JPH0226403B2 - - Google Patents

Info

Publication number
JPH0226403B2
JPH0226403B2 JP54074128A JP7412879A JPH0226403B2 JP H0226403 B2 JPH0226403 B2 JP H0226403B2 JP 54074128 A JP54074128 A JP 54074128A JP 7412879 A JP7412879 A JP 7412879A JP H0226403 B2 JPH0226403 B2 JP H0226403B2
Authority
JP
Japan
Prior art keywords
circuit
digital
analog
output
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54074128A
Other languages
Japanese (ja)
Other versions
JPS55166333A (en
Inventor
Yoshihiko Akaiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7412879A priority Critical patent/JPS55166333A/en
Publication of JPS55166333A publication Critical patent/JPS55166333A/en
Publication of JPH0226403B2 publication Critical patent/JPH0226403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/03Digital function generators working, at least partly, by table look-up
    • G06F1/0321Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
    • G06F1/0328Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers in which the phase increment is adjustable, e.g. by using an adder-accumulator
    • G06F1/0335Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers in which the phase increment is adjustable, e.g. by using an adder-accumulator the phase increment itself being a composed function of two or more variables, e.g. frequency and phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 本発明はデイジタル回路を用いた位相変調器に
係り、特に入力アナログ信号をデイジタル信号に
変換するアナログ−デイジタル変換回路の変換速
度が遅い場合でも充分な特性が得られるデイジタ
ル位相変調器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase modulator using a digital circuit, and in particular to a phase modulator using a digital circuit that provides sufficient characteristics even when the conversion speed of an analog-to-digital conversion circuit that converts an input analog signal into a digital signal is slow. Regarding phase modulators.

従来知られているデイジタル位相変調回路にお
いては、アナログ−デイジタル変換の速度が遅い
ために、位相変調が不連続になり、スプリアスが
生ずるなどスペクトル特性が悪化する欠点があ
る。本発明の目的はこのような欠点を除いたデイ
ジタル位相変調器を提供することにある。
Conventionally known digital phase modulation circuits have the disadvantage that the speed of analog-to-digital conversion is slow, resulting in discontinuous phase modulation and deterioration of spectral characteristics such as generation of spurious signals. An object of the present invention is to provide a digital phase modulator that eliminates these drawbacks.

本発明によれば、アナログ信号を入力としてこ
の信号を一定の周期でデイジタル値に変換するア
ナログ−デイジタル変換回路の出力デイジタル値
と、定められた周期毎に一定の数値を足し込む累
算回路の出力との和を計算する加算回路の出力を
アドレスとする記憶回路を設け、この記憶回路の
出力デイジタル値をアナログ量に変換し、この変
換された出力を低域通過フイルタに入力して得ら
れる信号を出力とするデイジタル位相変調器にお
いて、前記アナログ−デイジタル変換回路の出力
デイジタル値の異なる二つ以上の時刻における値
を用いて計算を行い、入力アナログ信号のサンプ
ル周期内における値を推定する内捜補間回路を、
前記アナログ−デイジタル変換回路と前記加算回
路との間に設けることによつて、前記目的を達成
できる。
According to the present invention, the output digital value of an analog-to-digital conversion circuit that receives an analog signal and converts this signal into a digital value at a fixed cycle, and the accumulation circuit that adds a fixed value at every fixed cycle. A memory circuit is provided whose address is the output of the adder circuit that calculates the sum with the output, the output digital value of this memory circuit is converted to an analog value, and this converted output is input to a low-pass filter to obtain the value. In a digital phase modulator that outputs a signal, calculation is performed using the output digital value of the analog-to-digital conversion circuit at two or more different times, and the value within the sample period of the input analog signal is estimated. search interpolation circuit,
The above object can be achieved by providing it between the analog-digital conversion circuit and the addition circuit.

以下、図面を用いて詳しく説明する。第1図
は、従来のデイジタル位相変調器の構成を示すブ
ロツク図である。変調入力アナログ信号はアナロ
グ−デイジタル変換器2によつてデイジタル値に
変換された後、加算回路3の一方の入力となる。
一定の数値をセツトする装置5の出力は端子10
から入力されるクロツク周期毎に足し込む累算回
路4によつて足し込まれ、加算回路3の他方の入
力となる。加算回路3の前記二つの入力はそれぞ
れ変調入力信号と搬送波信号の位相となつてい
る。すなわち、被変調波の位相をθs(t)、変調入
力信号をθi(t)、キヤリアの位相をθc(t)とすれ
ば、 θs(ti)=θc(ti)+θi(ti)……(1) となる。ここで、θ(ti)はθ(t)のサンプル値
を示す。また、位相は2πを法とするので、累算
回路および加算回路は2πに相当する値を法とす
る演算を行えばよい。記憶回路6は、アドレスが
θs(ti)に対して、Asin(θs(ti))を出力するもの
で、この出力によりサンプルされた位相変調波が
得られたことになる。ここで、Aは定数である。
この出力はデイジタル−アナログ変換によつてア
ナログ量に変換された後、低域通過フイルタ8を
通すことによつて時間的に連続な信号となる。
This will be explained in detail below using the drawings. FIG. 1 is a block diagram showing the configuration of a conventional digital phase modulator. The modulated input analog signal is converted into a digital value by the analog-to-digital converter 2 and then becomes one input of the adder circuit 3.
The output of device 5 for setting a constant value is at terminal 10.
The sum is added by the accumulator circuit 4 which adds the sum every clock cycle inputted from the clock signal, and becomes the other input of the adder circuit 3. The two inputs of the adder circuit 3 are in phase with the modulated input signal and the carrier signal, respectively. That is, if the phase of the modulated wave is θ s (t), the modulated input signal is θ i (t), and the phase of the carrier is θ c (t), then θ s (t i )=θ c (t i ) +θ i (t i )...(1). Here, θ(t i ) indicates a sample value of θ(t). Furthermore, since the phase is modulo 2π, the accumulation circuit and the addition circuit may perform calculations modulo a value corresponding to 2π. The memory circuit 6 outputs Asin(θ s (t i )) for the address θ s (t i ), and this output means that a sampled phase modulated wave is obtained. Here, A is a constant.
This output is converted into an analog quantity by digital-to-analog conversion, and then passed through a low-pass filter 8 to become a temporally continuous signal.

第2図は、説明を簡単にするために変調入力信
号が直線的に増加する場合を仮定したときの、加
算回路3の入力と出力を示したものである。同図
において黒丸は時間的にサンプルされた値を示
す。同図21,22で示す直線はそれぞれ変調入
力および搬送波の位相を示す。搬送波の位相およ
び変調入力を同じ周期でサンプルした場合の加算
回路の出力は同図23に示すように直線的になり
問題はない。このとき記憶回路6によつて正弦波
のデイジタル値が求められ、出力は第2図ロに示
すようになる。搬送波の位相のサンプル周期を変
調入力信号のサンプル周期よりも速くすると、同
図22,23上の点を矢印で示したように変化す
るので、低域通過フイルタ8を通過した信号は理
想的な場合の単一周波数にはならなくて、スプリ
アス成分が発生することになる。このような問題
は搬送波の位相をサンプルする周期を入力信号の
サンプル周期と同じにすれば解決できる。しか
し、こサンプル周期はサンプリング定理を満足し
なければならず、搬送波周波数および入力信号の
帯域で決まる被変調波の最高周波数の2倍の周波
数に相当する周期以上の速さにしなければならな
い。一般に、搬送波の周波数は入力信号の最高周
波数よりもかなり高く選ばれるので、サンプリン
グ周波数はかなり高くなる。このとき、一般にア
ナログ−デイジタル変換回路の速度は、デイジタ
ル−アナログ変換器の速度に比べて遅いので、サ
ンプリング定理を満足する周期にアナログ−デイ
ジタル変換の速度が追いつかず、位相変調が不連
続になるためスペクトル特性が悪化する問題があ
る。ここでは説明の便宜のため、入力信号が直線
的に変化する場合を考えたが、その他一般の入力
信号に対しても同様な問題があることには変りが
ない。
FIG. 2 shows the input and output of the adder circuit 3 on the assumption that the modulated input signal increases linearly to simplify the explanation. In the figure, black circles indicate values sampled over time. Straight lines shown in FIG. 21 and 22 indicate the modulation input and carrier wave phases, respectively. When the phase of the carrier wave and the modulation input are sampled at the same period, the output of the adder circuit becomes linear as shown in FIG. 23, and there is no problem. At this time, the digital value of the sine wave is determined by the storage circuit 6, and the output is as shown in FIG. 2B. When the sample period of the carrier wave phase is made faster than the sample period of the modulation input signal, the points 22 and 23 in the same figure change as shown by the arrows, so the signal that has passed through the low-pass filter 8 becomes ideal. In this case, the frequency will not be a single frequency, and spurious components will be generated. Such a problem can be solved by making the period for sampling the phase of the carrier wave the same as the sampling period of the input signal. However, this sampling period must satisfy the sampling theorem and must be faster than the period corresponding to twice the highest frequency of the modulated wave determined by the carrier frequency and the band of the input signal. Generally, the frequency of the carrier wave is chosen to be much higher than the highest frequency of the input signal, so the sampling frequency will be much higher. At this time, the speed of the analog-to-digital conversion circuit is generally slower than the speed of the digital-to-analog converter, so the speed of the analog-to-digital conversion cannot keep up with the period that satisfies the sampling theorem, resulting in discontinuous phase modulation. Therefore, there is a problem that the spectral characteristics deteriorate. Here, for convenience of explanation, we have considered the case where the input signal changes linearly, but it is true that similar problems exist for other general input signals as well.

第3図は、本発明の実施例の構成を示すブロツ
ク図であり、第1図と異なる点はアナログ−デイ
ジタル変換回路2の出力と加算回路3の間に補間
回路12を設けている点にある。この補間回路1
2はアナログ−デイジタル変換器の変換速度が遅
いことを補なうために、各サンプリング点におけ
る値を用いて、サンプリング点以外における値を
推定しようとするものである。このような推定値
を求める方法としては、例えば、一次近似を行う
方法として、第4図のような内捜補間が考えられ
る。この回路の動作を第5図に示す。以下第5図
を利用しながら第4図の回路の説明を行う。入力
アナログ信号は、アナログ−デイジタル変換器2
によつてサンプリング周期Tごとにデイジタル値
に変換される。相続く二つの時刻tiとti+1における
サンプリング値を用いて、遅延回路43と引き算
回路44によつて第5図に示すΔEの値が計算さ
れる。
FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention. The difference from FIG. 1 is that an interpolation circuit 12 is provided between the output of the analog-digital conversion circuit 2 and the addition circuit 3. be. This interpolation circuit 1
2 attempts to estimate values at points other than the sampling points using values at each sampling point in order to compensate for the slow conversion speed of the analog-to-digital converter. As a method of obtaining such an estimated value, for example, internal interpolation as shown in FIG. 4 can be considered as a method of performing first-order approximation. The operation of this circuit is shown in FIG. The circuit shown in FIG. 4 will be explained below using FIG. 5. The input analog signal is sent to analog-to-digital converter 2
is converted into a digital value at every sampling period T. Using the sampling values at two successive times t i and t i+1 , the value of ΔE shown in FIG. 5 is calculated by the delay circuit 43 and the subtraction circuit 44.

次に割り算回路45によつて、必要とする補間
点数(N)に応じてΔE/Nが計算される。この
値は、補間するクロツク周期T/Nごとに、足し
込み加算を行う累算回路の入力となり、第5図の
小さな黒丸で示した補間値の時刻tiにおけるサン
プリング値に対する増加分が求められる。この増
加分は時刻tiにおけるサンプル値と加算回路47
によつて、足し合わされ、必要とする補間点が求
められたことになる。ここで、足し込み累算回路
は、周期Tごとにリセツトされている。
Next, the division circuit 45 calculates ΔE/N according to the required number of interpolation points (N). This value is input to an accumulator circuit that performs addition for each interpolating clock cycle T/N, and the increment of the interpolated value shown by the small black circle in Fig. 5 relative to the sampled value at time t i is determined. . This increase is equal to the sample value at time t i and the addition circuit 47
This means that the required interpolation points are obtained by adding them together. Here, the addition accumulation circuit is reset every period T.

第2図に示した例においては、入力信号が時間
とともに直線的に増加する場合であるから、第4
図に示した一次補間回路は、誤差がない完全な値
を与えることになる。入力信号が直線的に増加し
ない一般的な場合にも、かなりよい近似度で補間
することができるが、その近似度を上げるために
は、三つ以上のサンプル値を用いて補間を行えば
よい。
In the example shown in Fig. 2, the input signal increases linearly with time, so the fourth
The linear interpolator shown in the figure will give a perfect value with no errors. Even in the general case where the input signal does not increase linearly, interpolation can be performed with a fairly good approximation, but in order to increase the approximation, it is necessary to perform interpolation using three or more sample values. .

なお本発明は位相変調の場合について述べた
が、入力信号を積分した後、位相変調を行うこと
で等価的に周波数変調を行う場合にも有効である
ことは明らかである。
Although the present invention has been described with respect to the case of phase modulation, it is clear that it is also effective when performing frequency modulation equivalently by performing phase modulation after integrating an input signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のデイジタル位相変調回路の構成
を示すブロツク図、第2図は第1図の動作を説明
するための図、第3図は本発明の実施例を示すブ
ロツク図、第4図と第5図は本発明に用いられる
補間回路の一実施例を示すブロツク図とその動作
を説明するための図である。これらの図におい
て、1は変調信号入力端子、2はアナログ−デイ
ジタル変換回路、3および47は加算回路、4お
よび46は一定の数値を足し込む累算回路、5は
一定の数値をセツトする回路、6は記憶回路、7
はデイジタル−アナログ変換回路、8は低域通過
フイルタ、9は出力端子、10および49はクロ
ツク入力端子、11および50は分周回路、12
は補間回路、42は入力端子、43は遅延回路、
44は引き算回路、45は割り算回路、48は出
力端子である。
FIG. 1 is a block diagram showing the configuration of a conventional digital phase modulation circuit, FIG. 2 is a diagram for explaining the operation of FIG. 1, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG. FIG. 5 is a block diagram showing one embodiment of the interpolation circuit used in the present invention, and a diagram for explaining its operation. In these figures, 1 is a modulation signal input terminal, 2 is an analog-to-digital conversion circuit, 3 and 47 are addition circuits, 4 and 46 are accumulation circuits that add a certain value, and 5 is a circuit that sets a certain value. , 6 is a memory circuit, 7
is a digital-to-analog conversion circuit, 8 is a low-pass filter, 9 is an output terminal, 10 and 49 are clock input terminals, 11 and 50 are frequency dividing circuits, 12
is an interpolation circuit, 42 is an input terminal, 43 is a delay circuit,
44 is a subtraction circuit, 45 is a division circuit, and 48 is an output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 アナログ信号を入力としてこの信号を一定の
周期でデイジタル値に変換するアナログ−デイジ
タル変換回路の出力デイジタル値と、定められた
周期ごとに一定の数値を足し込む累算回路の出力
との和を計算する加算回路の出力をアドレスとす
る記憶回路を設け、この記憶回路の出力デイジタ
ル値をアナログ量に変換し、この変換された出力
を低域通過フイルタに入力して得られる信号を出
力とするデイジタル位相変調器において、前記ア
ナログ−デイジタル変換回路の出力デイジタル値
の異なる二つ以上の時刻における値を用いて計算
を行い、入力アナログ信号のサンプル周期内にお
ける値を推定する内捜補間回路を、前記アナログ
−デイジタル変換回路と前記加算回路との間に設
けたことを特徴とするデイジタル位相変調器。
1. The sum of the output digital value of an analog-to-digital converter circuit that inputs an analog signal and converts this signal into a digital value at a fixed cycle, and the output of an accumulator circuit that adds a fixed value at each fixed cycle. A memory circuit whose address is the output of the adding circuit to be calculated is provided, the output digital value of this memory circuit is converted into an analog quantity, and the converted output is input to a low-pass filter, and the resulting signal is output. In the digital phase modulator, an interpolation interpolation circuit that performs calculations using the output digital values of the analog-to-digital conversion circuit at two or more different times to estimate the value within the sample period of the input analog signal; A digital phase modulator, characterized in that it is provided between the analog-digital conversion circuit and the addition circuit.
JP7412879A 1979-06-12 1979-06-12 Digital phase modulator Granted JPS55166333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7412879A JPS55166333A (en) 1979-06-12 1979-06-12 Digital phase modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7412879A JPS55166333A (en) 1979-06-12 1979-06-12 Digital phase modulator

Publications (2)

Publication Number Publication Date
JPS55166333A JPS55166333A (en) 1980-12-25
JPH0226403B2 true JPH0226403B2 (en) 1990-06-11

Family

ID=13538239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7412879A Granted JPS55166333A (en) 1979-06-12 1979-06-12 Digital phase modulator

Country Status (1)

Country Link
JP (1) JPS55166333A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584541A (en) * 1984-12-28 1986-04-22 Rca Corporation Digital modulator with variations of phase and amplitude modulation
US4628286A (en) * 1985-04-17 1986-12-09 Rca Corporation Digital frequency modulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243308A (en) * 1975-10-01 1977-04-05 Fujitsu Ltd Signal transmitting system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243308A (en) * 1975-10-01 1977-04-05 Fujitsu Ltd Signal transmitting system

Also Published As

Publication number Publication date
JPS55166333A (en) 1980-12-25

Similar Documents

Publication Publication Date Title
FI91467C (en) Digital delay filter
JPH0642619B2 (en) Interpolative time-discrete filter device
JP2976706B2 (en) Frequency conversion type coherent A / D conversion system for modulated signal
US5862069A (en) Four quadrant multiplying apparatus and method
JPH0823231A (en) Fm modulation circuit
JPH07105762B2 (en) Analog-to-digital converter using decimation filter of sigma-delta converter and the same
JPH0226403B2 (en)
JP2600821B2 (en) Sampling frequency converter
KR100360632B1 (en) Decimation Circuits and Methods for Filtering Quantized Signals and Provision of Phase Angle Compensation with Actual Linear Phase Response
JPH05206732A (en) Frequency synthesizer
US20050238115A1 (en) Apparatus and method for digital modulation
WO2000079686A1 (en) Digital-analog converter and method, and data interpolation device and method
JPS588795B2 (en) PCM color subcarrier interpolation method
US5161032A (en) Velocity error generator with first-order interpolation
JP2600820B2 (en) Sampling frequency converter
JPH071850B2 (en) Digital processing FM modulator
JPH0640616B2 (en) Digital filter-frequency characteristic converter
JP2650162B2 (en) Video signal processing device
JP2513789B2 (en) Signal processor
JPH03242024A (en) D/a conversion method
JPH06314954A (en) Oversampling circuit
JP2710460B2 (en) A / D converter
JP2760123B2 (en) Digital phase locked loop
JPH03267808A (en) Digital signal processing circuit
SU1352637A1 (en) Quasisynchronous detector