する必要がある。   The balance is Fe and inevitable impurities. Here, examples of impurities include P, N, O, etc. P is allowed to 0.035% as described above, N is allowed to be 0.005%, and O is allowed to be 0.004%. Further, in the present invention, Al and Ti mixed as impurities are allowed to be 0.0010% each. That is, since Al and Ti form oxides, the amount of inclusions in the steel increases, the delayed fracture resistance decreases, and the fatigue damage resistance, which is a basic characteristic of rails, decreases. It is necessary to control Ti to be 0.0010% or less.

次に、引張強度、A系介在物の大きさおよび個数について説明する。
引張強度:1200MPa以上
引張強度が1200MPa未満の場合、レールの耐遅れ破壊特性は良好であるが、従来のパーライト系レールと同等の耐摩耗性や耐疲労特性が得られない。したがって、引張強度は1200MPa以上とする。
Next, the tensile strength, the size and number of A-based inclusions will be described.
Tensile strength: 1200 MPa or more When the tensile strength is less than 1200 MPa, the delayed fracture resistance of the rail is good, but the wear resistance and fatigue resistance equivalent to those of a conventional pearlite rail cannot be obtained. Therefore, the tensile strength is set to 1200 MPa or more.

A系介在物の大きさ:レール頭部長手方向断面において250μm以下
A系介在物の大きさが250μmを超えると、レール中に粗大な介在物が生成するため、耐遅れ破壊特性が低下する。したがって、A系介在物の大きさは、レール頭部長手方向断面において250μm以下とする。
Size of A-type inclusions: 250 μm or less in the longitudinal section of the rail head portion If the size of A-type inclusions exceeds 250 μm, coarse inclusions are generated in the rail, so the delayed fracture resistance is reduced. . Therefore, the size of the A-based inclusion is 250 μm or less in the rail head longitudinal section.

A系介在物の個数:レール頭部長手方向断面において、1μm以上、250μm以下のA系介在物が被検面積1mm当たり25個未満
1μm以上、250μm以下のA系介在物の個数が被検面積1mm当たり25個以上になると粗大なA系介在物が増加し、レールの耐遅れ破壊特性が著しく低下する。したがって、レール中のA系介在物は被検面積1mm当たり25個未満とする。好ましくは、被検面積1mm当たり20個未満、さらに好ましくは被検面積1mm当たり6個未満とする。
なお、1μm未満の系介在物は球状化しており、たとえ存在しても耐遅れ破壊特性は低下しない。よって、本発明では、存在するA系介在物(250μm)のうち、1μm以上のもののみの個数を上記の通り25個未満と規定するものとする。
Number of A-type inclusions: In the longitudinal section of the rail head, the number of A-type inclusions of 1 μm or more and 250 μm or less is less than 25 per 1 mm 2 of test area. The number of A-type inclusions of 1 μm or more and 250 μm or less is covered When the number of inspection areas is 25 or more per 1 mm 2 , coarse A-based inclusions increase, and the delayed fracture resistance of the rail is significantly deteriorated. Therefore, the number of A-based inclusions in the rail is less than 25 per 1 mm 2 of the test area. Preferably, the number is less than 20 per 1 mm 2 of test area, more preferably less than 6 per 1 mm 2 of test area.
In addition, the system inclusions of less than 1 μm are spheroidized, and even if they exist, the delayed fracture resistance does not deteriorate. Therefore, in the present invention, the number of A-type inclusions (250 μm) that are 1 μm or more is defined as less than 25 as described above.

次に本発明に係るパーライト系レールの製造方法について説明する。
まず、転炉あるいは電気炉で鋼を溶製し、必要に応じて脱ガスなどの二次精錬を経て、鋼の成分組成を上記好適範囲となるよう調整し、連続鋳造してブルームとする。連続鋳造直後のブルームを0.5℃/s以下の冷却速度で40〜150時間かけて徐冷し、次いでこのブルームを、加熱炉で1200〜1350℃に加熱し、熱間圧延してレールとする。この際、圧延終了温度は900〜1000℃、圧延後の冷却速度は1〜5℃/sで行うことが好ましい。
Next, the manufacturing method of the pearlite rail based on this invention is demonstrated.
First, steel is melted in a converter or electric furnace, and after secondary refining such as degassing as necessary, the composition of the steel is adjusted to be within the above preferred range, and continuously cast into bloom. The bloom immediately after continuous casting was gradually cooled at a cooling rate of 0.5 ° C./s or less over 40 to 150 hours, and then this bloom was heated to 1200 to 1350 ° C. in a heating furnace and hot-rolled to obtain a rail and To do. At this time, the rolling end temperature is preferably 900 to 1000 ° C., and the cooling rate after rolling is preferably 1 to 5 ° C./s.

次に、本発明で規定されるA系介在物の大きさおよび個数、ならびに鋼中水素量の測定方法、さらには、遅れ破壊感受性の評価方法について説明する。   Next, the size and number of A-type inclusions defined in the present invention, the method for measuring the amount of hydrogen in steel, and the evaluation method for delayed fracture sensitivity will be described.

・介在物寸法測定
顕微鏡で観察するための試験片をレール頭部表層から12.7mm深さ位置、レール幅方向中央から5mm位置を起点として図1に示す12.7mm×19.1mmのレール長手方向断面を観察面としたサンプルを採取し、被検面に鏡面仕上げを行う。この試験片の中央部の5mm×10mm(被検面積50mm)の範囲を、顕微鏡の倍率を500倍にして、硫化物系非金属介在物をノーエッチングで観察し、A系介在物の長辺を測定する。この長辺の長さをA系介在物の大きさとする。なお、A系介在物とは、JISG0555付属書1で定義されているA系介在物のことをいう。
-Inclusion Dimension Measurement 12.7 mm x 19.1 mm rail length as shown in Fig. 1 starting from a 12.7 mm depth position from the rail head surface layer and a 5 mm position from the center in the rail width direction. A sample with the directional cross section as the observation surface is taken and the surface to be examined is mirror finished. The range of 5 mm × 10 mm (test area 50 mm 2 ) at the center of the test piece was observed with a microscope magnification of 500 times, and sulfide-based nonmetallic inclusions were observed without etching, and the length of the A-based inclusions Measure the sides. The length of the long side is the size of the A-based inclusion. In addition, A-type inclusion means the A-type inclusion defined in JISG0555 appendix 1.

・介在物個数測定
介在物寸法測定と同様に、試験片をレール頭部から採取し、被検面に鏡面仕上げを行う。この試験片の中央部の5mm×10mm(被検面積50mm)の範囲を、顕微鏡の倍率を500倍にして、硫化物系非金属介在物をノーエッチングで観察し、大きさ(長辺の長さ)が1μm以上250μm以下のA系介在物の個数を測定する。この個数を1mmあたりのA系介在物個数に換算する。
・ Measurement of the number of inclusions Similar to the measurement of inclusion dimensions, take a specimen from the rail head and finish the mirror finish on the test surface. A 5 mm × 10 mm (test area 50 mm 2 ) range in the center of the test piece was observed with a microscope magnification of 500 times, and sulfide-based nonmetallic inclusions were observed without etching, and the size (long side The number of A-type inclusions having a length of 1 μm to 250 μm is measured. This number is converted into the number of A-based inclusions per 1 mm 2 .

・鋼中水素量測定
図2に示すレール頭部表層から25.4mm、頭側部から25.4mmの位置を中心として、レール頭部長手方向に断面積5mm×5mm、長さ100mmの試験片を採取し、不活性ガス溶解法−熱伝導度法(JIS Z 2614)に準拠して鋼中水素量の測定を行う。
・ Measurement of hydrogen content in steel A test with a cross-sectional area of 5 mm x 5 mm and a length of 100 mm in the longitudinal direction of the rail head centering on the position of 25.4 mm from the surface of the rail head shown in Fig. A piece is taken and the amount of hydrogen in the steel is measured in accordance with an inert gas dissolution method-thermal conductivity method (JIS Z 2614).

・遅れ破壊試験
図3に示すレール頭部表層から25.4mm位置を中心として、図4に示す寸法の試験片を得る。採取した試験片は、ねじ部、R部以外は▽▽▽仕上げ、平行部は#600までエメリー研磨する。この試験片を、SSRT(Slow Strain Rate Technique)試験装置に装着し、25℃、大気中で、3.3×10−6/sの歪速度でSSRT試験を行い、大気中での試験片の伸びEを得る。また、大気中での伸びEの試験と同様に、この試験片をSSRT試験装置に装着し、25℃、20%チオシアン酸アンモニウム水溶液中で、3.3×10−6/sの歪速度でSSRT試験を行い、水溶液中での試験片の伸びEを得る。遅れ破壊特性を評価するその指標となる遅れ破壊感受性(DF)は、上記のように測定して得られるE,Eの値を、DF=100×(1−E/E)に代入し、算出する。
-Delayed fracture test From the rail head surface layer shown in FIG. 3, a test piece having the dimensions shown in FIG. The collected specimens are finished with ▽▽▽ except for the threaded part and R part, and emery polished for parallel parts up to # 600. The test piece is mounted on an SSRT (Slow Strain Rate Technique) test apparatus, and an SSRT test is performed at 25 ° C. in the air at a strain rate of 3.3 × 10 −6 / s. get the growth E 0. Similarly to the test for elongation E 0 in the atmosphere, this test piece was mounted on an SSRT test apparatus and a strain rate of 3.3 × 10 −6 / s in a 20% aqueous ammonium thiocyanate solution at 25 ° C. in performed SSRT test, obtaining elongation E 1 of the specimen in an aqueous solution. Delayed fracture susceptibility (DF), which serves as an index for evaluating delayed fracture characteristics, is obtained by changing the values of E 0 and E 1 obtained as described above to DF = 100 × (1−E 1 / E 0 ). Substitute and calculate.

・引張試験
図5に示すレール頭部表層から12.7mm、頭側部から12.7mmの位置を中心軸として、ASTM E8−04に記載された直径12.7mm(0.5インチ)の丸棒試験片を採取し、ゲージ長さ25.4mm(1インチ)で引張試験を行った。
・ Tensile test A circle of 12.7 mm (0.5 inch) in diameter described in ASTM E8-04 with the central axis at a position 12.7 mm from the surface of the rail head shown in FIG. 5 and 12.7 mm from the head side. Bar specimens were collected and subjected to a tensile test with a gauge length of 25.4 mm (1 inch).

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

(実施例1)
表1に示す化学成分を有する鋼No.1−1〜1−7を1250℃に加熱し、熱間圧延して900℃で圧延を終了し、その後、2℃/sの冷却速度で冷却してレールNo.1−1〜1−7を製造した。このレールNo.1−1〜1−7について、上述の測定方法に従い、A系介在物の大きさおよび個数、ならびに鋼中水素量を測定し、さらには、遅れ破壊感受性を評価した。なお、現用のC量0.68%の熱処理型パーライト鋼である鋼No.1−1により製造したレールNo.1−1の遅れ破壊特性を基準として、レールNo.1−1よりも遅れ破壊感受性が10%以上向上する(値が低くなる)場合に耐遅れ破壊特性が向上すると判定し、遅れ破壊感受性の評価とした。例えば表1中、レールNo.1−2の遅れ破壊感受性向上代は、100×{1−(84.2/85.0)}=0.9%である。また、レールNo.1−1は鋼No.1−1を用いて製造し、レールNo.1−2は鋼No.1−2を用いて製造し、同様に、レールNo.1−3〜1−7は鋼No.1−3〜1−7に対応した鋼をそれぞれ用いて製造したものである。
Example 1
Steel No. 1 having chemical components shown in Table 1. 1-1 to 1-7 are heated to 1250 ° C., hot-rolled and finished at 900 ° C., and then cooled at a cooling rate of 2 ° C./s to obtain rail No. 1-7. 1-1 to 1-7 were produced. This rail No. For 1-1 to 1-7, the size and number of A-based inclusions and the amount of hydrogen in steel were measured according to the measurement method described above, and the delayed fracture susceptibility was evaluated. In addition, steel No. which is a heat-treated pearlite steel having a C content of 0.68% is used. 1-1 manufactured by rail No. 1-1. Based on the delayed fracture characteristics of 1-1, rail No. When the delayed fracture susceptibility is improved by 10% or more (lower value) than 1-1, it was determined that the delayed fracture resistance was improved, and the delayed fracture susceptibility was evaluated. For example, in Table 1, rail No. The delayed fracture susceptibility improvement margin of 1-2 is 100 × {1− (84.2 / 85.0)} = 0.9%. In addition, rail No. 1-1 is a steel No. 1-1. 1-1, rail No. 1-2 is a steel No. 1-2. 1-2. Similarly, the rail No. 1-3 to 1-7 are steel Nos. It is manufactured using steel corresponding to 1-3 to 1-7, respectively.

Figure 2007277716
Figure 2007277716

Figure 2007277716
Figure 2007277716

上記の試験結果を表2に記述する。また、図6は、横軸にS量をとり縦軸にA系介在物の個数および遅れ破壊感受性向上代をとってこれらの関係を示すグラフであり、A系介在物の個数の増減および従来材であるレールNo.1−1の遅れ破壊感受性に対する増減を示すものである。さらに、図7は、横軸にS量をとり縦軸にA系介在物の大きさおよび遅れ破壊感受性向上代をとってこれらの関係を示すグラフであり、A系介在物の大きさの増減および従来材であるレールNo.1−1の遅れ破壊感受性に対する増減を示すものである。   The test results are described in Table 2. FIG. 6 is a graph showing the relationship between the amount of S on the horizontal axis and the number of A-type inclusions and delayed fracture sensitivity improvement on the vertical axis. Rail No. The increase / decrease with respect to the delayed fracture sensitivity of 1-1 is shown. Further, FIG. 7 is a graph showing the relationship between the amount of S on the horizontal axis and the size of the A-type inclusions and the delayed fracture sensitivity improvement allowance on the vertical axis. And rail No. which is a conventional material. The increase / decrease with respect to the delayed fracture sensitivity of 1-1 is shown.

図6および図7に示すように、A系介在物の個数を20個未満、A系介在物の大きさを1μm以上、250μm以下とすることで、本発明材であるレールNo.1−4〜1−7は従来材であるレールNo.1−1と比べて、遅れ破壊感受性が10%以上向上していることが分かった。よって、本発明材であるレールNo.1−4〜1−7は、表2に示すように引張強度は1200MPa以上の高強度を有しながら、優れた耐遅れ破壊特性を有していることが確認された。   As shown in FIGS. 6 and 7, the number of A-based inclusions is less than 20 and the size of A-based inclusions is 1 μm or more and 250 μm or less, so that the rail No. 1-4 to 1-7 are rail Nos. Which are conventional materials. It was found that the delayed fracture susceptibility was improved by 10% or more compared to 1-1. Therefore, the rail No. As shown in Table 2, 1-4 to 1-7 were confirmed to have excellent delayed fracture resistance while having a high tensile strength of 1200 MPa or more.

(実施例2)
表3に示す化学組成を有する鋼No.2−1〜2−15を1250℃に加熱し、熱間圧延して900℃で圧延を終了し、その後、2℃/sの冷却速度で冷却してレールNo.2−1〜2−15を製造した。このレールNo.2−1〜2−15について、実施例1と同様にして、A系介在物の大きさおよび個数、ならびに鋼中水素量を測定し、さらには、遅れ破壊感受性および遅れ破壊感受性向上代を評価した。なお、遅れ破壊感受性向上代の評価は、現用のC量0.68%の熱処理型パーライト鋼である鋼No.2−1により製造したレールNo.2−1の遅れ破壊感受性を基準として、レールNo.2−1よりも遅れ破壊感受性向上代が10%以上となる場合に耐遅れ破壊特性が向上すると判定した。また、レールNo.2−1は鋼No.2−1を用いて製造し、レールNo.2−2は鋼No.2−2を用いて製造し、同様に、レールNo.2−3〜2−15は鋼No.2−3〜2−15に対応した鋼をそれぞれ用いて製造したものである。
(Example 2)
Steel No. 1 having the chemical composition shown in Table 3. 2-1 to 2-15 were heated to 1250 ° C., hot-rolled and finished at 900 ° C., and then cooled at a cooling rate of 2 ° C./s to obtain rail No. 2-1 to 2-15 were produced. This rail No. For 2-1 to 2-15, in the same manner as in Example 1, the size and number of the A-based inclusions and the amount of hydrogen in the steel were measured, and further, the delayed fracture sensitivity and the delayed fracture sensitivity improvement allowance were evaluated. did. In addition, evaluation of the delayed fracture susceptibility improvement allowance was made for steel No. which is a heat-treated pearlite steel having a C content of 0.68%. Rail No. 2 manufactured according to 2-1. Based on the delayed fracture susceptibility of 2-1, rail no. It was determined that the delayed fracture resistance was improved when the delayed fracture sensitivity improvement margin was 10% or more than 2-1. In addition, rail No. 2-1. No. 2-1, rail no. 2-2 is a steel No. 2-2. 2-2, and similarly, rail No. 2-3 to 2-15 are steel Nos. It is manufactured using steel corresponding to 2-3 to 2-15.

Figure 2007277716
Figure 2007277716

Figure 2007277716
Figure 2007277716

上記の試験結果を表4に記述する。この結果から、本発明材であるレールNo.2−7〜2−13は、C,Si,Mn,P,Sの組成を適正範囲に制御した上で、さらにV,Cr,Cu,Ni,Nb,Mo,Wから選択される1種または2種以上の成分を適正範囲で含有し、A系介在物の大きさおよび個数、さらに鋼中水素量ならびに不純物であるAl,Ti含有量を適正範囲に収めることにより、比較材であるレールNo.2−2〜2−6および2−14,2−15に比べてレールの耐遅れ破壊特性をより向上することができることが分かった。よって、本発明材であるレールNo.2−7〜2−13は、表4に示すように引張強度は1200MPa以上の高強度を有しながら、優れた耐遅れ破壊特性を有していることが確認された。   The test results are described in Table 4. From this result, the rail no. 2-7 to 2-13 are one or more selected from V, Cr, Cu, Ni, Nb, Mo, and W after controlling the composition of C, Si, Mn, P, and S within an appropriate range. Rail No., which is a comparative material, contains two or more components within the proper range, and the size and number of A-based inclusions, as well as the amount of hydrogen in steel and the contents of Al and Ti as impurities are within the proper range. . It has been found that the delayed fracture resistance of the rail can be further improved as compared with 2-2 to 2-6 and 2-14 and 2-15. Therefore, the rail No. As shown in Table 4, 2-7 to 2-13 were confirmed to have excellent delayed fracture resistance while having a high tensile strength of 1200 MPa or more.

本発明は、高軸重鉄道のレールの高寿命化や鉄道事故防止に寄与する優れたレールを提供するものであり、産業上有益な効果がもたらされる。   The present invention provides an excellent rail that contributes to the extension of the life of a rail of a high-axle heavy railway and the prevention of a railway accident, and provides an industrially beneficial effect.

介在物寸法測定、介在物個数測定に用いたサンプル採取位置および寸法を示す図。The figure which shows the sampling position and dimension used for the inclusion dimension measurement and the inclusion number measurement. 鋼中水素量の測定に用いたサンプルの採取位置を示す図。The figure which shows the collection position of the sample used for the measurement of the amount of hydrogen in steel. SSRT試験片の採取位置を示す図。The figure which shows the collection position of a SSRT test piece. SSRT試験に用いた試験片の形状および寸法を示す図。The figure which shows the shape and dimension of the test piece used for the SSRT test. 引張試験片の採取位置を示す図。The figure which shows the collection position of a tensile test piece. 本発明材および比較材におけるA系介在物の個数および遅れ破壊感受性向上代におよぼすS量の影響を示すグラフ。The graph which shows the influence of the amount of S on the number of A type inclusions in this invention material and a comparative material, and the delay fracture sensitivity improvement allowance. 本発明材および比較材におけるA系介在物の大きさおよび遅れ破壊感受性向上代におよぼすS量の影響を示すグラフ。The graph which shows the influence of the amount of S on the magnitude | size of the A-type inclusion in this invention material and a comparison material, and the delay fracture sensitivity improvement allowance.

Claims (3)

質量%で、C:0.6〜1.0%、Si:0.1〜1.5%、Mn:0.4〜2.0%、P:0.035%以下、S:0.0005〜0.010%を含有し、残部がFeおよび不可避的不純物からなり、引張強度が1200MPa以上であり、さらに、レール頭部長手方向断面において、A系介在物の大きさが250μm以下であり、かつ1μm以上、250μm以下の大きさのA系介在物が被検面積1mm当たり25個未満存在することを特徴とする耐遅れ破壊特性に優れた高強度パーライト系レール。 In mass%, C: 0.6 to 1.0%, Si: 0.1 to 1.5%, Mn: 0.4 to 2.0%, P: 0.035% or less, S: 0.0005 -0.010% is contained, the balance is Fe and inevitable impurities, the tensile strength is 1200 MPa or more, and the size of the A-based inclusion is 250 μm or less in the longitudinal section of the rail head A high-strength pearlite rail excellent in delayed fracture resistance, characterized in that there are less than 25 A-type inclusions having a size of 1 μm or more and 250 μm or less per 1 mm 2 of the test area. さらに、前記レール中の水素量が質量基準で2ppm以下であることを特徴とする請求項1に記載の耐遅れ破壊特性に優れた高強度パーライト系レール。   The high-strength pearlite rail having excellent delayed fracture resistance according to claim 1, wherein the amount of hydrogen in the rail is 2 ppm or less on a mass basis. 質量%で、さらに、V:0.5%以下、Cr:1.5%以下、Cu:1%以下、Ni:1%以下、Nb:0.05%以下、Mo:1%以下、W:1%以下から選択される1種または2種以上を含有することを特徴とする請求項1または請求項2に記載の耐遅れ破壊特性に優れた高強度パーライト系レール。   Further, V: 0.5% or less, Cr: 1.5% or less, Cu: 1% or less, Ni: 1% or less, Nb: 0.05% or less, Mo: 1% or less, W: The high-strength pearlite rail excellent in delayed fracture resistance according to claim 1 or 2, comprising one or more selected from 1% or less.
JP2007068212A 2006-03-16 2007-03-16 High-strength pearlite rail with excellent delayed fracture resistance Active JP5401762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068212A JP5401762B2 (en) 2006-03-16 2007-03-16 High-strength pearlite rail with excellent delayed fracture resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006072720 2006-03-16
JP2006072720 2006-03-16
JP2007068212A JP5401762B2 (en) 2006-03-16 2007-03-16 High-strength pearlite rail with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2007277716A true JP2007277716A (en) 2007-10-25
JP5401762B2 JP5401762B2 (en) 2014-01-29

Family

ID=38679447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068212A Active JP5401762B2 (en) 2006-03-16 2007-03-16 High-strength pearlite rail with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP5401762B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116671A (en) * 2008-02-22 2010-11-01 코러스 유케이 리미티드 Rail steel with an excellent combination of wear properties and rolling contact fatigue resistance
WO2013161794A1 (en) 2012-04-23 2013-10-31 新日鐵住金株式会社 Rail
JP2015504484A (en) * 2011-11-28 2015-02-12 タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited Rail steel with an excellent combination of wear resistance, rolling contact fatigue resistance and weldability
JP2015209590A (en) * 2014-04-30 2015-11-24 Jfeスチール株式会社 Rail production method
CN113088811A (en) * 2021-03-04 2021-07-09 天津荣程联合钢铁集团有限公司 Niobium-containing alloy steel and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143555A (en) * 1984-12-17 1986-07-01 Nippon Kokan Kk <Nkk> Steel having superior resistance to hydrogen induced cracking
JPS62161917A (en) * 1986-01-09 1987-07-17 Nippon Steel Corp Manufacture of head end-heattreated rail excellent in resistance to damage and wear
JPS6323244B2 (en) * 1981-05-27 1988-05-16 Nippon Kokan Kk
JPH02267241A (en) * 1989-04-07 1990-11-01 Kawasaki Steel Corp Steel for line pipe having excellent hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPH08337844A (en) * 1995-06-10 1996-12-24 Sumitomo Electric Ind Ltd Steel wire rod, steel wire and production thereof
JPH09206804A (en) * 1996-01-31 1997-08-12 Nippon Steel Corp Manufacture of high-strength rail excellent in ductility and toughness
JP3081116B2 (en) * 1994-10-07 2000-08-28 新日本製鐵株式会社 High wear resistant rail with pearlite metal structure
JP2001181737A (en) * 1999-12-27 2001-07-03 Nkk Corp Method for producing pearlitic steel rail excellent in wear resistance and ductile toughness
JP2002069583A (en) * 2000-08-25 2002-03-08 Nippon Steel Corp High strength pearlitic rail having excellent toughness and ductility, and its manufacturing method
JP2002327233A (en) * 2001-04-26 2002-11-15 Nippon Steel Corp High-strength pearlitic steel superior in delayed fracture resistance

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323244B2 (en) * 1981-05-27 1988-05-16 Nippon Kokan Kk
JPS61143555A (en) * 1984-12-17 1986-07-01 Nippon Kokan Kk <Nkk> Steel having superior resistance to hydrogen induced cracking
JPS62161917A (en) * 1986-01-09 1987-07-17 Nippon Steel Corp Manufacture of head end-heattreated rail excellent in resistance to damage and wear
JPH02267241A (en) * 1989-04-07 1990-11-01 Kawasaki Steel Corp Steel for line pipe having excellent hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JP3081116B2 (en) * 1994-10-07 2000-08-28 新日本製鐵株式会社 High wear resistant rail with pearlite metal structure
JPH08337844A (en) * 1995-06-10 1996-12-24 Sumitomo Electric Ind Ltd Steel wire rod, steel wire and production thereof
JPH09206804A (en) * 1996-01-31 1997-08-12 Nippon Steel Corp Manufacture of high-strength rail excellent in ductility and toughness
JP2001181737A (en) * 1999-12-27 2001-07-03 Nkk Corp Method for producing pearlitic steel rail excellent in wear resistance and ductile toughness
JP2002069583A (en) * 2000-08-25 2002-03-08 Nippon Steel Corp High strength pearlitic rail having excellent toughness and ductility, and its manufacturing method
JP2002327233A (en) * 2001-04-26 2002-11-15 Nippon Steel Corp High-strength pearlitic steel superior in delayed fracture resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116671A (en) * 2008-02-22 2010-11-01 코러스 유케이 리미티드 Rail steel with an excellent combination of wear properties and rolling contact fatigue resistance
US20110038749A1 (en) * 2008-02-22 2011-02-17 Corus Uk Limited Rail steel with an excellent combination of wear properties and rolling contact fatigue resistance
US8430976B2 (en) * 2008-02-22 2013-04-30 Tata Steel Uk Limited Rail steel with an excellent combination of wear properties and rolling contact fatigue resistance
AU2009216933B2 (en) * 2008-02-22 2013-07-25 Jingye Steel (UK) Ltd Rail steel with an excellent combination of wear properties and rolling contact fatigue resistance
KR101603355B1 (en) * 2008-02-22 2016-03-14 타타 스틸 유케이 리미티드 Rail steel with an excellent combination of wear properties and rolling contact fatigue resistance
JP2015504484A (en) * 2011-11-28 2015-02-12 タタ、スティール、ユーケー、リミテッドTata Steel Uk Limited Rail steel with an excellent combination of wear resistance, rolling contact fatigue resistance and weldability
WO2013161794A1 (en) 2012-04-23 2013-10-31 新日鐵住金株式会社 Rail
US9127409B2 (en) 2012-04-23 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Rail
JP2015209590A (en) * 2014-04-30 2015-11-24 Jfeスチール株式会社 Rail production method
CN113088811A (en) * 2021-03-04 2021-07-09 天津荣程联合钢铁集团有限公司 Niobium-containing alloy steel and preparation method thereof

Also Published As

Publication number Publication date
JP5401762B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5292875B2 (en) Internal high-hardness pearlitic steel rail with excellent wear resistance, fatigue damage resistance and delayed fracture resistance, and manufacturing method thereof
EP2006406B1 (en) High-strength pearlite rail with excellent delayed-fracture resistance
JP6210155B2 (en) Rail vehicle wheel and method for manufacturing rail vehicle wheel
JP4390004B2 (en) Internal high-hardness pearlite steel rail with excellent wear resistance and fatigue damage resistance and method for producing the same
AU2014245320B2 (en) Pearlite rail and method for manufacturing pearlite rail
JP5282506B2 (en) Internal high hardness type pearlitic steel rail with excellent wear resistance and fatigue damage resistance and method for manufacturing the same
EP3249070B1 (en) Rail
KR20160126049A (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
JP5401762B2 (en) High-strength pearlite rail with excellent delayed fracture resistance
EP3778961B1 (en) Rail and method for manufacturing same
JP2020007635A (en) Processing method of austenitic rail
JP2010100937A (en) High-internal-hardness type pearlite steel rail superior in flash-butt-welded joint characteristics, and method for welding the same
JP7332460B2 (en) perlite rail
JP2008050684A (en) High-strength pearlite steel rail with excellent delayed-fracture resistance
JP6852761B2 (en) Rails and their manufacturing methods
JP5141332B2 (en) Internal high hardness type pearlitic steel rail excellent in delayed fracture resistance and method for manufacturing the same
JP2000129397A (en) Pearlite type rail excellent in wear resistance and ductility
JP6459955B2 (en) rail
JP2002363701A (en) Pearlitic rail
JP7173366B2 (en) RAIL EXCELLENT IN FATIGUE CRACK PROPAGATION RESISTANCE AND PRODUCTION METHOD THEREOF
JP2002088449A (en) Pearlitic rail
JP2001181737A (en) Method for producing pearlitic steel rail excellent in wear resistance and ductile toughness
JP2021063248A (en) rail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5401762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250