JP2013142166A - Electrode for producing sterilized water and method for manufacturing the same - Google Patents

Electrode for producing sterilized water and method for manufacturing the same Download PDF

Info

Publication number
JP2013142166A
JP2013142166A JP2012002341A JP2012002341A JP2013142166A JP 2013142166 A JP2013142166 A JP 2013142166A JP 2012002341 A JP2012002341 A JP 2012002341A JP 2012002341 A JP2012002341 A JP 2012002341A JP 2013142166 A JP2013142166 A JP 2013142166A
Authority
JP
Japan
Prior art keywords
electrode
mol
titanium
oxide
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012002341A
Other languages
Japanese (ja)
Other versions
JP5886052B2 (en
Inventor
Yuji Saeki
祐二 佐伯
Yoichi Kamegaya
洋一 亀ケ谷
Hiroshi Soeda
博史 添田
Shigeki Tsuchiya
茂樹 土屋
Ayumi Umemoto
歩 梅本
Koichiro Matsushita
康一郎 松下
Aki Hamakita
明希 濱北
Shuji Nishiyama
修二 西山
Katsunori Ishii
克典 石井
Koichi Toyoda
弘一 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Ishifuku Metal Industry Co Ltd
Original Assignee
Toto Ltd
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, Ishifuku Metal Industry Co Ltd filed Critical Toto Ltd
Priority to JP2012002341A priority Critical patent/JP5886052B2/en
Publication of JP2013142166A publication Critical patent/JP2013142166A/en
Application granted granted Critical
Publication of JP5886052B2 publication Critical patent/JP5886052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly durable electrode for electrolysis that stably exerts a high chlorine generation efficiency characteristic, even under a condition wherein electrolysis of dilute salt water such as tap water is performed while repeatedly switching polarities of an anode and a cathode with a comparatively high current density, and realizes downsizing of an electrolytic cell.SOLUTION: The electrode for electrolyzing the dilute salt water to produce sterilized water comprises an electrode catalytic layer formed on an electrode substrate composed of titanium or a titanium alloy via an intermediate layer. The electrode catalytic layer comprises a complex comprising 4-11 mol% platinum, 37-60 mol% iridium oxide, 3-11 mol% rhodium oxide and 22-53 mol% tantalum oxide, calculated in terms of metal.

Description

本発明は、水道水のような希薄塩水を直接電解し殺菌能力の高い電解水を生成せしめるのに有用な、比較的高い電流密度で一定時間毎に極性を切替える条件下において、消耗速度が小さく且つ安定性に優れた特性を有する電解用電極及びその製造方法ならびに該電極を用いて、比較的高い電流密度で電解し、殺菌水を生成せしめる方法に関する。   The present invention is useful for generating electrolyzed water having a high sterilizing ability by directly electrolyzing dilute salt water such as tap water. The present invention also relates to an electrode for electrolysis having characteristics excellent in stability, a method for producing the electrode, and a method for producing sterilized water by electrolysis at a relatively high current density using the electrode.

水道水のような希薄塩水を直接電解して、陽極に塩素を発生させ、この塩素と水の反応により生成する次亜塩素酸の殺菌性を利用して、例えば一般家庭の設備に機能を付帯させ、手、加湿用の水、風呂水、温水便座洗浄ノズル等を殺菌することは知られている。このような電解では、通常水道水が使用されるため、水道水中のカルシウムが電解時に陰極側で生成するOHと反応して、陰極表面に水酸化物として付着し、狭い極間を詰まらせてしまうことがある。この付着物を除去するために定期的に極性を切替えて使用すること、例えば、2枚以上の同様の電極を使用し、陽極としての使用と陰極としての使用を繰り返すことが一般的に行われている。 Directly electrolyze dilute salt water such as tap water to generate chlorine at the anode, and use the sterilization property of hypochlorous acid produced by the reaction of this chlorine and water, for example, to add functions to general household facilities. It is known to sterilize hands, humidifying water, bath water, warm water toilet seat washing nozzles and the like. In such electrolytic, because of normal tap water is used, OH calcium in tap water is produced at the cathode side during electrolysis - react with, adhere as hydroxide on the cathode surface, clog the narrow space between the poles May end up. In order to remove this deposit, it is generally used by switching the polarity periodically, for example, using two or more similar electrodes and repeating the use as an anode and the use as a cathode. ing.

水道水のような希薄塩水中で使用される電極としては、チタン及びチタン合金基体上に白金を電気めっきした電極が広く使用されており、この電極は、極性切替え時の安定性が高く、白金の消耗量が少ないが、塩素発生効率が低いため、電解水を殺菌用として使用する場合、所定の有効塩素濃度を得るために、水道水に食塩を添加し、塩素イオン濃度を高くしなければならず、装置の維持費が高くなるという問題がある。   As an electrode used in dilute salt water such as tap water, an electrode obtained by electroplating platinum on a titanium or titanium alloy substrate is widely used. This electrode has high stability at the time of polarity switching, and platinum. However, when using electrolyzed water for sterilization, salt must be added to tap water to increase the chlorine ion concentration in order to obtain the prescribed effective chlorine concentration. However, there is a problem that the maintenance cost of the apparatus becomes high.

また、希薄な食塩水中で安定且つ高い塩素発生効率特性を得るため、導電性基体上に白金、酸化イリジウム、酸化ロジウム及び酸化タンタルの複合体からなる電極触媒層を形成させた電極が提案されている。(特許文献1参照)。この提案の電極は、白金めっき電極やそれまでの酸化イリジウム系電極と比較して、高い塩素発生効率特性を長期間維持することができるという利点があるものの、比較的高い電流密度で陽極と陰極の極性を切替えての使用を繰り返すと、電極の消耗が大きく、電極寿命が短くなってしまい、電解槽の縮小化ができないという問題がある。   In order to obtain stable and high chlorine generation efficiency characteristics in dilute saline solution, an electrode in which an electrode catalyst layer made of a composite of platinum, iridium oxide, rhodium oxide and tantalum oxide is formed on a conductive substrate has been proposed. Yes. (See Patent Document 1). Although this proposed electrode has the advantage of maintaining high chlorine generation efficiency characteristics for a long period of time compared to platinum-plated electrodes and conventional iridium oxide-based electrodes, it has a relatively high current density at the anode and cathode. When the polarity is switched and the use is repeated, there is a problem that the electrode is consumed greatly, the electrode life is shortened, and the electrolytic cell cannot be reduced.

一方、上記したように、一般家庭の設備、例えば、温水便座に殺菌水生成装置を取付けるには、塩を添加することなく、水道水を直接電解することにより所定の殺菌水濃度が得られること及び限られた空間に収めることが不可欠であり、電解槽の小型化が可能で、従来の電流密度(5A/dm以下)に比べて高電流密度化を可能にする高耐久性の電極の開発が強く要望されてきている。 On the other hand, as described above, in order to attach a sterilizing water generator to a general household facility, for example, a warm water toilet seat, a predetermined sterilizing water concentration can be obtained by directly electrolyzing tap water without adding salt. It is indispensable to fit in a limited space, and it is possible to reduce the size of the electrolytic cell, and to provide a highly durable electrode that enables a higher current density than the conventional current density (5 A / dm 2 or less). There is a strong demand for development.

特開2009−052069JP2009-052069A

本発明の目的は、水道水のような希薄塩水を比較的高い電流密度で陽極と陰極の極性切替えを繰返しながら電解を行う条件下でも、安定且つ高い塩素発生効率特性を有し、電解槽を小型化することができる高耐久性の電解用電極及びその製造方法ならびに該電解用電極を用いて、比較的高い電流密度で電解することにより、殺菌水を生成せしめる方法を提供することである。   The object of the present invention is to provide stable and high chlorine generation efficiency characteristics even under conditions in which dilute salt water such as tap water is electrolyzed while repeating polarity switching between the anode and the cathode at a relatively high current density. A highly durable electrode for electrolysis that can be reduced in size, a method for producing the electrode, and a method for producing sterilizing water by electrolysis at a relatively high current density using the electrode for electrolysis.

本発明によれば、上記の目的は、
1.チタン又はチタン合金よりなる電極基体上に中間層を介して電極触媒層を設けてなる、希薄塩水を電解し、殺菌水を生成するための電極であって、該電極触媒層が、金属換算で、白金4〜11モル%、酸化イリジウム37〜60モル%、酸化ロジウム3〜11モル%及び酸化タンタル22〜53モル%の複合体からなることを特徴とする電解用電極
2.チタン又はチタン合金よりなる基体の表面に形成させた水素化チタン層を熱酸化により酸化チタンの中間層に変化させた後、該酸化チタンの中間層上に白金化合物、イリジウム化合物、ロジウム化合物及びタンタル化合物を含有する溶液を塗布した後、酸化性雰囲気中で熱処理して、金属換算で、白金4〜11モル%、酸化イリジウム37〜60モル%、酸化ロジウム3〜11モル%及び酸化タンタル22〜53モル%の複合体からなる電極触媒層を形成することを特徴とする上記1に記載の電解用電極の製造方法
3.チタン又はチタン合金よりなる電極基体上に中間層を介して電極触媒層を設けてなる電極を用いて、希薄塩水を電解し、殺菌水を生成せしめる方法において、電極として上記1に記載の電解用電極を用い、電流密度6〜20A/dmで電解することを特徴とする殺菌水の生成方法
により達成される。
According to the present invention, the above object is
1. An electrode for forming sterilized water by electrolyzing dilute salt water by providing an electrode catalyst layer through an intermediate layer on an electrode substrate made of titanium or a titanium alloy, the electrode catalyst layer being converted into metal 1. An electrode for electrolysis comprising a composite of 4 to 11 mol% of platinum, 37 to 60 mol% of iridium oxide, 3 to 11 mol% of rhodium oxide, and 22 to 53 mol% of tantalum oxide. After a titanium hydride layer formed on the surface of a substrate made of titanium or a titanium alloy is changed into an intermediate layer of titanium oxide by thermal oxidation, a platinum compound, an iridium compound, a rhodium compound and tantalum are formed on the intermediate layer of titanium oxide. After applying the solution containing the compound, heat treatment is performed in an oxidizing atmosphere, and in terms of metal, platinum is 4 to 11 mol%, iridium oxide is 37 to 60 mol%, rhodium oxide is 3 to 11 mol%, and tantalum oxide is 22 to 22%. 2. The method for producing an electrode for electrolysis according to 1 above, wherein an electrode catalyst layer composed of a 53 mol% composite is formed. In the method of electrolyzing dilute salt water to produce sterilizing water using an electrode in which an electrode catalyst layer is provided on an electrode substrate made of titanium or a titanium alloy via an intermediate layer, the electrode for electrolysis as described in 1 above This is achieved by a method for producing sterilizing water, characterized by electrolysis using an electrode and a current density of 6 to 20 A / dm 2 .

本発明の電極は、水道水のような希薄塩水中で、比較的高い電流密度といった限られた電解条件下で、電極触媒層を構成する上記4つの成分の相互作用が高められる範囲を究明し、水道水のような希薄塩水を比較的高い電流密度(6A/dm以上)で陽極と陰極の極性切替えを繰返し行う電解条件下でも、電極触媒層を構成する4つの成分の相互作用により、電極触媒層が脱落することがなく、消耗が少なく電極寿命の著しい延長を図ることができるという優れた効果を奏する。加えて、本発明によれば、電極及び電解槽の小型化を可能にすることができるという優れた効果を奏する。 The electrode of the present invention has investigated the range in which the interaction of the four components constituting the electrode catalyst layer can be enhanced under dilute salt water such as tap water under limited electrolysis conditions such as relatively high current density. Even under electrolytic conditions in which dilute salt water such as tap water is repeatedly switched between the polarity of the anode and the cathode at a relatively high current density (6 A / dm 2 or more), due to the interaction of the four components constituting the electrode catalyst layer, The electrode catalyst layer does not fall off, and there is an excellent effect that consumption can be reduced and the electrode life can be significantly extended. In addition, according to the present invention, there is an excellent effect that the electrodes and the electrolytic cell can be miniaturized.

以下、本発明の電極及びその製造法についてさらに詳細に説明する。   Hereinafter, the electrode of the present invention and the production method thereof will be described in more detail.

本発明に使用される電極基体の材質としては、チタンまたはチタン基合金が挙げられる。チタン合金としては、チタンを主体とする耐食性のある導電性の合金を使用することができる。例えば、Ti−Ta−Nb、Ti−Pd、Ti−Zr、Ti−Al等の組み合わせからなる、通常電極材料として使用されているTi基合金が挙げられる。これらの電極材料は板状、有孔板状、棒状、網板状等の所望形状に加工して電極基材として用いることができる。   Examples of the material of the electrode substrate used in the present invention include titanium or a titanium-based alloy. As the titanium alloy, a conductive alloy having corrosion resistance mainly composed of titanium can be used. For example, a Ti-based alloy that is usually used as an electrode material and includes a combination of Ti—Ta—Nb, Ti—Pd, Ti—Zr, Ti—Al, and the like. These electrode materials can be processed into a desired shape such as a plate shape, a perforated plate shape, a rod shape, or a mesh plate shape and used as an electrode substrate.

上記の如き電極基体には、通常行われているように、予め前処理するのが望ましい。そのような前処理の好適具体例としては以下に述べるものが挙げられる。先ず、前述したチタン又はチタン基合金よりなる電極基体(以下、チタン基体という)表面を、常法に従い、例えば、アルコール等で洗浄し及び/又はアルカリ溶液中での電解により脱脂した後、フッ化水素濃度が1〜20重量%のフッ化水素酸又はフッ化水素酸と硝酸、硫酸等の他の酸との混酸で処理することにより、チタン基体表面の酸化膜を除去するとともにチタン結晶粒界単位の粗面化を行う。該酸処理は、チタン基体の表面状態に応じて常温ないし約40℃の温度において数分間ないし十数分間行うことができる。なお、粗面化を十分行うためにブラスト処理を併用してもよい。   It is desirable to pre-treat the electrode base as described above in advance, as is usually done. Specific examples of such pretreatment include the following. First, the surface of an electrode substrate (hereinafter referred to as a titanium substrate) made of titanium or a titanium-based alloy described above is washed with alcohol or the like and / or degreased by electrolysis in an alkaline solution and then fluorinated. By treating with hydrofluoric acid having a hydrogen concentration of 1 to 20% by weight or mixed acid of hydrofluoric acid and other acids such as nitric acid and sulfuric acid, the oxide film on the surface of the titanium substrate is removed and titanium crystal grain boundaries Roughening the unit. The acid treatment can be performed at a temperature of from room temperature to about 40 ° C. for a few minutes to a dozen minutes depending on the surface condition of the titanium substrate. A blasting process may be used in combination for sufficient roughening.

このように酸処理されたチタン基体表面を熱濃硫酸と接触させて、該チタン結晶粒界内部表面を突起状に細かく粗面化するとともに、該チタン基体表面に水素化チタンの薄い層
を形成せしめる。使用する濃硫酸は一般に40〜80重量%、好ましくは50〜60重量%の濃度を有するものが適しており、濃硫酸には、必要により、処理の安定化を図る目的で、少量の硫酸塩等を添加してもよい。該熱濃硫酸との接触は、通常、チタン基体を濃硫酸の浴中に浸漬することにより行うことができ、その際の浴温は一般に約100〜約150℃、好ましくは約110〜約130℃の範囲内の温度とすることができ、また、浸漬時間は通常約0.5〜約10分間、好ましくは約1分〜約3分間で十分である。この熱濃硫酸処理により、チタン結晶粒界内部表面を突起状に細かく粗面化するとともに、チタン基体の表面にごく薄い水素化チタンの被膜を形成せしめることができる。熱濃硫酸処理されたチタン基体は、硫酸槽から取り出し、好ましくは窒素、アルゴン等の不活性ガス雰囲気中で急冷して、チタン基体の表面温度を約60℃以下に低下させる。この急冷には洗浄も兼ねて大量の冷水を用いるのが適当である。
The surface of the titanium substrate thus treated with acid is brought into contact with hot concentrated sulfuric acid to roughen the inner surface of the titanium crystal grain boundary into fine projections and to form a thin layer of titanium hydride on the surface of the titanium substrate. Let me. Concentrated sulfuric acid to be used generally has a concentration of 40 to 80% by weight, preferably 50 to 60% by weight. Concentrated sulfuric acid contains a small amount of sulfate for the purpose of stabilizing the treatment if necessary. Etc. may be added. The contact with the hot concentrated sulfuric acid can usually be carried out by immersing the titanium substrate in a bath of concentrated sulfuric acid, and the bath temperature is generally about 100 to about 150 ° C., preferably about 110 to about 130. The temperature can be in the range of 0 ° C., and the immersion time is usually about 0.5 to about 10 minutes, preferably about 1 to about 3 minutes. By this hot concentrated sulfuric acid treatment, the inner surface of the titanium crystal grain boundary can be finely roughened like a protrusion, and a very thin titanium hydride film can be formed on the surface of the titanium substrate. The titanium substrate subjected to the hot concentrated sulfuric acid treatment is taken out of the sulfuric acid tank and is preferably quenched in an atmosphere of an inert gas such as nitrogen or argon to lower the surface temperature of the titanium substrate to about 60 ° C. or lower. For this rapid cooling, it is appropriate to use a large amount of cold water also for washing.

以上の如くして前処理されたチタン基体は、大気中で焼成することにより水素化チタンの被膜層を熱分解して、該層中の水素化チタンを実質的にほとんどチタン金属に戻し、さらにチタン基体表面近傍のチタンを低酸化状態の酸化チタンに変えることができる。この焼成は一般に約300〜約600℃、好ましくは約300〜約400℃の温度で約10分〜4時間程度加熱することにより行うことができる。これにより、チタン基体表面にごく薄い導電性の酸化チタン層が形成される。この酸化チタン層の厚さは一般に100〜1、000オングストローム、好ましくは200〜600オングストロームの範囲内にあるものが好適であり、また、酸化チタンの組成はTiOxとしてxが一般に1<x<2、特に1.9<x<2の範囲内にあるのが望ましい。また別法として、前処理を行ったチタン基体は、上記の如き焼成処理を行わずに直接次の工程に付してもよい。この場合には、次工程での熱分解処理時にチタン基体表面の水素化チタンの被膜の層は、チタン金属及び低酸化状態の酸化チタンに変換される。   The titanium substrate pretreated as described above is thermally fired in the atmosphere by firing in the atmosphere, so that the titanium hydride in the layer is substantially returned to titanium metal. Titanium near the surface of the titanium substrate can be changed to titanium oxide in a low oxidation state. This calcination can be generally performed by heating at a temperature of about 300 to about 600 ° C., preferably about 300 to about 400 ° C. for about 10 minutes to 4 hours. Thereby, a very thin conductive titanium oxide layer is formed on the surface of the titanium substrate. The thickness of the titanium oxide layer is generally within the range of 100 to 1,000 angstroms, preferably 200 to 600 angstroms, and the composition of the titanium oxide is such that x is generally 1 <x <2 as TiOx. In particular, it is desirable to be in the range of 1.9 <x <2. Alternatively, the pretreated titanium substrate may be directly subjected to the next step without performing the firing treatment as described above. In this case, the titanium hydride coating layer on the surface of the titanium substrate is converted to titanium metal and titanium oxide in a low oxidation state during the thermal decomposition treatment in the next step.

しかる後、このようにして焼成されたチタン基体上の酸化チタン面を、金属換算で、白金4〜11モル%、酸化イリジウム37〜60モル%、酸化ロジウム3〜11モル%及び酸化タンタル22〜53モル%からなる複合体で被覆する。   Thereafter, the titanium oxide surface on the titanium substrate fired in this manner was converted to metal in terms of 4 to 11 mol%, iridium oxide 37 to 60 mol%, rhodium oxide 3 to 11 mol%, and tantalum oxide 22 to It is coated with a composite consisting of 53 mol%.

該複合体を形成するために使用される白金化合物、イリジウム化合物、ロジウム化合物及びタンタル化合物としては、以下に述べる条件下で分解して、それぞれ、白金、酸化イリジウム、酸化ロジウム及び酸化タンタルに転化しうる化合物が包含され、具体的には、白金化合物としては、例えば、塩化白金酸、塩化白金等が挙げられ、特に塩化白金酸が好適である。また、イリジウム化合物としては、例えば、塩化イリジウム酸、塩化イリジウム、硝酸イリジウム等が挙げられ、特に塩化イリジウム酸が好適である。さらに、ロジウム化合物としては、例えば、塩化ロジウム、硝酸ロジウム等が挙げられ、特に塩化ロジウムが好適である。タンタル化合物としては、例えば、塩化タンタル、タンタルエトキシド等が挙げられ、特にタンタルエトキシドが好適である。   The platinum compound, iridium compound, rhodium compound and tantalum compound used to form the complex are decomposed under the conditions described below and converted to platinum, iridium oxide, rhodium oxide and tantalum oxide, respectively. More specifically, examples of the platinum compound include chloroplatinic acid and platinum chloride, and chloroplatinic acid is particularly preferable. Examples of the iridium compound include iridium chloride, iridium chloride, iridium nitrate, and iridium chloride is particularly preferable. Furthermore, examples of the rhodium compound include rhodium chloride and rhodium nitrate, and rhodium chloride is particularly preferable. Examples of the tantalum compound include tantalum chloride and tantalum ethoxide, and tantalum ethoxide is particularly preferable.

これら白金化合物、イリジウム化合物、ロジウム化合物及びタンタル化合物は溶媒に溶解して、溶液状でチタン基体上の酸化チタン層に塗布することができる。   These platinum compound, iridium compound, rhodium compound and tantalum compound can be dissolved in a solvent and applied in a solution to the titanium oxide layer on the titanium substrate.

これら白金化合物、イリジウム化合物、ロジウム化合物及びタンタル化合物を溶解して溶液を調製するための溶媒としては低級アルコールが好適である。例えば、メタノール、エタノール、プロパノール、ブタノール等又はこれらの混合物が挙げられる。   As a solvent for preparing a solution by dissolving these platinum compound, iridium compound, rhodium compound and tantalum compound, a lower alcohol is suitable. For example, methanol, ethanol, propanol, butanol and the like or a mixture thereof can be mentioned.

低級アルコール溶液中における白金化合物、イリジウム化合物、ロジウム化合物及びタンタル化合物の合計の濃度は、合計金属濃度換算で、一般に20〜200g/L、好ましくは40〜150g/Lの範囲内とすることができる。該金属濃度が20g/Lより低いと、触媒担持効率が悪くなり、また、200g/Lを超えると、触媒活性、担持強度、担
持量の不均一性等の問題が生ずる可能性がある。また、白金化合物、イリジウム化合物、ロジウム化合物及びタンタル化合物の相対的使用割合は、金属換算で、白金化合物は一般に4〜11モル%、好ましくは5〜10モル%、イリジウム化合物は一般に37〜60モル%、好ましくは42〜50モル%、ロジウム化合物は一般に3〜11モル%、好ましくは4〜9モル%、そしてタンタル化合物は一般に22〜53モル%、好ましくは35〜53モル%の範囲内とすることができる。
The total concentration of the platinum compound, iridium compound, rhodium compound and tantalum compound in the lower alcohol solution can be generally in the range of 20 to 200 g / L, preferably 40 to 150 g / L in terms of total metal concentration. . When the metal concentration is lower than 20 g / L, the catalyst supporting efficiency is deteriorated. When the metal concentration exceeds 200 g / L, problems such as catalyst activity, supporting strength, and unevenness of the supporting amount may occur. The relative use ratio of platinum compound, iridium compound, rhodium compound and tantalum compound is, in terms of metal, platinum compound is generally 4 to 11 mol%, preferably 5 to 10 mol%, and iridium compound is generally 37 to 60 mol. %, Preferably 42-50 mol%, rhodium compounds are generally in the range 3-11 mol%, preferably 4-9 mol%, and tantalum compounds are generally in the range 22-53 mol%, preferably 35-53 mol%. can do.

チタン基体上の酸化チタン層に白金化合物、イリジウム化合物、ロジウム化合物及びタンタル化合物を含む溶液が塗布された基体は、必要により、約20〜約150℃の範囲内の温度で乾燥させた後、酸素含有ガス雰囲気中、例えば空気中で焼成される。焼成は、例えば、電気炉、ガス炉、赤外線炉等の適当な加熱炉中で、一般に約450℃〜約600℃、好ましくは約500〜約550℃の範囲内の温度に加熱することによって行うことができる。加熱時間は、焼成すべき基体の大きさに等に応じて、大体5分間〜30分間程度とすることができる。この焼成により、該酸化チタン層の表面に白金−酸化イリジウム−酸化ロジウム−酸化タンタル複合体を形成担持させることができる。1回の担持操作で十分量の白金−酸化イリジウム−酸化ロジウム−酸化タンタル複合体を担持することができない場合には、以上に述べた溶液の塗布−乾燥−焼成の工程を所望の回数繰り返し行うことができる。   A substrate on which a titanium oxide layer on a titanium substrate is coated with a solution containing a platinum compound, an iridium compound, a rhodium compound, and a tantalum compound is optionally dried at a temperature in the range of about 20 to about 150 ° C., and then oxygenated. Baking is performed in a contained gas atmosphere, for example, in air. Firing is performed by heating to a temperature generally in the range of about 450 ° C. to about 600 ° C., preferably about 500 to about 550 ° C. in a suitable heating furnace such as an electric furnace, a gas furnace, an infrared furnace or the like. be able to. The heating time can be about 5 to 30 minutes, depending on the size of the substrate to be fired. By this firing, a platinum-iridium oxide-rhodium oxide-tantalum oxide composite can be formed and supported on the surface of the titanium oxide layer. When a sufficient amount of platinum-iridium oxide-rhodium oxide-tantalum oxide composite cannot be supported by a single loading operation, the above-described solution coating-drying-baking steps are repeated a desired number of times. be able to.

ここで、「白金−酸化イリジウム−酸化ロジウム−酸化タンタル複合体」とは、白金と酸化イリジウムと酸化ロジウムと酸化タンタルの4成分が相互作用を及ぼすように混合又は緊密に接触した状態にある組成物をいう。   Here, the "platinum-iridium oxide-rhodium oxide-tantalum oxide composite" is a composition in which the four components of platinum, iridium oxide, rhodium oxide, and tantalum oxide are mixed or in close contact with each other so as to interact with each other. Say things.

該酸化チタン層上に担持させる白金−酸化イリジウム−酸化ロジウム−酸化タンタル複合体における各成分の割合は、金属換算で、白金4〜11モル%、好ましくは5〜10%、酸化イリジウム37〜60モル%、好ましくは42〜50%、酸化ロジウム3〜11モル%、好ましくは4〜9%及び酸化タンタル22〜53モル%、好ましくは35〜53%の範囲内とすることができる。複合体中の白金の割合が4モル%未満では塩素発生効率の低下が大きくなり、反対に11モル%を超えると触媒の消耗が大きくなり、電極寿命が短くなる。また、酸化イリジウムの割合が37モル%未満では塩素発生効率の低下が大きくなり、反対に60モル%を超えると触媒の消耗が大きくなり、電極寿命が短くなる。更に、酸化ロジウムの割合が3モル%未満では塩素発生効率の低下が大きくなり、他方11モル%を超えると触媒の消耗が大きくなり、電極寿命が短くなる。更にまた、酸化タンタルの割合が22モル%未満では触媒の消耗が大きくなり、電極寿命が短くなり、他方53モル%を超えると塩素発生効率の低下が大きくなる。   The ratio of each component in the platinum-iridium oxide-rhodium oxide-tantalum oxide composite supported on the titanium oxide layer is 4 to 11 mol%, preferably 5 to 10%, and iridium oxide 37 to 60 in terms of metal. It can be in the range of mol%, preferably 42-50%, rhodium oxide 3-11 mol%, preferably 4-9% and tantalum oxide 22-53 mol%, preferably 35-53%. If the proportion of platinum in the composite is less than 4 mol%, the chlorine generation efficiency decreases greatly. On the other hand, if it exceeds 11 mol%, the consumption of the catalyst increases and the electrode life is shortened. On the other hand, when the proportion of iridium oxide is less than 37 mol%, the decrease in chlorine generation efficiency increases. On the other hand, when the proportion of iridium oxide exceeds 60 mol%, the consumption of the catalyst increases and the electrode life is shortened. Furthermore, if the ratio of rhodium oxide is less than 3 mol%, the chlorine generation efficiency is greatly reduced. On the other hand, if it exceeds 11 mol%, the consumption of the catalyst is increased and the electrode life is shortened. Furthermore, when the proportion of tantalum oxide is less than 22 mol%, the exhaustion of the catalyst is increased and the electrode life is shortened. On the other hand, when the proportion exceeds 53 mol%, the chlorine generation efficiency is greatly reduced.

このようにして製造される本発明の電解用電極は、水道水のような希薄塩水を比較的高い電流密度6A/dm以上で陽極と陰極の極性切替えを繰返し行う電解条件下でも、触媒の消耗量が少なく耐久性に優れており、電極及び電解槽の小型化を可能にすることができるという優れた効果を奏する。なお、電流密度を高くしていくと、電極寿命は反比例的に減少するので、実用的な電極寿命を考慮すると、電流密度は6A/dmから20A/dmの範囲内にするのが好ましい。 The electrode for electrolysis of the present invention thus produced can be used even in electrolysis conditions in which dilute salt water such as tap water is repeatedly switched between the polarity of the anode and the cathode at a relatively high current density of 6 A / dm 2 or more. The consumption is small and the durability is excellent, and the electrode and the electrolytic cell can be miniaturized. As the current density is increased, the electrode life decreases in inverse proportion. Therefore, in consideration of the practical electrode life, the current density is preferably in the range of 6 A / dm 2 to 20 A / dm 2. .

JIS1種相当のチタン板素材(t0.5mm×w100mm×l100mm)をアルコール洗浄後、20℃の8重量%フッ化水素酸水溶液中で2分間、そして120℃の60重量%硫酸水溶液中で3分間処理した。次いで、チタン基体を硫酸水溶液から取り出し、冷水を噴霧し急冷した。さらに、20℃の0.3重量%フッ化水素酸水溶液中に2分間浸漬した後水洗した。水洗後、400℃の大気中で1時間加熱処理して、チタン基体表面に薄い酸化チタンの中間層を形成させた。   JIS class 1 titanium plate material (t0.5mm x w100mm x l100mm) is washed with alcohol, then 2 minutes in an 8 wt% hydrofluoric acid aqueous solution at 20 ° C, and 3 minutes in an aqueous 60 wt% sulfuric acid solution at 120 ° C Processed. Next, the titanium substrate was taken out of the sulfuric acid aqueous solution and sprayed with cold water for rapid cooling. Further, it was immersed in a 0.3 wt% hydrofluoric acid aqueous solution at 20 ° C. for 2 minutes and then washed with water. After washing with water, heat treatment was performed in the atmosphere at 400 ° C. for 1 hour to form a thin titanium oxide intermediate layer on the titanium substrate surface.

次いで、ロジウム濃度100g/Lに調整した塩化ロジウムのブタノール溶液とイリジウム濃度200g/Lに調整した塩化イリジウム酸のブタノール溶液とタンタル濃度200g/Lに調整したタンタルエトキシドのブタノール溶液と白金濃度200g/Lに調整した塩化白金酸のブタノール溶液をPt−Ir−Rh−Taの組成比が下記表−1に示すモル%となるようにそれぞれ秤量し、次いでIrの金属換算濃度が50g/Lとなるようにブタノールにて希釈し、表−1に示す実施例1〜5及び比較例1〜3の塗布液を調製した。   Subsequently, a butanol solution of rhodium chloride adjusted to a rhodium concentration of 100 g / L, a butanol solution of iridium chloride adjusted to an iridium concentration of 200 g / L, a butanol solution of tantalum ethoxide adjusted to a tantalum concentration of 200 g / L, and a platinum concentration of 200 g / L The butanol solution of chloroplatinic acid adjusted to L is weighed so that the composition ratio of Pt—Ir—Rh—Ta is the mol% shown in Table 1 below, and then the metal equivalent concentration of Ir is 50 g / L. Thus, it diluted with butanol and prepared the coating liquid of Examples 1-5 and Comparative Examples 1-3 shown in Table-1.

この溶液をピペットで0.27ml秤量し、それを該酸化チタンの中間層に塗布した後、室温で20分間乾燥し、さらに550℃の大気中で10分間焼成した。この塗布−乾燥−焼成工程を6回繰返し、該酸化チタンの中間層上に白金−酸化イリジウム−酸化ロジウム−酸化タンタル複合体が担持された表−1に示す実施例電極1〜5及び比較例電極1〜3を作製した。   0.27 ml of this solution was weighed with a pipette, applied to the titanium oxide intermediate layer, dried at room temperature for 20 minutes, and further baked in air at 550 ° C. for 10 minutes. This coating-drying-firing process was repeated 6 times, and Examples 1 to 5 and Comparative Examples shown in Table 1 in which a platinum-iridium oxide-rhodium oxide-tantalum oxide composite was supported on the titanium oxide intermediate layer. Electrodes 1 to 3 were produced.

このようにして得られた電極を、室温、水道水中にて15A/dmで60秒間電解した後、極性を切替えて−15A/dmで60秒間電解する操作を繰返す電解を100時間行い、極性切替え頻度を多くして被覆物を加速的に消耗させた。電解後の各電極の塩素発生効率を、標準水(Na2+=5.75ppm、Ca2+=10.02ppm、Mg2+=6.08ppm、K=0.98ppm、Cl=17.75ppm、SO 2−=24.5ppm、CO =16.5ppm)150ml中で12クーロン(0.5A,24sec)電解し、ヨウ素法により求めた。電解後の消耗量と塩素発生効率を表−1に示す。 The electrode thus obtained was electrolyzed at 15 A / dm 2 for 60 seconds at room temperature in tap water, and then subjected to electrolysis for 100 hours by switching the polarity and repeating electrolysis for 60 seconds at −15 A / dm 2 , The frequency of polarity switching was increased and the coating was consumed at an accelerated rate. The chlorine generation efficiency of each electrode after electrolysis was measured using standard water (Na 2+ = 5.75 ppm, Ca 2+ = 10.02 ppm, Mg 2+ = 6.08 ppm, K + = 0.98 ppm, Cl = 17.75 ppm, SO 4 2 = 24.5 ppm, CO 3 = 16.5 ppm) 12 coulomb (0.5 A, 24 sec) was electrolyzed in 150 ml, and determined by the iodine method. Table 1 shows the amount of consumption after electrolysis and the chlorine generation efficiency.

Figure 2013142166
Figure 2013142166

表−1に示すとおり、比較例電極の消耗量は、いずれも多く、100時間の電解で48〜68%の電極触媒が消耗してしまっていた。一方、実施例電極の消耗量は、いずれも20%以下と小さく、特に電流密度が高い上記電解条件下での消耗速度が小さく、安定性に優れた特性を有している。   As shown in Table 1, the consumption amount of the comparative example electrode was large, and 48 to 68% of the electrode catalyst was consumed after 100 hours of electrolysis. On the other hand, the consumption amount of each example electrode is as small as 20% or less, the consumption rate is particularly low under the above electrolysis conditions where the current density is high, and it has excellent stability.

また、実施例電極の塩素発生効率は、比較例電極1及び2とほぼ同じで、高い値を有している。   Further, the chlorine generation efficiency of the example electrode is almost the same as that of the comparative example electrodes 1 and 2, and has a high value.

Claims (3)

チタン又はチタン合金よりなる電極基体上に中間層を介して電極触媒層を設けてなる、希薄塩水を電解し、殺菌水を生成するための電極であって、該電極触媒層が、金属換算で、白金4〜11モル%、酸化イリジウム37〜60モル%、酸化ロジウム3〜11モル%及び酸化タンタル22〜53モル%の複合体からなることを特徴とする電解用電極。   An electrode for forming sterilized water by electrolyzing dilute salt water by providing an electrode catalyst layer through an intermediate layer on an electrode substrate made of titanium or a titanium alloy, the electrode catalyst layer being converted into metal An electrode for electrolysis comprising a composite of platinum 4 to 11 mol%, iridium oxide 37 to 60 mol%, rhodium oxide 3 to 11 mol%, and tantalum oxide 22 to 53 mol%. チタン又はチタン合金よりなる基体の表面に形成させた水素化チタン層を熱酸化により酸化チタンの中間層に変化させた後、該酸化チタンの中間層上に白金化合物、イリジウム化合物、ロジウム化合物及びタンタル化合物を含有する溶液を塗布した後、酸化性雰囲気中で熱処理して、金属換算で、白金4〜11モル%、酸化イリジウム37〜60モル%、酸化ロジウム3〜11モル%及び酸化タンタル22〜53モル%の複合体からなる電極触媒層を形成することを特徴とする請求項1に記載の電解用電極の製造方法。   After a titanium hydride layer formed on the surface of a substrate made of titanium or a titanium alloy is changed into an intermediate layer of titanium oxide by thermal oxidation, a platinum compound, an iridium compound, a rhodium compound and tantalum are formed on the intermediate layer of titanium oxide. After applying the solution containing the compound, heat treatment is performed in an oxidizing atmosphere, and in terms of metal, platinum is 4 to 11 mol%, iridium oxide is 37 to 60 mol%, rhodium oxide is 3 to 11 mol%, and tantalum oxide is 22 to 22%. 2. The method for producing an electrode for electrolysis according to claim 1, wherein an electrode catalyst layer made of a 53 mol% composite is formed. チタン又はチタン合金よりなる電極基体上に中間層を介して電極触媒層を設けてなる電極を用いて、希薄塩水を電解し、殺菌水を生成せしめる方法において、電極として請求項1に記載の電解用電極を用い、電流密度6〜20A/dmで電解することを特徴とする殺菌水の生成方法。 2. The method according to claim 1, wherein the electrode comprises an electrode substrate made of titanium or a titanium alloy and an electrode catalyst layer is provided via an intermediate layer to electrolyze dilute salt water to produce sterilizing water. A method for producing sterilizing water, characterized in that electrolysis is carried out at a current density of 6 to 20 A / dm 2 using a working electrode.
JP2012002341A 2012-01-10 2012-01-10 Electrode for producing sterilizing water and method for producing the same Active JP5886052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002341A JP5886052B2 (en) 2012-01-10 2012-01-10 Electrode for producing sterilizing water and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002341A JP5886052B2 (en) 2012-01-10 2012-01-10 Electrode for producing sterilizing water and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013142166A true JP2013142166A (en) 2013-07-22
JP5886052B2 JP5886052B2 (en) 2016-03-16

Family

ID=49038910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002341A Active JP5886052B2 (en) 2012-01-10 2012-01-10 Electrode for producing sterilizing water and method for producing the same

Country Status (1)

Country Link
JP (1) JP5886052B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131792A (en) * 2012-12-07 2014-07-17 Ishifuku Metal Ind Co Ltd Sterilized water generator
WO2018124195A1 (en) * 2016-12-28 2018-07-05 Toto株式会社 Electrolyzed water production device
CN113165915A (en) * 2018-12-27 2021-07-23 科唯怡株式会社 Electrode catalyst layer and sterilization water generation module coated with electrode catalyst
EP4273301A1 (en) 2022-03-31 2023-11-08 Toto Ltd. Hypochlorous acid generating electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263989A (en) * 1989-04-04 1990-10-26 Tdk Corp Electrode for generating chlorine and production thereof
JP2007239040A (en) * 2006-03-09 2007-09-20 Ishifuku Metal Ind Co Ltd Electrode for electrolysis
JP2009052069A (en) * 2007-08-24 2009-03-12 Ishifuku Metal Ind Co Ltd Electrode for electrolysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263989A (en) * 1989-04-04 1990-10-26 Tdk Corp Electrode for generating chlorine and production thereof
JP2007239040A (en) * 2006-03-09 2007-09-20 Ishifuku Metal Ind Co Ltd Electrode for electrolysis
JP2009052069A (en) * 2007-08-24 2009-03-12 Ishifuku Metal Ind Co Ltd Electrode for electrolysis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131792A (en) * 2012-12-07 2014-07-17 Ishifuku Metal Ind Co Ltd Sterilized water generator
WO2018124195A1 (en) * 2016-12-28 2018-07-05 Toto株式会社 Electrolyzed water production device
CN109790635A (en) * 2016-12-28 2019-05-21 Toto株式会社 Electrolytic water generating device
JPWO2018124195A1 (en) * 2016-12-28 2019-10-31 Toto株式会社 Electrolyzed water generator
JP7005517B2 (en) 2016-12-28 2022-01-21 Toto株式会社 Electrolyzed water generator
CN113165915A (en) * 2018-12-27 2021-07-23 科唯怡株式会社 Electrode catalyst layer and sterilization water generation module coated with electrode catalyst
EP4273301A1 (en) 2022-03-31 2023-11-08 Toto Ltd. Hypochlorous acid generating electrode

Also Published As

Publication number Publication date
JP5886052B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP4884333B2 (en) Electrode for electrolysis
CN101525755B (en) Cathode for hydrogen generation
JP4554542B2 (en) Electrode for electrolysis
CN108754533B (en) Preparation method of long-life high-activity doped tin oxide electrode for electrolyzing aquatic ozone
JP5518900B2 (en) Cathode for electrolysis of aqueous solution of water or alkali metal compound, electrolytic cell for electrolysis of alkali metal chloride, and method for producing cathode for electrolysis of aqueous solution of water or alkali metal compound
KR20110094055A (en) Electrode for electrolysis cell
JP2008050675A (en) Electrode for electrolysis
JP5886052B2 (en) Electrode for producing sterilizing water and method for producing the same
JP7097042B2 (en) Electrode for chlorine generation
JPH02200790A (en) Electrode for electrolysis
JP2024010240A (en) Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode
JP6588816B2 (en) Chlorine generating electrode
JP2023095833A (en) Electrode for chlorine generation
JP2022509659A (en) Electrode for electrolysis
JP6817080B2 (en) Electrode for electrolysis
JP7330490B2 (en) Electrodes for ozone generation
JP7396391B2 (en) Hypochlorous acid generation electrode
JP6200882B2 (en) Electrode for producing hydrogen water and production method
RU2425176C2 (en) Method to produce electrode, electrode (versions) and electrolytic cell (versions)
RU2818275C1 (en) Oxygen generation electrode
JP7522928B2 (en) Method for manufacturing electrolysis electrodes
JP2023144335A (en) Electrode for ozone generation
JP2024010642A (en) Electrode for generating chlorine
JP2014505166A (en) Electrode for electrolytic cell
JPH08170187A (en) Seawater electrolyzing lelectrode and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5886052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250