JPH03242024A - D/a conversion method - Google Patents

D/a conversion method

Info

Publication number
JPH03242024A
JPH03242024A JP3909490A JP3909490A JPH03242024A JP H03242024 A JPH03242024 A JP H03242024A JP 3909490 A JP3909490 A JP 3909490A JP 3909490 A JP3909490 A JP 3909490A JP H03242024 A JPH03242024 A JP H03242024A
Authority
JP
Japan
Prior art keywords
data
sampling
function
converter
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3909490A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakurai
宏 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP3909490A priority Critical patent/JPH03242024A/en
Publication of JPH03242024A publication Critical patent/JPH03242024A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an analog signal with fidelity to an original signal with low cost by multiplying a sampling function with a data of a sampling point so as to interpolate the sampling point. CONSTITUTION:A D/A converter consists of 8-bit DFFs 1-5, current addition D/A converter sections 6-9, a 1/4 frequency divider circuit 10, a shift register 11, multipliers 12-15, an adder 16, a 4-multiplier 17, a standardized function generator 18, a D/A converter section 19 including a filter, and delay circuits 20-22 having a delay characteristic by one clock. Each of plural sampling data in the vicinity multiplied with a standardized function is summed to obtain an interpolation data. Thus, the use of a digital filter is not required, the cost is reduced and D/A conversion with fidelity to an original signal waveform is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、デジタル信号をアナログ信号に変換するD/
A変換回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a digital signal converter that converts a digital signal into an analog signal.
Regarding the A conversion circuit.

〔従来の技術〕[Conventional technology]

このD/A変換回路としては、サンプリング周波数fs
でD/A変換して、その後段にアナログのローパスフィ
ルタを付けるものがある。ところが、D/A変換直後の
波形は、サンプリング周期(1/fs)の幅で変化する
階段状となるので、そこに不要な高調波成分(折り返し
ノイズ)が加わり、またグリッチも生じて、信号劣化、
機器損傷等の問題を招く。このため、それらを除去する
ために、高次のアナログローパスフィルタが使用されて
いたが、このフィルタには急峻なロールオフ特性を要求
されるために、通過する信号の位相特性を劣化させてし
まうとい問題があった。
This D/A conversion circuit has a sampling frequency fs
There is one that performs D/A conversion and then attaches an analog low-pass filter. However, the waveform immediately after D/A conversion has a step-like shape that changes with the width of the sampling period (1/fs), so unnecessary harmonic components (aliasing noise) are added to it, and glitches also occur, causing the signal to deteriorate. deterioration,
This may lead to problems such as equipment damage. For this reason, high-order analog low-pass filters have been used to remove them, but because these filters are required to have steep roll-off characteristics, they degrade the phase characteristics of the signals passing through them. There was a problem.

そこで、信号を劣化させずに折り返しノイズ成分を除去
する方法として、オーバーサンプリング技術が使用され
るようになった。これは、D/A変換の前段でサンプリ
ング周波数を高くして、折り返しノイズ成分を高域に遠
ざけるようにしたものである。つまり、デジタルフィル
タを使用してそこに入力した離散データ列の間に演算に
よって求めた新たな補間データを挿入して行うものであ
る。
Therefore, oversampling technology has come to be used as a method to remove aliasing noise components without degrading the signal. This is done by increasing the sampling frequency at the stage before D/A conversion to keep aliasing noise components away from high frequencies. In other words, new interpolated data obtained by calculation is inserted between discrete data strings input using a digital filter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、この方法は補間演算のためのデジタルフィル
タの規模が極めて大きくなって、信号処理のためのクロ
ック周波数も高くなり、コスト高となるという問題があ
る。
However, this method has problems in that the scale of the digital filter for interpolation calculations becomes extremely large, and the clock frequency for signal processing also becomes high, resulting in high costs.

本発明はこのような点に鑑みてなされたものであり、そ
の目的は、低いコストで原信号に忠実なアナログ信号を
得ることができるようにしたD/A変換方法を提供する
ことである。
The present invention has been made in view of these points, and an object of the present invention is to provide a D/A conversion method that makes it possible to obtain an analog signal faithful to the original signal at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

このために本発明は、サンプル点が連続するデジタル信
号をサンプリングクロックの適数毎にD/A変換して該
適数個の並列出力を得、該並列出力の各信号に標本化関
数を乗算してから、該並列出力を加算するように構成し
た。
For this purpose, the present invention performs D/A conversion on a digital signal with consecutive sample points at every appropriate number of sampling clocks to obtain the appropriate number of parallel outputs, and multiplies each signal of the parallel outputs by a sampling function. After that, the parallel outputs were added together.

〔実施例] 以下、本発明の実施例について説明する。まず、標本化
定理によれば、サンプリング点の間のブタ補間は次の標
本化関数Φ(1) Φ(t)= 5in2πωt/2πωt    ・(1
)によってなされるのが理想的である。この関数を第3
図に示した。
[Examples] Examples of the present invention will be described below. First, according to the sampling theorem, the pig interpolation between sampling points is the following sampling function Φ(1) Φ(t) = 5in2πωt/2πωt ・(1
) is ideally done. Add this function to the third
Shown in the figure.

本実施例では、この標本化関数をサンプリング点のデー
タに掛は合わせて、サンプル点間の補間を行うようにし
た。
In this embodiment, this sampling function is multiplied by the data at the sampling points to perform interpolation between the sampling points.

第1図はそのための一実施例の回路を示す図である。1
〜5は8ビツトのDFF、6〜9は電流加算型等からな
る8ビツトのD/A変換部、10はクロックCLKをA
倍にするA分周器、11はA倍のクロックCLKをクロ
ックCLK毎にシフトするシフトレジスタ、12〜15
は掛算器、16は加算器、17はクロックCLKを4倍
にする4逓倍器、18は上記した式(1)の関数のうち
最大値を示す時間t0以後(第3図参照)の波形の信号
を発生する関数発生器、19はその関数発生器18で発
生した関数をD/A変換するD/A変換部(ローパスフ
ィルタも有する)、20〜22は1クロツク分の遅延特
性を持つ遅延回路である。
FIG. 1 is a diagram showing a circuit of one embodiment for this purpose. 1
5 is an 8-bit DFF, 6 to 9 are 8-bit D/A converters of current adding type, etc., and 10 is an 8-bit D/A converter that converts the clock CLK to A.
A frequency divider that doubles the frequency; 11 is a shift register that shifts the clock CLK multiplied by A for each clock CLK; 12 to 15;
is a multiplier, 16 is an adder, 17 is a quadruple multiplier that quadruples the clock CLK, and 18 is the waveform after time t0 (see Figure 3) that shows the maximum value of the function of equation (1) above. A function generator that generates a signal, 19 a D/A converter (also has a low-pass filter) that converts the function generated by the function generator 18, and 20 to 22 delays that have delay characteristics of one clock. It is a circuit.

この回路では、8ビツトのデジタルデータがDF、Fl
に入力してクロックCLKでラッチされると、その時の
クロ・ツクで次のDFF2にそのデータが転送されラッ
チされる。そして、このラッチされたデジタルデータは
D/A変換部6においてアナログ電圧に変換され、掛算
器12に入力する。
In this circuit, 8-bit digital data is sent to DF and Fl.
When the data is input to the DFF2 and latched by the clock CLK, the data is transferred to the next DFF2 and latched by the clock at that time. This latched digital data is then converted into an analog voltage in the D/A converter 6 and input to the multiplier 12.

このDFF2は4クロツクに1回ラッチされるので、D
/A変換部6の出力側には、4クロツク毎に変化する階
段状の信号が得られる。以上は、D/A変換部7〜9に
ついても同様であるが、その変化タイミングは1クロツ
クずつずれていいる。
This DFF2 is latched once every 4 clocks, so DFF2 is latched once every 4 clocks.
On the output side of the /A converter 6, a step-like signal that changes every four clocks is obtained. The above is the same for the D/A converters 7 to 9, but their change timings are shifted by one clock.

第3図(alにクロックCLK、(blに本来の信号波
形とサンプリング点(Pi〜P8)、(C)にD/A変
換部6の出力波形、(diにD/A変換部7の出力波形
、telにD/A変換部8の出力波形、(flにD/変
換部9の出力波形を示す。
Figure 3 (al is the clock CLK, (bl is the original signal waveform and sampling points (Pi to P8), (C) is the output waveform of the D/A converter 6, (di is the output of the D/A converter 7) waveform, tel shows the output waveform of the D/A converter 8, and (fl shows the output waveform of the D/A converter 9).

そして、掛算器12ではデータP1の発生タイミングに
合わせて、第3図の関数Φ(1)の時間t0から始まる
関数が掛算される。また掛算器13ではデータP2の発
生タイミングに合わせて、同関数が掛算される。更に掛
算器14ではデータP3の発生タイミングに合わせて、
同関数が掛算される。更に掛算器15ではデータP4の
発生タイミングに合わせて、同関数が掛算される。
Then, the multiplier 12 multiplies the function Φ(1) in FIG. 3 starting from time t0 in accordance with the generation timing of the data P1. Furthermore, the multiplier 13 multiplies the data P2 by the same function in synchronization with the generation timing of the data P2. Furthermore, in the multiplier 14, in accordance with the generation timing of data P3,
The same function is multiplied. Further, the multiplier 15 multiplies the data P4 by the same function in synchronization with the generation timing of the data P4.

従って、データP1〜P4の影響が関数Φ(1)により
そのデータP1〜P4の発生時点から、4クロツク経過
するまでの間与えられる。
Therefore, the influence of the data P1 to P4 is given by the function Φ(1) from the time when the data P1 to P4 are generated until four clocks have elapsed.

そして、このように関数Φ(1)によりサンプル点以外
の部分に補正が加えられたデータが、加算器16により
相互に加算されるので、Pl、22等の各サンプンリン
グデータの間には、最大で4サンプリング前までのデー
タを考慮したデータ補間が行われることになる。
Then, since the data whose parts other than the sampling points have been corrected by the function Φ(1) are mutually added by the adder 16, there is a difference between each sampling data such as Pl, 22, etc. , data interpolation is performed taking into account data up to four samplings ago at most.

このように、本実施例では近傍の複数のサンプリングデ
ータの個々に標本化関数を乗した値を加算して補間デー
タを得ているので、原信号に極めて忠実なアナログ出力
を得ることができるようになる。
In this way, in this embodiment, the interpolated data is obtained by adding the values obtained by multiplying each of the neighboring sampling data by the sampling function, so that it is possible to obtain an analog output that is extremely faithful to the original signal. become.

なお、上記した実施例では続く3サンプリング点まで1
個のサンプンリングデータの標本化関数による影響を及
ぼすようにしたが、4サンプリング或いはそれ以上の点
にまで及ぼすようにすればより忠実なり/A変換が実現
できる。
In addition, in the above embodiment, up to the following three sampling points, 1
Although the influence is exerted by the sampling function of each sampling data, a more faithful /A conversion can be realized if the influence is exerted on four or more sampling points.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、デジタルフィルタを使用
する必要がなくなり、コスト低下を実現でき、しかも原
信号波形に忠実なり/A変換を行うことができるという
利点がある。
As described above, according to the present invention, there is an advantage that there is no need to use a digital filter, cost can be reduced, and A/A conversion can be performed faithfully to the original signal waveform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のD/A変換回路の回路図、
第2図は動作説明図、第3図は標本化関数の波形図であ
る。 1〜5・・・8ビ、トのDFF、6〜9・・・電流加算
型等のD/A変換部、10・・・A分周回路、11・・
・シフトレジスタ、12〜15・・・掛算器、16・・
・加算器、17・・・4逓倍器、18・・・標準化関数
発生器、19・・・フィルタを含むD/A変換部。
FIG. 1 is a circuit diagram of a D/A conversion circuit according to an embodiment of the present invention,
FIG. 2 is an explanatory diagram of the operation, and FIG. 3 is a waveform diagram of the sampling function. 1 to 5... 8-bit DFF, 6 to 9... D/A converter of current addition type, etc., 10... A frequency dividing circuit, 11...
・Shift register, 12-15... Multiplier, 16...
- D/A converter including an adder, 17...quadruple multiplier, 18...standardization function generator, 19...filter.

Claims (1)

【特許請求の範囲】[Claims] (1)、サンプル点が連続するデジタル信号をサンプリ
ングクロックの適数毎にD/A変換して該適数個の並列
出力を得、該並列出力の各信号に標本化関数を乗算して
から、該並列出力を加算することを特徴とするD/A変
換方法。
(1) D/A convert a digital signal with consecutive sampling points every appropriate number of sampling clocks to obtain the appropriate number of parallel outputs, multiply each signal of the parallel outputs by a sampling function, and then , a D/A conversion method characterized by adding the parallel outputs.
JP3909490A 1990-02-20 1990-02-20 D/a conversion method Pending JPH03242024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3909490A JPH03242024A (en) 1990-02-20 1990-02-20 D/a conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3909490A JPH03242024A (en) 1990-02-20 1990-02-20 D/a conversion method

Publications (1)

Publication Number Publication Date
JPH03242024A true JPH03242024A (en) 1991-10-29

Family

ID=12543494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3909490A Pending JPH03242024A (en) 1990-02-20 1990-02-20 D/a conversion method

Country Status (1)

Country Link
JP (1) JPH03242024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345612B2 (en) * 2006-02-07 2008-03-18 Nokia Corporation Digital-to-radio frequency conversion device, chip set, transmitter, user terminal and data processing method
JP2015527021A (en) * 2012-08-29 2015-09-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Digital to analog converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345612B2 (en) * 2006-02-07 2008-03-18 Nokia Corporation Digital-to-radio frequency conversion device, chip set, transmitter, user terminal and data processing method
EP1987593A1 (en) * 2006-02-07 2008-11-05 Nokia Corporation Digital-to-radio frequency conversion device, chip set, transmitter, user terminal and data processing method
EP1987593A4 (en) * 2006-02-07 2009-03-25 Nokia Corp Digital-to-radio frequency conversion device, chip set, transmitter, user terminal and data processing method
JP2015527021A (en) * 2012-08-29 2015-09-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Digital to analog converter

Similar Documents

Publication Publication Date Title
US4588979A (en) Analog-to-digital converter
JP2007067646A (en) Sampling rate conversion method and its circuit
KR100377037B1 (en) Noise elimination circuit
JP4405620B2 (en) Digital signal generator
JPS6255325B2 (en)
JPH03242024A (en) D/a conversion method
US6486814B2 (en) Digital-to-analog converter using different multiplicators between first and second portions of a data holding period
JPH08330957A (en) D/a conversion device
JP3125225B2 (en) Digital / analog converter
US6894966B1 (en) Interpolation circuit
JP4092652B2 (en) D / A converter
JPH07106974A (en) D/a converter
JPH0884048A (en) Sampling rate converter
KR100189524B1 (en) A/d converter of sigma/delta modem
JPH08162961A (en) A/d converter
JPH04160822A (en) D/a converter
JPH04137907A (en) Smoothing filter
JPH0237818A (en) Signal generating circuit
JP3156035B2 (en) A / D converter
JPH0818451A (en) D/a converter
JPH03267808A (en) Digital signal processing circuit
JPH01282916A (en) Filter device
JP4792354B2 (en) Single bit multiplier circuit with phase adjustment function
JPS63300616A (en) Digital interpolation device
JPS63123210A (en) Signal processing circuit