JPH0238670B2 - - Google Patents

Info

Publication number
JPH0238670B2
JPH0238670B2 JP61071049A JP7104986A JPH0238670B2 JP H0238670 B2 JPH0238670 B2 JP H0238670B2 JP 61071049 A JP61071049 A JP 61071049A JP 7104986 A JP7104986 A JP 7104986A JP H0238670 B2 JPH0238670 B2 JP H0238670B2
Authority
JP
Japan
Prior art keywords
oxide
coating
mol
electrode
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61071049A
Other languages
Japanese (ja)
Other versions
JPS62260087A (en
Inventor
Takayuki Shimamune
Yukie Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP61071049A priority Critical patent/JPS62260087A/en
Publication of JPS62260087A publication Critical patent/JPS62260087A/en
Publication of JPH0238670B2 publication Critical patent/JPH0238670B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電解用電極に関し、特にイオン交換
膜法食塩水電解用の陽極に適した電解用電極及び
その製造方法に関する。 〔従来の技術と問題点〕 従来から、チタン(Ti)に代表される弁金属
等を基体とし、ルテニウム(Ru)等の白金族金
属の酸化物を主体とした電極触媒活性被覆を設け
た電解用電極は、基本発明である特公昭48−3954
号として知られて以来、画期的な不溶性金属電極
として種々の電気化学分野で応用され、特に食塩
電解工業における陽極として、それまでの黒鉛電
極にとつて代わり広く実用化されている。そし
て、該電極は電解技術の発展や用途に応じて種々
の応用或いは改良がなされてきている。 特公昭46−21884号の電極は、白金族金属酸化
物等とTi、Ta、Nb等の弁金属酸化物との固溶体
被覆を設けたもので、特に水銀法食塩電解用陽極
として耐久性に優れ、広く実用化されているが、
塩素発生用には好ましくない副反応による酸素発
生量が比較的多い欠点がある。 特公昭50−11330号の電極は、上記の電極の弁
金属酸化物の代わりにスズ(Sn)酸化物等を組
成させた固溶体被覆を設けたもので耐久性は比較
的良いが、RuとSnの組合せでは塩素過電圧を低
くし、同時に酸素発生量を少なくすることは困難
である。 特開昭51−63374号には、白金族金属酸化物に
インジウム(In)酸化物を組成させた被覆層を有
する電極が記載されている。この電極は塩素過電
圧が低く、耐久性を有する安価な陽極を目的とし
たものであるが、白金族金属成分としてロジウム
(Rh)を用い、実質的にRh2O3−In2O3又はこれ
に少量スズ酸化物を加えた被覆電極を提示したも
のである。即ち、被覆酸化物の主体がR2O3
(Rは金属を示す)であり、そのため、基体のTi
との結合性及び被覆の安定性がルチル型(RO2
型)被覆に比べて劣り、電極としての耐久性が不
十分であり、且つ塩素過電圧が比較的高い問題が
ある。 近年、イオン交換膜法電解技術の発展と省エネ
ルギーの要請から、より過電圧が低く耐久性のあ
る電極が望まれているが、これら従来の電極は十
分その要求を満たすものとは言えない。 〔発明の目的〕 本発明は、塩素過電圧が低く、且つ耐久性に優
れた、特にイオン交換膜法電解用に適した電極及
びその製造方法を提供することを目的とするもの
である。 〔問題を解決するための手段及び作用〕 本発明の目的は、下記の本発明によつて達成さ
れる。 即ち、第(1)の発明は、 導電性基体上に、電極触媒活性を有する被覆を
設けた電解用電極において、該被覆が25〜50モル
%のルテニウム酸化物と、合計して75〜30モル%
のインジウム酸化物及びスズ酸化物(但し、イン
ジウムとスズの原子比が90:10〜10:90である)
と、1〜20モル%のチタン酸化物とからなり、実
質的にルチル型複合酸化物であることを特徴とす
る電解用電極である。 第2の発明は、 導電性基体上に、ルテニウム、インジウム、ス
ズ及びチタンの熱分解可能な塩を含む溶液を塗布
し、酸化性雰囲気中で加熱して、該基体上に25〜
50モル%のルテニウム酸化物と、合計して75〜30
モル%のインジウム酸化物及びスズ酸化物(但
し、インジウムとスズの原子比が90:10〜10:90
である)と、1〜20モル%のチタン酸化物とから
なり、実質的にルチル型複合酸化物である電極触
媒活性を有する被覆を形成することを特徴とする
電解用電極の製造方法である。 又、本発明において、上記電極触媒活性を有す
る被覆中にルテニウム酸化物の一部を置換して15
モル%までの白金(Pt)を含有させることが出
来る。 以下、本発明をより詳細に説明する。 本発明における導電性基体は、Ti、Ta(タン
タル)、Nb(ニオブ)、Zr(ジルコニウム)等の耐
食性のある導電性金属又はこれらの基合金が用い
られ、従来から用いられている金属Ti、又はTi
−Ta−Nb、Ti−Pd等のTi基合金が好適である。
その形状は板、有孔板、棒状体、網状体等所望の
ものとすることが出来る。 該導電性基体は、適宜、表面清浄化処理等を行
い、本発明の電極触媒活性を有する被覆が設けら
れる。該被覆は、25〜50モル%のRu酸化物と、
合計して75〜30モル%のIn酸化物及びSn酸化物
と、1〜20モル%のTi酸化物とから基本的にな
る複合酸化物であり、該複合酸化物は実質的にル
チル型(RO2型)結晶構造を主体とするものであ
る。又、該被覆は金属酸化物の混合体、固溶体又
は両者の混合体等のいずれでも良い。 Ptを該被覆中に含有する場合、後記するよう
にPtは主体となるルチル型複合酸化物中に均一
に金属状態で混合又は固溶し、被覆のルチル型基
本構造は変わらない。 本発明で、電極被覆の構造主体をルチル型
(RO2型)としたのは、被覆中にIn酸化物を組成
させる場合、従来の前記特開昭51−63374号にお
けるRh酸化物(Rh2O3)とIn2O3を組み合わせた
R2O3型では、基体との結合性及び被覆の耐消耗
性が不十分であることが分かり、Ru酸化物
(RuO2)と組み合わせてRO2型にすれば、これら
の欠点が解消され優れた電極が得られることを見
出したことによる。そして、Ru−In−Sn−Tiの
組合せにより、それらの複合酸化物は全体として
容易にルチル型構造として被覆することが出来
る。 基体に該複合酸化物を被覆する方法としては、
前記特公昭48−3954号に記載の如き種々の手段が
適用できるが、とりわけ、各被覆成分金属の熱分
解可能な無機又は有機の塩を含む溶液を基体上に
塗布し、酸化性雰囲気中で加熱する、いわゆる熱
分解酸化法が好適である。加熱温度は、通常空気
中で300〜600℃が適当である。 本発明における電極被覆を構成する個々の成分
の作用及び組成範囲について、以下に説明する。 (1) Ru酸化物及びPt RuO2は、主に塩素発生用電極触媒として優
れた機能を有し、低い塩素過電圧をもたらす。
そのため、本発明においては被覆中にRuO2
形で25〜50モル%含有することが好ましい。25
モル%未満では塩素過電圧が上昇する傾向があ
り、又、50モル%を越えると耐久性が悪くなる
と共に酸素発生量が多くなる。又、RuO2の一
部を15モル%までPtで置換することができ、
Ptの添加により塩素過電圧の低下及び酸素発
生量の低下をもたらす効果がある。しかし、15
モル%を越えると電解使用において経時的に塩
素過電圧が上昇する傾向がある。Pt成分は、
通常の熱分解酸化法では酸化物とならず、金属
状態で被覆中に混在される。 (2) Sn酸化物及びIn酸化物 両者とも助触媒的機能を有し、塩素過電圧を
低く維持する作用がある。この効果はInがより
顕著であるが、InのみではIn2O3となり耐久性
を悪化させる。Sn酸化物は、同様塩素過電圧
を低くする働きがあり、更にIn酸化物と共に共
存させてInをInO2のルチル型にし、耐食性を
向上させる作用を有する。 そのため、両者は被覆中に合計して75〜30モ
ル%含有させることが望ましい。又、InとSn
の相互の組成割合は原子比で90:10〜10:90の
範囲で十分効果を達成出来る。 (3) Ti酸化物 TiO2はルチル型酸化物の典型であり、本発
明の電極被覆成分として1〜20モル%組成させ
ることにより、物理的、化学的安定を増す作用
をなし、電極の耐久性を向上させる。 しかし、20モル%を越えると塩素過電圧が高
くなり、実用上好ましくない。 〔実施例〕 以下本発明の実施例を記載するが、これらの実
施例は本発明を限定するものではない。 実施例 1 予めブチルアルコールと塩化第二スズからアル
コキシスズを作製し、そのブチルアルコール溶液
に、塩化ルテニウム及び塩化インジウムを種々の
割合で溶解し、更に約12時間加熱還流し、最後に
ブチルチタネートを種々の割合で添加して種々の
組成の塗布液を作製した。 この塗布液を、予め脱脂し、80℃、25%
H2SO4水溶液中で4時間エツチング処理した純
チタンよりなるエキスパンドメツシユにブラシで
塗布し、150℃で15分間乾燥した後、空気を循環
したマツフル炉中480℃で15分間加熱した。上記
塗布、加熱の工程を8回繰り返して第1表に示す
組成(金属のみを示す)の複合酸化物被覆を有す
る試料電極を作製した。これらの試料について、
X線回折法による被覆層組成物の存在状態の測定
を行い、更に90℃、200g/NaCl溶液中におけ
る塩素過電圧の測定、並びに通常の条件でイオン
交換膜法食塩水電解による被覆層減耗量の測定を
行つた。比較用として従来の、及び本発明の範囲
外の被覆電極試料を作製し、同様の測定を行つ
た。 それらの結果を合わせて第1表に示す。
[Industrial Field of Application] The present invention relates to an electrode for electrolysis, and more particularly to an electrode for electrolysis suitable as an anode for saline electrolysis using an ion exchange membrane method, and a method for manufacturing the same. [Conventional technology and problems] Conventionally, electrolysis has been performed using a valve metal such as titanium (Ti) as a base and an electrocatalytically active coating mainly composed of an oxide of a platinum group metal such as ruthenium (Ru). The electrode for
Since it was first known as a revolutionary insoluble metal electrode, it has been applied in various electrochemical fields, and in particular, it has been widely put into practical use as an anode in the salt electrolysis industry, replacing the conventional graphite electrode. Various applications and improvements have been made to these electrodes in accordance with the development of electrolytic technology and applications. The electrode disclosed in Japanese Patent Publication No. 46-21884 is coated with a solid solution of platinum group metal oxides and valve metal oxides such as Ti, Ta, and Nb, and is particularly durable as an anode for mercury salt electrolysis. , has been widely put into practical use, but
For chlorine generation, there is a disadvantage that a relatively large amount of oxygen is generated due to undesirable side reactions. The electrode of Japanese Patent Publication No. 50-11330 has a solid solution coating made of tin (Sn) oxide instead of the valve metal oxide of the above electrode, and has relatively good durability, but it With this combination, it is difficult to lower the chlorine overvoltage and reduce the amount of oxygen generated at the same time. JP-A No. 51-63374 describes an electrode having a coating layer composed of a platinum group metal oxide and an indium (In) oxide. This electrode was intended to be an inexpensive anode with low chlorine overvoltage and durability, but it uses rhodium (Rh) as the platinum group metal component and is substantially Rh 2 O 3 -In 2 O 3 or this. This paper presents a coated electrode to which a small amount of tin oxide is added. That is, the coating oxide is mainly of the R 2 O 3 type (R represents a metal), and therefore the Ti of the substrate
Rutile type (RO 2
There are problems in that it is inferior to type 2) coatings, has insufficient durability as an electrode, and has a relatively high chlorine overvoltage. In recent years, due to the development of ion-exchange membrane electrolysis technology and the demand for energy conservation, electrodes with lower overvoltage and durability are desired, but these conventional electrodes cannot be said to fully meet these demands. [Object of the Invention] An object of the present invention is to provide an electrode that has a low chlorine overvoltage and excellent durability, and is particularly suitable for ion-exchange membrane electrolysis, and a method for manufacturing the same. [Means and effects for solving the problem] The objects of the present invention are achieved by the present invention described below. That is, the invention (1) provides an electrolytic electrode in which a coating having electrocatalytic activity is provided on a conductive substrate, wherein the coating contains 25 to 50 mol% of ruthenium oxide and a total of 75 to 30 mol% of ruthenium oxide. mole%
indium oxide and tin oxide (however, the atomic ratio of indium and tin is 90:10 to 10:90)
and 1 to 20 mol% of titanium oxide, and is substantially a rutile type composite oxide. The second invention is to apply a solution containing thermally decomposable salts of ruthenium, indium, tin, and titanium onto a conductive substrate, heat it in an oxidizing atmosphere, and apply 25 to
50 mol% ruthenium oxide and a total of 75-30
Mol% of indium oxide and tin oxide (however, the atomic ratio of indium and tin is 90:10 to 10:90)
) and 1 to 20 mol% of titanium oxide, forming a coating having electrocatalytic activity that is substantially a rutile type composite oxide. . In addition, in the present invention, a part of ruthenium oxide is substituted in the coating having electrocatalytic activity.
It can contain up to mol % of platinum (Pt). The present invention will be explained in more detail below. The conductive substrate in the present invention is a corrosion-resistant conductive metal such as Ti, Ta (tantalum), Nb (niobium), Zr (zirconium), or a base alloy thereof, and the conventionally used metal Ti, Or Ti
-Ti-based alloys such as Ta-Nb and Ti-Pd are preferred.
Its shape can be any desired, such as a plate, a perforated plate, a rod-like body, or a net-like body. The conductive substrate is suitably subjected to a surface cleaning treatment, etc., and is provided with a coating having electrocatalytic activity of the present invention. The coating comprises 25 to 50 mol% Ru oxide;
It is a composite oxide that basically consists of a total of 75 to 30 mol% of In oxide and Sn oxide, and 1 to 20 mol% of Ti oxide, and the composite oxide is substantially of rutile type ( RO type 2 ) mainly has a crystal structure. Further, the coating may be a mixture of metal oxides, a solid solution, or a mixture of both metal oxides. When Pt is contained in the coating, as will be described later, Pt is uniformly mixed or dissolved in a metallic state in the main rutile type composite oxide, and the basic rutile structure of the coating remains unchanged. In the present invention, the main structure of the electrode coating is rutile type (RO 2 type).When In oxide is included in the coating, Rh oxide (Rh 2 O 3 ) and In 2 O 3 combined
It was found that the R 2 O 3 type had insufficient bonding properties with the substrate and the abrasion resistance of the coating, and these drawbacks were overcome by combining it with Ru oxide (RuO 2 ) to form the RO 2 type. This is due to the discovery that an excellent electrode can be obtained. By combining Ru-In-Sn-Ti, these composite oxides can be easily coated as a rutile structure as a whole. The method of coating the composite oxide on the substrate is as follows:
Various methods such as those described in the above-mentioned Japanese Patent Publication No. 48-3954 can be applied, but in particular, a solution containing a thermally decomposable inorganic or organic salt of each coating component metal is applied onto the substrate, and the solution is applied in an oxidizing atmosphere. A so-called pyrolytic oxidation method involving heating is preferred. The appropriate heating temperature is usually 300 to 600°C in air. The effects and composition ranges of the individual components constituting the electrode coating in the present invention will be explained below. (1) Ru oxide and Pt RuO 2 have excellent functions mainly as electrocatalysts for chlorine generation, resulting in low chlorine overvoltage.
Therefore, in the present invention, it is preferable that the coating contains 25 to 50 mol% of RuO2 in the form of RuO2 . twenty five
If it is less than mol %, the chlorine overvoltage tends to increase, and if it exceeds 50 mol %, durability deteriorates and the amount of oxygen generated increases. In addition, a portion of RuO 2 can be replaced with Pt up to 15 mol%,
The addition of Pt has the effect of reducing the chlorine overvoltage and the amount of oxygen generated. But 15
If the mol% is exceeded, the chlorine overvoltage tends to increase over time during electrolytic use. The Pt component is
In ordinary thermal decomposition oxidation methods, it does not become an oxide, but is mixed in the coating in a metallic state. (2) Sn oxide and In oxide Both have a promoter function and have the effect of keeping the chlorine overvoltage low. This effect is more pronounced with In, but with In alone, it becomes In 2 O 3 and deteriorates durability. Sn oxide similarly has the function of lowering the chlorine overvoltage, and furthermore has the function of making In the rutile type of InO 2 by coexisting with In oxide and improving corrosion resistance. Therefore, it is desirable that the total content of both is 75 to 30 mol% in the coating. Also, In and Sn
A sufficient effect can be achieved when the mutual composition ratio is in the range of 90:10 to 10:90 in atomic ratio. (3) Ti oxide TiO 2 is a typical rutile-type oxide, and when it is included as an electrode coating component in the present invention in an amount of 1 to 20 mol%, it has the effect of increasing physical and chemical stability and improving the durability of the electrode. Improve your sexuality. However, if it exceeds 20 mol%, the chlorine overvoltage increases, which is not practical. [Examples] Examples of the present invention will be described below, but these Examples do not limit the present invention. Example 1 Alkoxytin was prepared in advance from butyl alcohol and stannic chloride, ruthenium chloride and indium chloride were dissolved in the butyl alcohol solution in various proportions, and the mixture was further heated under reflux for about 12 hours, and finally butyl titanate was dissolved. Coating liquids with various compositions were prepared by adding them in various proportions. This coating solution was degreased in advance and heated to 80°C at 25%
It was applied with a brush to an expanded mesh made of pure titanium that had been etched in an aqueous H 2 SO 4 solution for 4 hours, dried at 150°C for 15 minutes, and then heated at 480°C for 15 minutes in a Matsufuru furnace with air circulation. The above coating and heating steps were repeated eight times to produce sample electrodes having composite oxide coatings having the compositions shown in Table 1 (only metals are shown). For these samples,
The state of existence of the coating layer composition was measured by X-ray diffraction method, and the chlorine overvoltage in 200 g/NaCl solution at 90°C was measured, and the amount of loss of the coating layer was measured by saline electrolysis using ion exchange membrane method under normal conditions. I took measurements. For comparison, conventional coated electrode samples and coated electrode samples outside the scope of the present invention were prepared, and similar measurements were performed. The results are shown in Table 1.

【表】【table】

【表】 第1表において、比較1は特開昭51−63374号
の実施例1に従つた試料でRuの代わりにRhを用
いたものである。又、被覆減耗量の測定は、イオ
ン交換膜に試料電極を密接させ、陽極電解液200
g−NaCl水溶液PH4.5〜5.5、温度約90℃、電流密
度30A/dm2のイオン交換膜法電解条件で行つ
た。 第1表に示す結果から、本発明による電極は塩
素過電圧が低く、且つ極めて安定であることが分
かる。 これに対して比較1のRh−In系のものは、
Rh2O3相を示し、塩素過電圧が高く、又、被覆減
耗量が大きい。又、Snを含まない比較2のRu−
In−Ti系のものは初期過電圧は低いが、時間の
経過と共に上昇し、不安定である。 比較3及び比較4の従来のRu−Sn系及びRu−
Ti系のものは塩素過電圧がやや高く減耗量もや
や大きい。 実施例 2 実施例1と同様の方法で、Ru−Pt−Sn−In−
Ti系の種々の組成の塗布液を作製し、チタン基
材上にスプレーにより塗布し、180℃にて10分間
乾燥後、480℃のマツフル炉中で15分間加熱酸化
した。塗布、加熱の操作を8回繰り返して第2表
に示す被覆組成の試料電極を作製し、実施例1と
同方法で試験した。この試験は、被覆中のSnと
Inの組成割合を一定にし、PtとTiの組成を変え
てその効果を調べたものである。 それらの結果をまとめて第2表に示す。
[Table] In Table 1, Comparison 1 is a sample according to Example 1 of JP-A-51-63374, in which Rh was used instead of Ru. In addition, to measure the amount of coating loss, place the sample electrode in close contact with the ion exchange membrane and apply 200% of the anolyte
The electrolysis was carried out using the ion exchange membrane electrolysis conditions of g-NaCl aqueous solution pH 4.5 to 5.5, temperature approximately 90° C., and current density 30 A/dm 2 . From the results shown in Table 1, it can be seen that the electrode according to the present invention has a low chlorine overvoltage and is extremely stable. On the other hand, the Rh-In type in Comparison 1 is
Shows Rh 2 O 3 phase, high chlorine overvoltage, and large loss of coating. Also, Ru− in Comparison 2 which does not contain Sn
The In-Ti type has a low initial overvoltage, but it increases over time and is unstable. Conventional Ru-Sn system and Ru-
Ti-based products have a slightly higher chlorine overvoltage and a slightly larger amount of depletion. Example 2 Ru-Pt-Sn-In-
Ti-based coating solutions with various compositions were prepared, sprayed onto titanium substrates, dried at 180°C for 10 minutes, and then heated and oxidized in a Matsufuru furnace at 480°C for 15 minutes. The coating and heating operations were repeated eight times to prepare sample electrodes having the coating compositions shown in Table 2, and were tested in the same manner as in Example 1. This test is based on Sn and
The effect was investigated by holding the In composition ratio constant and changing the Pt and Ti compositions. The results are summarized in Table 2.

【表】 第2表に示す結果から、被覆中のTi組成量が
増加すると塩素過電圧が高くなり(比較3)又、
Tiを組成させないと被覆減耗量が大きく(比較
1)耐久性に劣ることが分かる。 一方、Ptを組成させると初期過電圧は極めて
低くなるが、経時的に上昇する傾向があり、15%
を越えると過電圧の上昇が大き過ぎ、(比較3)
使用に適しないことがわかる。 実施例 3 実施例1と同様の方法で種々の塗布液原料を作
製し、Ru−Sn−In−Ti系の各種塗布液を作製し
た。この塗布液を実施例1と同様にチタン基材上
にスプレー法にて塗布し、180℃で15分間乾燥後、
空気を循環した450℃のマツフル炉中で15分間加
熱酸化した。この塗布・加熱の操作を8回繰り返
し、第3表に示す組成の試料電極を作製した。こ
れらの試料は更に、マツフル炉中で約1時間、
480℃で最終加熱を行つた。 得られた各試料電極を実施例1と同方で測定・
試験し、その結果をまとめて第3表に示す。
[Table] From the results shown in Table 2, as the Ti composition amount in the coating increases, the chlorine overvoltage increases (Comparison 3).
It can be seen that if Ti is not included in the composition, the amount of coating loss is large (Comparison 1), and the durability is inferior. On the other hand, when Pt is used as a composition, the initial overvoltage becomes extremely low, but it tends to increase over time, and it increases by 15%.
If it exceeds, the rise in overvoltage will be too large (Comparison 3)
It turns out that it is not suitable for use. Example 3 Various coating liquid raw materials were prepared in the same manner as in Example 1, and various Ru-Sn-In-Ti coating liquids were prepared. This coating solution was applied onto a titanium substrate by a spray method in the same manner as in Example 1, and after drying at 180°C for 15 minutes,
The material was heated and oxidized for 15 minutes in a Matsufuru furnace at 450°C with air circulation. This coating and heating operation was repeated eight times to produce sample electrodes having the compositions shown in Table 3. These samples were further heated in a Matsufuru furnace for about 1 hour.
Final heating was performed at 480°C. Each sample electrode obtained was measured and measured in the same manner as in Example 1.
The results are summarized in Table 3.

【表】 第3表に示した結果から、本発明の被覆組成の
範囲では、塩素過電圧が極めて低く、且つ被覆減
耗量も少ないことが明らかである。これに対し
て、Tiを組成させない場合(比較1)、減耗量が
多くなる。又、Ruが25%未満(比較2)では塩
素過電圧が高く、且つ不安定で、50%を越えると
(比較3)塩素過電圧は低いが減耗量が過大とな
り、いずれも実用に適しないことが分かる。 〔発明の効果〕 本発明は、導電性基体上に、Ru(Pt)−In−Sn
−Ti系の特定組成のルチル型複合酸化物被覆を
設けたので、極めて塩素過電圧が低く、且つ耐ア
ルカリ性及び耐酸性に富む被覆が強固に密着した
耐久性に優れた電解用電解が得られる。そのた
め、特に本発明の電極はイオン交換膜法食塩水電
解用に適し、長期間安定して低電圧操業が可能で
ある。
[Table] From the results shown in Table 3, it is clear that within the coating composition range of the present invention, the chlorine overvoltage is extremely low and the amount of coating loss is also small. On the other hand, when Ti is not included in the composition (Comparison 1), the amount of depletion increases. In addition, when Ru is less than 25% (Comparison 2), the chlorine overvoltage is high and unstable, and when it exceeds 50% (Comparison 3), the chlorine overvoltage is low but the amount of depletion is excessive, and both are not suitable for practical use. I understand. [Effects of the Invention] The present invention provides Ru(Pt)-In-Sn on a conductive substrate.
- Since the Ti-based rutile type composite oxide coating with a specific composition is provided, it is possible to obtain an electrolytic device with excellent durability, in which the chlorine overvoltage is extremely low and the coating, which is highly alkali resistant and acid resistant, is firmly adhered. Therefore, the electrode of the present invention is particularly suitable for ion-exchange membrane method saline electrolysis, and can operate stably at low voltage for a long period of time.

Claims (1)

【特許請求の範囲】 1 導電性基体上に、電極触媒活性を有する被覆
を設けた電解用電極において、該被覆が25〜50モ
ル%のルテニウム酸化物と、合計して75〜30モル
%のインジウム酸化物及びスズ酸化物(但し、イ
ンジウムとスズの原子比が90:10〜10:90であ
る)と、1〜20モル%のチタン酸化物とからな
り、実質的にルチル型複合酸化物であることを特
徴とする電解用電極。 2 ルテニウム酸化物の15モル%までを白金で置
換した特許請求の範囲第1項に記載の電解用電
極。 3 導電性基体上に、ルテニウム、インジウム、
スズ及びチタンの熱分解可能な塩を含む溶液を塗
布し、酸化性雰囲気中で加熱して該基体上に25〜
50モル%のルテニウム酸化物と、合計して75〜30
モル%のインジウム酸化物及びスズ酸化物(但
し、インジウムとスズの原子比が90:10〜10:90
である)と、1〜20モル%のチタン酸化物とから
なり、実質的にルチル型複合酸化物である電極触
媒活性を有する被覆を形成することを特徴とする
電解用電極の製造方法。 4 ルテニウム、インジウム、スズ及びチタンの
熱分解可能な塩を含む溶液に、更に白金の熱分解
可能な塩を加え、ルテニウム酸化物の15モル%ま
でを白金で置換した電極触媒活性を有する被覆を
形成する特許請求の範囲第3項に記載の電解用電
極の製造方法。
[Scope of Claims] 1. An electrolytic electrode comprising a coating having electrocatalytic activity on a conductive substrate, wherein the coating contains 25 to 50 mol% of ruthenium oxide and a total of 75 to 30 mol% of ruthenium oxide. Consisting of indium oxide and tin oxide (however, the atomic ratio of indium and tin is 90:10 to 10:90) and 1 to 20 mol% of titanium oxide, it is essentially a rutile type composite oxide. An electrode for electrolysis characterized by: 2. The electrolysis electrode according to claim 1, wherein up to 15 mol% of the ruthenium oxide is replaced with platinum. 3 Ruthenium, indium,
A solution containing thermally decomposable salts of tin and titanium is applied and heated in an oxidizing atmosphere onto the substrate for 25 to 30 minutes.
50 mol% ruthenium oxide and a total of 75-30
Mol% of indium oxide and tin oxide (however, the atomic ratio of indium and tin is 90:10 to 10:90)
1) and 1 to 20 mol% of titanium oxide, and forms a coating having electrocatalytic activity that is substantially a rutile type composite oxide. 4 A thermally decomposable salt of platinum is further added to a solution containing thermally decomposable salts of ruthenium, indium, tin, and titanium to form a coating with electrocatalytic activity in which up to 15 mol% of the ruthenium oxide is replaced with platinum. A method of manufacturing an electrode for electrolysis according to claim 3.
JP61071049A 1986-03-31 1986-03-31 Electrode for electrolysis and its production Granted JPS62260087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071049A JPS62260087A (en) 1986-03-31 1986-03-31 Electrode for electrolysis and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071049A JPS62260087A (en) 1986-03-31 1986-03-31 Electrode for electrolysis and its production

Publications (2)

Publication Number Publication Date
JPS62260087A JPS62260087A (en) 1987-11-12
JPH0238670B2 true JPH0238670B2 (en) 1990-08-31

Family

ID=13449277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071049A Granted JPS62260087A (en) 1986-03-31 1986-03-31 Electrode for electrolysis and its production

Country Status (1)

Country Link
JP (1) JPS62260087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109194A (en) * 1988-10-19 1990-04-20 Shibaura Eng Works Co Ltd Automatic vending machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012445A1 (en) * 1998-08-31 2000-03-09 Idemitsu Kosan Co., Ltd. Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film
US6120659A (en) * 1998-11-09 2000-09-19 Hee Jung Kim Dimensionally stable electrode for treating hard-resoluble waste water
CN110158087B (en) * 2019-05-16 2020-05-22 西安交通大学 Preparation method of laminated electrolytic oxidation water electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190381A (en) * 1983-03-11 1984-10-29 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Catalyst for coating anode and manufacture
JPS60162787A (en) * 1984-01-31 1985-08-24 Tdk Corp Electrode for electrolysis
JPS6171050A (en) * 1984-09-14 1986-04-11 日本遠赤外線株式会社 Sauna apparatus with water recirculation sterilizing type shower device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190381A (en) * 1983-03-11 1984-10-29 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Catalyst for coating anode and manufacture
JPS60162787A (en) * 1984-01-31 1985-08-24 Tdk Corp Electrode for electrolysis
JPS6171050A (en) * 1984-09-14 1986-04-11 日本遠赤外線株式会社 Sauna apparatus with water recirculation sterilizing type shower device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109194A (en) * 1988-10-19 1990-04-20 Shibaura Eng Works Co Ltd Automatic vending machine

Also Published As

Publication number Publication date
JPS62260087A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
KR890002258B1 (en) Electrode for electrolysis
US4839007A (en) Method for purifying industrial waste water by direct oxidation of the organic pollutants
US4070504A (en) Method of producing a valve metal electrode with valve metal oxide semi-conductor face and methods of manufacture and use
JP3810043B2 (en) Chrome plating electrode
US4297195A (en) Electrode for use in electrolysis and process for production thereof
FI72149C (en) Electrocatalytic electrode.
JPS6136075B2 (en)
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
US4318795A (en) Valve metal electrode with valve metal oxide semi-conductor face and methods of carrying out electrolysis reactions
JP2596807B2 (en) Anode for oxygen generation and its production method
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
US5354444A (en) Electrode for electrolytic processes
FI63604C (en) STABIL ELEKTROD FOER ELEKTROKEMISKA TILLAEMPNINGAR
JPH0238670B2 (en)
JP2596821B2 (en) Anode for oxygen generation
JPH0238671B2 (en)
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
JPS6338592A (en) Electrolytic electrode and its production
US4107025A (en) Stable electrode for electrochemical applications
RU2689985C2 (en) Catalytic coating and method of its production
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
JP2528294B2 (en) Electrode for electrolysis and method of manufacturing the same
JPH0238672B2 (en)
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JPH01312096A (en) Electrode for electrolysis and production thereof