JPH02263989A - Electrode for generating chlorine and production thereof - Google Patents

Electrode for generating chlorine and production thereof

Info

Publication number
JPH02263989A
JPH02263989A JP1083895A JP8389589A JPH02263989A JP H02263989 A JPH02263989 A JP H02263989A JP 1083895 A JP1083895 A JP 1083895A JP 8389589 A JP8389589 A JP 8389589A JP H02263989 A JPH02263989 A JP H02263989A
Authority
JP
Japan
Prior art keywords
electrode
oxide
mol
electrolysis
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1083895A
Other languages
Japanese (ja)
Other versions
JP2836840B2 (en
Inventor
Hiroyuki Nakada
中田 弘之
Yukio Kawashima
幸雄 川嶋
Kazuhide Oe
大江 一英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP1083895A priority Critical patent/JP2836840B2/en
Publication of JPH02263989A publication Critical patent/JPH02263989A/en
Application granted granted Critical
Publication of JP2836840B2 publication Critical patent/JP2836840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrode having superior durability and electric power efficiency by applying a soln. contg. compds. of Ir, Pt and Ta to an electrically conductive substrate and by heat-treating this substrate to form a coating layer consisting of prescribed percentages of Ir oxide, Pt and Ta oxide. CONSTITUTION:A soln. contg. compds. of Ir, Pt and Ta is prepd. and applied to an electrically conductive substrate and this substrate is heat-treated in an oxidizing atmosphere to form a coating layer consisting of 40-80mol% (expressed in terms of Ir) Ir oxide, 1-20mol% Pt and 50-20mol% (expressed in terms of Ta) Ta oxide.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規な塩素発生用電極及びその製造方法に関
するものである。さらに詳しくいえば、本発明は、海水
などの希薄塩水を電解して、殺菌や漂白などに用いられ
る次亜塩素酸を生成させるのに好適に使用される、耐久
性に優れ、かつ電流効率の良好な塩素発生用電極及び該
電極を簡単に効率よく製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel electrode for chlorine generation and a method for manufacturing the same. More specifically, the present invention is a highly durable and highly current efficient material that is suitable for electrolyzing dilute salt water such as seawater to produce hypochlorous acid used for sterilization, bleaching, etc. The present invention relates to a good chlorine generating electrode and a method for simply and efficiently manufacturing the electrode.

従来の技術 海水を利用し、これを電解して次亜塩素酸を発生させ、
上水道や下水道などの滅菌を行う方法は既に知られてお
り、従来の塩素ガスを用いる滅菌方法は、逐次これに置
き換えられつつある。ところで、この海水を用いる電解
方法(以下海水電解法という)は、海水が容易に入手で
きる地域においては、十分にその機能を発揮しうるが、
海水の利用が困難な地域では、海水の代りに食塩水溶液
を用いる電解方法(以下塩水電解法という)が行われて
いる。
Conventional technology uses seawater and electrolyzes it to generate hypochlorous acid,
Methods for sterilizing water supplies, sewerage systems, etc. are already known, and conventional sterilization methods using chlorine gas are being gradually replaced by these methods. By the way, this electrolysis method using seawater (hereinafter referred to as seawater electrolysis method) can fully demonstrate its function in areas where seawater is easily available.
In areas where it is difficult to use seawater, an electrolysis method using a saline solution instead of seawater (hereinafter referred to as saltwater electrolysis method) is used.

このような電解りおいては、通常無隔膜電解装置を用い
て、その陽極に塩素を発生させ、この塩素と水酸イオン
との反応により次亜塩素酸イオンを生成させている。
In such electrolysis, a non-diaphragm electrolyzer is usually used to generate chlorine at the anode, and hypochlorite ions are generated by the reaction between the chlorine and hydroxide ions.

ところで、希薄塩水電解法の類似技術の1つとして食塩
電解法が知られているが、この電極としてはRuO2型
のものが用いられている。このRuO2型電極の代表的
な例としては、(Ru−Ti)O□固溶体の被覆層を弁
金属基材上に形成したもの(特公昭4621884号公
報)や、5nO250モル%以上の(Ru−5n)02
固溶体の被覆層を有する電極(特公昭50−11330
号公報)などが挙げられる。これらの電極は、食塩電解
法に使用した場合、その優れた耐久性が広く認められて
おり、金属電極の代表例として実用化されている。
Incidentally, a common salt electrolysis method is known as one of the techniques similar to the dilute salt water electrolysis method, and this electrode uses a RuO2 type electrode. Typical examples of this RuO2 type electrode include one in which a coating layer of (Ru-Ti)O□ solid solution is formed on a valve metal base material (Japanese Patent Publication No. 4621884), and one in which a coating layer of (Ru-Ti)O 5n)02
Electrode with solid solution coating layer (Japanese Patent Publication No. 50-11330
(No. Publication). These electrodes are widely recognized for their excellent durability when used in the salt electrolysis method, and are put into practical use as representative examples of metal electrodes.

しかしながら、これらの電極を希薄塩水電解法に用いた
場合、次亜塩素酸発生効率は比較的良好であるが、耐食
性が低いことから、該電極は希薄塩水電解用としては、
とうてい実用に供しえないという問題がある。
However, when these electrodes are used for dilute salt water electrolysis, although the hypochlorous acid generation efficiency is relatively good, the corrosion resistance is low, so these electrodes are not suitable for dilute salt water electrolysis.
The problem is that it cannot be put to practical use.

また、白金、二酸化ルテニウム、酸化パラジウム及び二
酸化チタンから成る被覆層を有する陽極(特公昭55−
35473号公報)、白金及び酸化パラジウムから成る
被覆層を有する陽極(特公昭558595号公報)など
の酸化パラジウム系陽極も提案されている。
In addition, an anode having a coating layer consisting of platinum, ruthenium dioxide, palladium oxide, and titanium dioxide
Palladium oxide anodes have also been proposed, such as Japanese Patent Publication No. 558595) and an anode having a coating layer made of platinum and palladium oxide (Japanese Patent Publication No. 558595).

しかしなから、これらの酸化パラジウム系陽極は、次亜
塩素酸発生効率については高い値を示すものの、耐久性
に問題があり、特に低温時の耐久性は極端に低下すると
いう欠点がある。
However, although these palladium oxide-based anodes exhibit high values for hypochlorous acid generation efficiency, they have a problem in durability, particularly in that their durability at low temperatures is extremely reduced.

さらに、海水電解用電極として、白金又は白金族金属の
合金を耐食性基体上にめっきした電極が知られているが
、このものは、比較的消耗速度が大きい上に、操業時の
電解電圧が高く、電流効率についても満足しうるもので
はない。
Furthermore, as electrodes for seawater electrolysis, electrodes in which platinum or platinum group metal alloys are plated on a corrosion-resistant substrate are known, but these have a relatively high wear rate and have a high electrolysis voltage during operation. , the current efficiency is also not satisfactory.

その他、白金と酸化イリジウムとから成る被覆層を有す
る希薄塩水電解用電極(特公昭55−50479号公報
)、白金、酸化イリジウム及び酸化ルテニウムから成る
被覆層を有する海水電解用電極(特開昭59−2598
8号公報)などの電極が提案されている。
In addition, there are electrodes for dilute salt water electrolysis having a coating layer made of platinum and iridium oxide (Japanese Patent Publication No. 50479/1983), and electrodes for seawater electrolysis having a coating layer consisting of platinum, iridium oxide, and ruthenium oxide (Japanese Patent Publication No. 59/1983). -2598
No. 8) and other electrodes have been proposed.

しかしなから、前者の電極は、耐食性に関してよ良好で
あるものの、使用に伴い性能が劣化する傾向を免れない
し、また、後者の電極は低温度海水電解における耐食性
が十分でないという欠点を有している。
However, although the former electrode has better corrosion resistance, its performance tends to deteriorate with use, and the latter electrode has the disadvantage that its corrosion resistance in low-temperature seawater electrolysis is insufficient. There is.

発明が解決しようとする課題 本発明は、このような希薄塩水電解法における従来の電
極が有する欠点を克服し、低(1陽極層位と高い電流効
率を示し、かつ耐久性や耐食性に優れた塩素発生用電極
を提供することを目的としてなされたものである。
Problems to be Solved by the Invention The present invention overcomes the drawbacks of conventional electrodes in dilute salt water electrolysis, and provides an electrode that exhibits high current efficiency of low (1 anode layer) and excellent durability and corrosion resistance. This was made for the purpose of providing an electrode for chlorine generation.

課題を解決するための手段 本発明者らは、このような好ましい性質を有する塩素発
生用電極を開発するために種々研究を重ねた結果、導電
性基体上に特定組成の酸化イリジウム、白金及び酸化タ
ンタルから成る被覆層を設けた電極が、その目的に適合
することを見出し、この知見に基づいて本発明を完成す
るに至った。
Means for Solving the Problems The present inventors have conducted various studies in order to develop an electrode for chlorine generation having such favorable properties. It was discovered that an electrode provided with a covering layer made of tantalum is suitable for this purpose, and based on this knowledge, the present invention was completed.

すなわち、本発明は、導電性基体上に、各金属換算で酸
化イリジウム40〜80モル%、白金1〜20モル%及
び酸化タンタル50〜20モル%から成る被覆層を設け
たことを特徴とする塩素発生用電極を提供するものであ
る。
That is, the present invention is characterized in that a coating layer consisting of 40 to 80 mol% of iridium oxide, 1 to 20 mol% of platinum, and 50 to 20 mol% of tantalum oxide is provided on the conductive substrate in terms of each metal. The present invention provides an electrode for chlorine generation.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の7ri、44に用いられる導電性基体としては
、例えはチタン、タンタル、ジルコニウム、ニオブなと
の弁金属が挙げられるが、これらの中で特にチタンが好
ましい。また、その形状などは使用目的や用途などに応
し適宜変更可能である。
Examples of the conductive substrate used in 7ri and 44 of the present invention include valve metals such as titanium, tantalum, zirconium, and niobium, and among these, titanium is particularly preferred. In addition, the shape and the like can be changed as appropriate depending on the intended use and use.

本発明の電極においては、このような導電性基体上に、
酸化イリジウム、白金及び酸化タンタルから成る被覆層
が設けられている。
In the electrode of the present invention, on such a conductive substrate,
A coating layer consisting of iridium oxide, platinum and tantalum oxide is provided.

この被覆層中の酸化イリジウムの含有量は、金属換算で
40〜80モル%の範囲内にあることが必要であり、ま
た酸化イリジウムは通常1r02として含有されている
。酸化イリジウムの金属換算での含有量が40モル%未
満では、陽極電位が上昇して、電流効率が低下するし、
また、80モル%を超えると酸素発生量が上昇して、電
流効率が低下する。
The content of iridium oxide in this coating layer needs to be in the range of 40 to 80 mol% in terms of metal, and iridium oxide is usually contained as 1r02. If the content of iridium oxide is less than 40 mol% in terms of metal, the anode potential will increase and the current efficiency will decrease,
Moreover, when it exceeds 80 mol%, the amount of oxygen generated increases and the current efficiency decreases.

また、該被覆層中の白金の含有量は、金属換算で1〜2
0モル%の範囲内にあることが必要であり、また白金は
金属白金として含有されている。
In addition, the content of platinum in the coating layer is 1 to 2 in terms of metal.
It is necessary that the content be within the range of 0 mol %, and platinum is contained as metallic platinum.

白金の金属換算での含有量が1モル%未満では、陽極電
位が上昇して、電流効率が低下するし、また、20モル
%を超えると耐久性が低下する上に、電解とともに電流
効率が低下する。
If the platinum content is less than 1 mol %, the anode potential will increase and the current efficiency will decrease, and if it exceeds 20 mol %, the durability will decrease and the current efficiency will decrease with electrolysis. descend.

また、該被覆層中の酸化タンタルの含有量は、金属換算
で20〜50モル%の範囲内にあることが必要であり、
また酸化タンタルは通常Ta20Bとして含有されてい
る。酸化タンタルの金属換算での含有量が20モル%未
満では、耐久性が低下する上に、電解とともに電流効率
が低下するし、また、50モル%を超えると、陽極電位
が上昇して、電流効率が低下する。
Further, the content of tantalum oxide in the coating layer needs to be in the range of 20 to 50 mol% in terms of metal,
Further, tantalum oxide is usually contained as Ta20B. If the content of tantalum oxide is less than 20 mol % in terms of metal, the durability will decrease and the current efficiency will decrease with electrolysis. If it exceeds 50 mol %, the anode potential will increase and the current will decrease. Efficiency decreases.

また、該被覆層の厚さは、通常0.5〜10μm程度で
あればよい。
Further, the thickness of the coating layer may normally be about 0.5 to 10 μm.

次に、本発明の電極の好適な製造方法の1例について説
明すると、先ず、熱分解によって酸化イリジウムとなる
化合物、例えば塩化イリジウム酸(HtlrCf2s 
・6 H2O)などと、熱分解によって白金となる化合
物、例えばハロゲン化白金酸、特に塩化白金mcH2P
tc(1@ −6Hzo)などと、熱分解によって酸化
タンタルとなる化合物、例えば塩化タンタルのようなハ
ロゲン化タンタルやエトキシタンタルのようなタンタル
アルコキシドなどとを、所定の割合で適当な溶媒に溶解
して塗布液を調製する。
Next, one example of a preferred method for manufacturing the electrode of the present invention will be described. First, a compound that becomes iridium oxide by thermal decomposition, such as chloroiridic acid (HtlrCf2s
・6 H2O), etc., and compounds that become platinum by thermal decomposition, such as halogenated platinic acids, especially platinum chloride mcH2P
tc (1@-6Hzo), etc., and a compound that becomes tantalum oxide through thermal decomposition, such as a tantalum halide such as tantalum chloride or a tantalum alkoxide such as ethoxy tantalum, are dissolved in a suitable solvent in a predetermined ratio. Prepare the coating solution.

この際に用いられる溶媒としては、例えばブタノール、
エタノールのようなアルコール、水などを挙げることが
できる。
Examples of solvents used in this case include butanol,
Alcohols such as ethanol, water, etc. can be mentioned.

次いで、このようにして得られた塗布液を導電性基体上
に塗布し、乾燥したのち、酸化性雰囲気中熱処理し、例
えば400〜600°Cの温度で焼成することにより、
本発明の電極が得られる。また、これらの成分のうち1
種又は2種以上を含む塗布液を2種以上調製し、塗布液
を個別に塗布乾燥焼成してもよい。
Next, the coating liquid obtained in this way is applied onto a conductive substrate, dried, and then heat-treated in an oxidizing atmosphere, for example, by baking at a temperature of 400 to 600 ° C.
The electrode of the present invention is obtained. Also, 1 of these ingredients
Two or more types of coating liquids containing one or more types may be prepared, and the coating liquids may be individually applied, dried and baked.

発明の効果 本発明の電極は、所要の塩水溶液、特に海水や希薄塩水
溶液を電解して、塩素を発生させる電解における陽極に
用いて好適である。
Effects of the Invention The electrode of the present invention is suitable for use as an anode in electrolysis that generates chlorine by electrolyzing a required salt aqueous solution, particularly seawater or dilute salt aqueous solution.

すなわち、本発明の電極は、これを海水電解などの希薄
塩水電解に使用すると、摺電圧が低くて電流効率が高い
という特性を維持することができる上に、機械的消耗に
も強く、長期間の使用にも耐えるという顕著な効果を奏
する。
In other words, when the electrode of the present invention is used in dilute salt water electrolysis such as seawater electrolysis, it can maintain the characteristics of low sliding voltage and high current efficiency, and is also resistant to mechanical wear and can last for a long time. It has the remarkable effect of being able to withstand the use of

したがって、本発明の電極は、食塩電解のみならず、希
薄塩水電解用電極として、実用上十分に満°足しうるも
のである。
Therefore, the electrode of the present invention is fully satisfactorily used not only for salt electrolysis but also as an electrode for dilute salt water electrolysis.

実施例 次に実施例によって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1〜8、比較例1〜6 所定の塩化イリジウム酸(HdrC(Xs ’ 6H,
0)、塩化白金a(II、PtC(la・6H,O)及
びタンクルエトキシド(Ta(OCJs)s)をブタノ
ールに溶解して、イリジウム/白金/タンタルの組成比
を変化させた金属換算濃度Bog/Qの塗布液を調製し
た。
Examples 1 to 8, Comparative Examples 1 to 6 Predetermined chloroiridic acid (HdrC(Xs' 6H,
0), platinum chloride a(II, PtC(la・6H,O) and tank ethoxide (Ta(OCJs)s) were dissolved in butanol, and the composition ratio of iridium/platinum/tantalum was changed in terms of metal. A coating solution having a concentration of Bog/Q was prepared.

このようにして得られた塗布液を、別にチタン板を熟シ
ュウ醜水溶液でエツチングしたチタン基体上に、刷毛で
塗布し、乾燥したのち、電気炉に入れて空気を吹き込み
ながら500°Cで焼き付けた。
The coating solution obtained in this way is applied with a brush onto a titanium substrate that has been etched with a titanium plate using an aqueous solution. After drying, the coating solution is placed in an electric furnace and baked at 500°C while blowing air. Ta.

この塗布、乾燥、焼き付けの操作を10回繰り返して、
チタン板上に第1表に示した組成の酸化イリジウム−白
金−酸イヒタンタルから成る被覆層が施された電極を製
造した。この際、前記被覆層の組成は蛍光X線分析によ
って測定した。
Repeat this coating, drying, and baking process 10 times.
An electrode was produced in which a coating layer consisting of iridium oxide-platinum-ichtantal oxide having the composition shown in Table 1 was applied on a titanium plate. At this time, the composition of the coating layer was measured by fluorescent X-ray analysis.

次いで、これらの電極を用いて海水電解試験を行い、第
1表に電流密度15A/dm2に・おける陽極電位を対
水素電極基準で示した。これから、本発明の電極を海水
電解に使用した場合、低い陽極電位で電解を行えること
が分る。
Next, a seawater electrolysis test was conducted using these electrodes, and Table 1 shows the anode potential at a current density of 15 A/dm2 on a hydrogen electrode basis. From this, it can be seen that when the electrode of the present invention is used for seawater electrolysis, electrolysis can be performed at a low anode potential.

また、これらの電極を用いて塩素発生効率を測定した。Additionally, chlorine generation efficiency was measured using these electrodes.

すなわち、20℃の1.5ffi量%NaCl2水溶液
150mQを電解液とし、5O5304円板(直径30
闘)を陰極として、密閉した電解槽中で電流密度20A
/dm2、電気filoOクーロンで電解したのち、電
解液をふた付き三角フラスコに取り出し、その次亜塩素
酸濃度をチオ硫酸ナトリウムを用いてヨウ素滴定し、そ
の結果から塩素発生効率(%)を算出し、これを第1表
に示した。
That is, 150 mQ of a 1.5ffi % NaCl2 aqueous solution at 20°C was used as an electrolyte, and a 5O5304 disk (diameter 30
A current density of 20 A is applied in a sealed electrolytic tank using
/dm2, after electrolysis with an electric filoO coulomb, the electrolyte was taken out into an Erlenmeyer flask with a lid, the hypochlorous acid concentration was titrated with iodine using sodium thiosulfate, and the chlorine generation efficiency (%) was calculated from the result. , this is shown in Table 1.

これから、本発明の電極を希薄食塩水の電解に使用した
場合、塩素発生効率が高くなることが分ろ7 第 表 実施例9.lO5比較例7〜9 実施例りと同様にして、第2表に示す各組成の電極の塩
素過電圧(v Cl2z)を測定するとともに、耐食性
試験を行った。
From this, it can be seen that when the electrode of the present invention is used for electrolysis of dilute saline solution, the chlorine generation efficiency is increased.7 Table 1 Example 9. 1O5 Comparative Examples 7 to 9 In the same manner as in Examples, the chlorine overvoltage (v Cl2z) of the electrodes having each composition shown in Table 2 was measured, and a corrosion resistance test was conducted.

塩素過電圧の測定は、30°Cに保った30重量%Na
C(l水溶液(pH=1に調整)中で、各試料を走査速
度240sec/ Vで電位走査法により分極測定を行
い、電流密度2OA/d+n”における値を求めた。
The chlorine overvoltage was measured using 30 wt% Na kept at 30°C.
Polarization was measured for each sample in an aqueous solution of C (adjusted to pH=1) at a scanning speed of 240 sec/V by a potential scanning method, and the value at a current density of 2OA/d+n'' was determined.

また、耐食性試験は、Vallerの方法〔ジャーナル
・エレクトロケミカル・ソサイテイ(J、Electr
ochem。
In addition, the corrosion resistance test was performed using the Valler method [Journal Electrochemical Society (J, Electr.
ochem.

Sac 、)、第117巻、第219ページ、(197
0年)〕に準じた加速試験により行った。この試験方法
は、塩素飽和の0−5M NaCl2. 2 M Na
Cl20tの溶液を65℃、pH3に保ちながら、かつ
ゆるやかにかきまぜながら、100A/dm2の電流密
度で電解することによって行われる。摺電圧が5Vとな
った時点で電解を止め、それまでに要した電解時間を電
極の寿命とみなしてこれを第2表に示した。
Sac,), Volume 117, Page 219, (197
0 year)]. This test method uses chlorine-saturated 0-5M NaCl2. 2M Na
This is carried out by electrolyzing a solution of Cl20t at a current density of 100 A/dm2 while maintaining it at 65° C. and pH 3 and stirring it gently. The electrolysis was stopped when the sliding voltage reached 5 V, and the electrolysis time required up to that point was regarded as the life span of the electrode, which is shown in Table 2.

第2表中、◎は3,000時間以上、Oは1.000〜
3 、000時間以上、△は1,000時間以下を示し
ている。
In Table 2, ◎ means 3,000 hours or more, O means 1.000 hours or more
3,000 hours or more, △ indicates 1,000 hours or less.

種々検討した結果、この加速法は実際に電解槽に組み込
んだ場合の約15〜20倍の加速となっていると推測さ
れる。
As a result of various studies, it is estimated that this acceleration method provides about 15 to 20 times the acceleration when actually incorporated into an electrolytic cell.

第2表から、本発明の電極は塩素過電圧が低く、しかも
長寿命であることが分る。
Table 2 shows that the electrode of the present invention has a low chlorine overvoltage and a long life.

行ったのち、実施例2と同様の方法で塩素発生効率を測
定した。その結果を第3表に示した。
After that, the chlorine generation efficiency was measured in the same manner as in Example 2. The results are shown in Table 3.

これから、本発明の電極は電解による塩素発生効率の経
時変化が小さく、長期間にわたって安定した特性を維持
しうろことが分る。
From this, it can be seen that the electrode of the present invention has a small change in chlorine generation efficiency due to electrolysis over time, and can maintain stable characteristics over a long period of time.

第2表 第    3    表 実施例11〜14、比較例1O〜12 実施例1と同様にして、第3表に示す各組成σ電極を作
製した。これらの電極を60℃、l M H2S。
Table 2 Table 3 Examples 11 to 14, Comparative Examples 1O to 12 In the same manner as in Example 1, σ electrodes having the compositions shown in Table 3 were produced. These electrodes were incubated at 60 °C in 1 M H2S.

Claims (1)

【特許請求の範囲】 1 導電性基体上に、各金属換算で酸化イリジウム40
〜80モル%、白金1〜20モル%及び酸化タンタル5
0〜20モル%から成る被覆層を設けたことを特徴とす
る塩素発生用電極。 2 導電性基体上に、イリジウム化合物と白金化合物と
タンタル化合物とを含有する溶液を塗布したのち、酸化
性雰囲気中で熱処理して金属換算で酸化イリジウム40
〜80モル%、白金1〜20モル%及び酸化タンタル5
0〜20モル%から成る被覆層を形成させることを特徴
とする塩素発生用電極の製造方法。
[Claims] 1 Iridium oxide 40 in terms of each metal on a conductive substrate
~80 mol%, platinum 1-20 mol% and tantalum oxide 5
An electrode for chlorine generation, characterized in that it is provided with a coating layer consisting of 0 to 20 mol%. 2 After applying a solution containing an iridium compound, a platinum compound, and a tantalum compound onto a conductive substrate, heat treatment is performed in an oxidizing atmosphere to obtain iridium oxide 40 in terms of metal.
~80 mol%, platinum 1-20 mol% and tantalum oxide 5
A method for producing an electrode for chlorine generation, comprising forming a coating layer containing 0 to 20 mol%.
JP1083895A 1989-04-04 1989-04-04 Electrode for chlorine generation and method for producing the same Expired - Fee Related JP2836840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083895A JP2836840B2 (en) 1989-04-04 1989-04-04 Electrode for chlorine generation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083895A JP2836840B2 (en) 1989-04-04 1989-04-04 Electrode for chlorine generation and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02263989A true JPH02263989A (en) 1990-10-26
JP2836840B2 JP2836840B2 (en) 1998-12-14

Family

ID=13815369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083895A Expired - Fee Related JP2836840B2 (en) 1989-04-04 1989-04-04 Electrode for chlorine generation and method for producing the same

Country Status (1)

Country Link
JP (1) JP2836840B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154818A (en) * 2003-11-25 2005-06-16 Furuya Kinzoku:Kk Corrosion resistant material, and its production method
WO2012070468A1 (en) * 2010-11-22 2012-05-31 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and seawater electrolysis method
JP2012111990A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Apparatus, system and method for electrolyzing seawater
JP2013142166A (en) * 2012-01-10 2013-07-22 Ishifuku Metal Ind Co Ltd Electrode for producing sterilized water and method for manufacturing the same
JP2013163180A (en) * 2012-01-10 2013-08-22 Ishifuku Metal Ind Co Ltd Apparatus for producing sterilized water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114335B2 (en) * 2015-05-20 2017-04-12 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and seawater electrolysis method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154818A (en) * 2003-11-25 2005-06-16 Furuya Kinzoku:Kk Corrosion resistant material, and its production method
JP4615847B2 (en) * 2003-11-25 2011-01-19 株式会社フルヤ金属 Corrosion resistant material and method for producing the same
WO2012070468A1 (en) * 2010-11-22 2012-05-31 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and seawater electrolysis method
JP2012111990A (en) * 2010-11-22 2012-06-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Apparatus, system and method for electrolyzing seawater
CN103201412A (en) * 2010-11-22 2013-07-10 三菱重工环境·化学工程株式会社 Seawater electrolysis system and seawater electrolysis method
AU2011333018B2 (en) * 2010-11-22 2014-07-03 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Seawater electrolysis system and seawater electrolysis method
AU2011333018C1 (en) * 2010-11-22 2014-09-25 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Seawater electrolysis system and seawater electrolysis method
KR20150116914A (en) * 2010-11-22 2015-10-16 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Seawater electrolysis system and seawater electrolysis method
TWI504784B (en) * 2010-11-22 2015-10-21 Mitsubishi Heavy Ind Environment & Chemical Engineering Co Ltd Seawater electrolysis system and seawater electrolysis method
CN105239090A (en) * 2010-11-22 2016-01-13 三菱重工环境·化学工程株式会社 Seawater electrolysis system and seawater electrolysis method
JP2013142166A (en) * 2012-01-10 2013-07-22 Ishifuku Metal Ind Co Ltd Electrode for producing sterilized water and method for manufacturing the same
JP2013163180A (en) * 2012-01-10 2013-08-22 Ishifuku Metal Ind Co Ltd Apparatus for producing sterilized water

Also Published As

Publication number Publication date
JP2836840B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
CA1198078A (en) Electrodes and their preparation
JPH0225994B2 (en)
US4297195A (en) Electrode for use in electrolysis and process for production thereof
US4005004A (en) Electrode coating consisting of a solid solution of a noble metal oxide, titanium oxide, and zirconium oxide
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
JPH04500097A (en) Improved method for producing quaternary ammonium hydroxide
JPS58502222A (en) electrocatalytic electrode
KR20200131880A (en) Electrode for electrolytic chlorination process
JPS6136075B2 (en)
US3917518A (en) Hypochlorite production
KR20140013326A (en) Metal oxide electrode for water electrolysis and manufacturing method thereof
JPH02263989A (en) Electrode for generating chlorine and production thereof
JPH0633489B2 (en) Electrode for dilute salt water electrolysis
CA2030092C (en) Electrocatalytic coating
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
JPH0238669B2 (en)
JP3724096B2 (en) Oxygen generating electrode and manufacturing method thereof
EP0032819B1 (en) Method of preventing deterioration of palladium oxide anode in a diaphragm type alkali metal chloride electrolytic cell
US5230780A (en) Electrolyzing halogen-containing solution in a membrane cell
JP2528294B2 (en) Electrode for electrolysis and method of manufacturing the same
JP2010209420A (en) Method of manufacturing cathode with low hydrogen overvoltage
JPH0238672B2 (en)
JPH0248634B2 (en)
JPH04350191A (en) Metal electrode for electrochemical application
JPH0238670B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees