JPH0238669B2 - - Google Patents

Info

Publication number
JPH0238669B2
JPH0238669B2 JP61086665A JP8666586A JPH0238669B2 JP H0238669 B2 JPH0238669 B2 JP H0238669B2 JP 61086665 A JP61086665 A JP 61086665A JP 8666586 A JP8666586 A JP 8666586A JP H0238669 B2 JPH0238669 B2 JP H0238669B2
Authority
JP
Japan
Prior art keywords
coating layer
mol
oxide
chlorine
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61086665A
Other languages
Japanese (ja)
Other versions
JPS62243790A (en
Inventor
Shingo Tokuda
Shigeo Asada
Toshio Muranaga
Masahiko Oosumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP61086665A priority Critical patent/JPS62243790A/en
Publication of JPS62243790A publication Critical patent/JPS62243790A/en
Publication of JPH0238669B2 publication Critical patent/JPH0238669B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は種々の塩化アルカリ電解に使用できる
陽極、特に塩素−アルカリ製造用電解槽、塩素酸
アルカリ製造用電解槽、海水電解槽の陽極として
好ましい電解用陽極に関する。 (従来の技術) 近年イオン交換膜式食塩電解槽が実用化される
につれ、陽イオン交換膜の性能を劣化させない低
塩素過電圧かつ高酸素過電圧を示す電極の出現が
望まれている。特公昭46−21884号明細書にはバ
ルブ金属基体上に酸化ルテニウムと酸化チタンと
の混晶物質を被覆した電極が記載されており、工
業規模の電解槽において広く利用され、寿命は十
分満足すべきものであつた。しかし酸素発生量が
比較的多く塩素ガスの発生効率が低いという問題
点があつた。この酸素発生機構は次式の様な反応
である。 H2O→2H++1/2O2+2e 陽極液は水素イオンのため酸性となる。また官
能基としてカルボン酸基を有する陽イオン交換膜
はこの水素イオンによりR−COOHとなり、弱
解離性のために絶縁体となり、膜抵抗が増大し、
陽イオン交換膜が損傷し、性能が劣化するという
問題があり、特に陽極液のPHが2以下ではこの傾
向が著しかつた。これは混晶物質中に酸化ルテニ
ウムが30モル%以上含まれているためであり、20
モル%程度に減らせば酸素発生量は若干減少させ
ることはできるが塩素過電圧が高くなるという欠
点を有していた。また公知の白金−酸化イリジウ
ム混合物被覆電極や白金−イリジウム合金被覆電
極は塩素過電圧が低く、酸素過電圧が高いので、
塩素発生効率が良好でありイオン交換膜式食塩電
解槽や塩素酸アルカリ製造用電解槽、海水電解槽
に非常に有利であつたが、使用中に被覆の剥離等
が生じやすいという問題点があり、さらに耐久性
のある電極が望まれていた。 本出願人はこれらの問題点を解決するために上
記白金−酸化イリジウム混合物層の上にMnOX
(Xは1.5以上で2.0より小)で表わされる非化学
量論的化合物を含む酸化マンガン2〜50重量%と
ルチル構造を有する酸化チタン50〜98重量%との
混合物である第2被覆層を設けることにより、白
金−酸化イリジウムの触媒活性層が剥離、溶解、
摩耗することを著しく低下できることを見出して
いる(特開昭58−136790号)。 しかしながら、耐久性についてさらに改善され
ることが望ましい。 特に最近のイオン交換膜式食塩電解槽に使用さ
れている陽極は電流密度30A/dm2において約
100mvの塩素過電圧を有しており、さらに低下
させる余地が残つている。特に電力代の高い近年
においては省エネルギー型の電解槽が望まれてお
り、陽極においても塩素過電圧が低く、酸素発生
量の少ない陽極の開発が重要である。 (発明の構成) 本発明は以上の問題点を解決するためのもので
ある。 すなわち本発明は、バルブ金属基体上に(a)白金
20〜80モル%とルチル構造体を有する酸化イリジ
ウム20〜80モル%との混合物よりなる第1被覆
層、(b)ルチル構造を有する、酸化イリジウム3〜
15モル%と酸化ルテニウム5〜25モル%及び酸化
スズ60〜92モル%の混合物よりなる第2被覆層、
上記(a)(b)単位層を複数層設けたことを特徴とする
塩化アルカリ電解用陽極である。 白金−酸化イリジウム混合物の被覆層は塩素過
電圧が低く、電流密度30A/dm2において約40m
vの塩素過電圧を有するに過ぎず、塩素発生に非
常に触媒活性な層である。しかしながら電解中に
発生ガスによる剥離や溶解が生じ易いという欠点
がある。 本発明者らは、この白金−酸化イリジウム被覆
層上に酸化イリジウム−酸化ルテニウム−酸化ス
ズ混合物の第2被覆層を設けることにより白金−
酸化イリジウム層の剥離・溶解・摩耗等の欠点を
著しく改善することが可能であり、且つ塩素過電
圧は上昇せず酸素過電圧の低下も生じないことを
見出したものである。 第2被覆層は塩素発生に触媒活性な第1被覆層
の保護層としての役割を果たしているが、この層
自体塩素発生に対する触媒能を或る程度有してい
る。 例えば酸化イリジウム10モル%、酸化ルテニウ
ム15モル%及び酸化スズ75モル%の混合物よりな
る第2被覆層を有する電極の塩素過電圧を飽和食
塩水(NaCl310g/、PH1.0)中80℃でカレン
トインタプラター法にて測定した結果を第1表に
示した。 また、触媒活性な白金70モル%と酸化イリジウ
ム30モル%の混合物よりなる第1被覆層を有する
電極の塩素過電圧を同条件で測定した結果を第1
表に併せて示した。
(Industrial Application Field) The present invention relates to an anode that can be used in various types of alkali chloride electrolysis, particularly an anode for electrolysis that is preferable as an anode for an electrolytic cell for producing chlorine-alkali, an electrolytic cell for producing alkali chlorate, and a seawater electrolytic cell. (Prior Art) As ion-exchange membrane type salt electrolyzers have come into practical use in recent years, there has been a desire for an electrode that exhibits low chlorine overvoltage and high oxygen overvoltage without deteriorating the performance of cation exchange membranes. Japanese Patent Publication No. 46-21884 describes an electrode in which a metal valve base is coated with a mixed crystal material of ruthenium oxide and titanium oxide, which is widely used in industrial-scale electrolytic cells and has a sufficiently satisfactory lifespan. I was wearing a kimono. However, there was a problem that the amount of oxygen generated was relatively large and the efficiency of generating chlorine gas was low. This oxygen generation mechanism is a reaction as shown in the following equation. H 2 O→2H + +1/2O 2 +2e The anolyte becomes acidic due to hydrogen ions. In addition, the cation exchange membrane that has a carboxylic acid group as a functional group becomes R-COOH due to this hydrogen ion, becomes an insulator due to weak dissociation, and increases membrane resistance.
There is a problem in that the cation exchange membrane is damaged and its performance deteriorates, and this tendency is particularly severe when the pH of the anolyte is 2 or less. This is because the mixed crystal material contains more than 30 mol% of ruthenium oxide, and 20
If the amount is reduced to about mol %, the amount of oxygen generated can be slightly reduced, but this has the drawback of increasing the chlorine overvoltage. In addition, known platinum-iridium oxide mixture coated electrodes and platinum-iridium alloy coated electrodes have low chlorine overvoltage and high oxygen overvoltage.
It has good chlorine generation efficiency and is very advantageous for ion-exchange membrane type salt electrolyzers, electrolyzers for alkali chlorate production, and seawater electrolyzers, but it has the problem that the coating tends to peel off during use. , a more durable electrode was desired. In order to solve these problems, the applicant has developed an MnOX layer on the platinum-iridium oxide mixture layer.
The second coating layer is a mixture of 2 to 50% by weight of manganese oxide containing a non-stoichiometric compound represented by (X is 1.5 or more and less than 2.0) and 50 to 98% by weight of titanium oxide having a rutile structure. By providing this, the platinum-iridium oxide catalytic active layer peels off, dissolves,
It has been found that wear can be significantly reduced (Japanese Patent Application Laid-open No. 136790/1983). However, further improvement in durability is desirable. In particular, the anode used in recent ion-exchange membrane salt electrolyzers has a current density of about 30A/ dm2 .
It has a chlorine overvoltage of 100 mv, and there is room to further reduce it. Especially in recent years, when electricity costs are high, energy-saving electrolytic cells are desired, and it is important to develop anodes that have low chlorine overvoltage and generate less oxygen. (Structure of the Invention) The present invention is intended to solve the above problems. That is, the present invention provides (a) platinum on the valve metal base.
a first coating layer consisting of a mixture of 20 to 80 mol% of iridium oxide and 20 to 80 mol% of iridium oxide having a rutile structure; (b) 3 to 80 mol% of iridium oxide having a rutile structure;
a second coating layer consisting of a mixture of 15 mol%, 5 to 25 mol% of ruthenium oxide, and 60 to 92 mol% of tin oxide;
This is an anode for alkali chloride electrolysis, characterized in that a plurality of the above unit layers (a) and (b) are provided. The coating layer of platinum-iridium oxide mixture has a low chlorine overvoltage, about 40 m at a current density of 30 A/ dm2.
It has a chlorine overpotential of only v and is a very catalytically active layer for chlorine generation. However, it has the disadvantage that it is likely to peel off or dissolve due to gas generated during electrolysis. The present inventors have discovered that by providing a second coating layer of an iridium oxide-ruthenium oxide-tin oxide mixture on this platinum-iridium oxide coating layer, the platinum-iridium oxide
It has been found that the defects such as peeling, dissolution, and abrasion of the iridium oxide layer can be significantly improved, and the chlorine overvoltage does not increase and the oxygen overvoltage does not decrease. The second coating layer serves as a protective layer for the first coating layer, which is catalytically active for chlorine generation, and this layer itself has a certain degree of catalytic ability for chlorine generation. For example, the chlorine overvoltage of an electrode having a second coating layer made of a mixture of 10 mol % iridium oxide, 15 mol % ruthenium oxide, and 75 mol % tin oxide was measured by current interpolation at 80°C in saturated saline (NaCl 310 g/, PH 1.0). The results measured by the Prater method are shown in Table 1. In addition, the chlorine overvoltage of the electrode having the first coating layer made of a mixture of 70 mol% of catalytically active platinum and 30 mol% of iridium oxide was measured under the same conditions.
It is also shown in the table.

【表】 第1表から明らかなように、第1被覆層と第2
被覆層の塩素過電圧は電流密度30A/dm2におい
て100mvの差異がある。 酸素過電圧について、同じ第1又は第2被覆層
を夫々有する電極を2N−H2SO4水溶液中80℃で
カレントインタラプター法にて測定した結果を第
2表に示した。
[Table] As is clear from Table 1, the first coating layer and the second coating layer
The chlorine overvoltage of the coating layer has a difference of 100 mV at a current density of 30 A/dm 2 . Regarding oxygen overvoltage, electrodes having the same first or second coating layer were measured in a 2N-H 2 SO 4 aqueous solution at 80° C. using a current interrupter method, and the results are shown in Table 2.

【表】 この表から第1被覆層と第2被覆層の酸素過電
圧は電流密度30A/dm2において僅か10mvの差
異であり、第2被覆層の方が低いことが分る。 本発明は第1被覆層である接触活性層と第2被
覆層である触媒保護層を単位層として複数層設け
てなる陽極であり、その塩素過電圧は触媒活性層
の示す低い値を示し、その酸素過電圧は触媒活性
層の示す高い値を低下させず、白金−酸化イリジ
ウム層の剥離、溶解を最小限に抑えた耐久性のあ
る陽極を提供するものである。 本発明の陽極は触媒活性層の性能劣化が生じて
も電圧の急激な上昇がなく、高々触媒保護層の示
す電位となるので、その状態になれば電解を停止
して陽極を再コーテイングすればよく、電解槽の
管理が非常に容易になるのも特徴の1つである。 本発明の第1被覆層は白金20〜80モル%と酸化
イリジウム20〜80モル%の組成である。 酸化イリジウムが20モル%未満では電極電位の
安定性が得られず塩素過電圧の経時変動が生じ易
い。 また80モル%を超えると塩素発生効率が低下す
る傾向にある。 本発明の第2被覆層は酸化イリジウム3〜15モ
ル%と酸化ルテニウム5〜25モル%及び酸化スズ
60〜92モル%の組成である。 酸化イリジウムと酸化ルテニウムは上記範囲よ
り小なるときは塩素過電圧が上昇する傾向にあ
り、逆に上記範囲より大なるときは酸素過電圧が
低下するのでいずれも好ましくない。 酸化イリジウムや酸化ルテニウムは単独では酸
素過電圧が低いが、本発明のように両者を混合す
ることにより高い酸素過電圧を示すことが分つ
た。この理由ははつきりしないが、酸化イリジウ
ムと酸化ルテニウムとが混合されると結晶構造に
歪みが生じ電気化学的特性に変化をもたらすもの
と考えられる。 本発明のバルブ金属基体に用いられる金属とし
ては、チタン、タンタル、ジルコニウム、ニオ
ブ、タングステン、モリブデン等の不働態皮膜を
形成する金属及び/又はその合金が挙げられる。
通常は経済性、電気的機械的性質や加工性等の点
からみてチタン及び/又はその合金が好ましく用
いられる。 電極としては、板状、棒状、エキスパンド状、
多孔状等種々の形状が可能である。 本発明の被覆層の形成は次のようにして行われ
る。 (a)の第1被覆層は上記バルブ金属基体の表面を
脱脂後、酸処理、ブラスト処理等の方法でエツチ
ングを行い表面を粗面化させ、白金化合物とイリ
ジウム化合物との混合溶液をハケ塗り、ロール塗
り、スプレー法、浸漬法等の手段で塗布する。 該白金化合物としては塩化白金酸、塩化白金酸
アンモニウム、塩化白金酸カリウム、ジニトロジ
アミノ白金酸等が、該イリジウム化合物としては
三塩化イリジウム、塩化イリジウム酸、塩化イリ
ジウム酸アンモン、塩化イリジウム酸ソーダ等が
挙げられ、該混合溶液の触媒としては、水、エチ
ルアルコール、メチルアルコール、プロピルアル
コール、ブチルアルコール、ラベンダー油、アニ
ス油、リナロエ油、テレビン油、トルエン、メチ
ルエーテル、エチルエーテル等が挙げられる。 これを塗布後、溶媒を蒸発させるために150〜
200℃で数十分間乾燥し、空気又は酸素雰囲気の
電気炉中で300〜800℃にて10〜20分間熱処理を行
う。 熱処理温度が300℃未満では熱分解が完全に起
らず、800℃を超えると金属基体の酸化が進行し
て基体が損傷を受ける。 (b)の第2被覆層は上記第1被覆層の表面に、塩
化第1スズ、硫酸第1スズ、酢酸第1スズ、2−
エチルヘキサンスズの如きスズ化合物、塩化ルテ
ニウム、塩化ルテニウム酸の如きルテニウム化合
物及び塩化イリジウム、塩化イリジウム酸の如き
イリジウム化合物の混合溶液を塗布して乾燥及び
焼成して形成させる。溶媒としては、水、エチル
アルコール、メチルアルコール、プロピルアルコ
ール、ブチルアルコール、メチルエーテル、エチ
ルエーテル等が用いられる。中でもアルコール類
が好ましい。 塗布後150〜200℃にて数十分乾燥して溶媒を蒸
発させ、次いで空気又は酸素雰囲気の電気炉中で
400〜600℃にて熱処理を行うことにより、これら
の化合物の熱分解を行う。 この様にして生成した第1被覆層をなす白金−
酸化イリジウム混合物及び第2被覆層をなす酸化
スズと酸化ルテニウム及び酸化イリジウムは上記
焼成温度では共通のルチル構造を有する結晶を多
く含み、単位格子体積も類似しているのでこれら
異種金属相互間の密着性が高まり二層間の密着力
が高まるものと思われる。 本発明においては上記(a)(b)層を交互に多数回積
層被着させることが必要であり、そのような陽極
を使用することによりその効果は顕著に現われ
る。 通常の使用目的においては(a)(b)各被覆層を夫々
3回以上被着させることが望ましく、その操作は
溶媒量を適当に調節することによつて可能とな
る。 (a)層の白金−酸化イリジウムの合計量は7g/
m2もあれば充分であり高価な白金族金属の使用を
節減することができる。 また(b)層の酸化チタンと酸化ルテニウム及び酸
化イリジウムの合計量は4g/m2以上必要であ
り、それ未満では触媒保護層としての能力が十分
でない。 (発明の効果) この様にして白金−酸化イリジウム被覆層の有
する低い塩素過電圧と高い酸素過電圧を保持しつ
つ且つ高価な白金族金属の電解液中における溶解
剥離現象を抑制しつつ耐久性のある塩化アルカリ
電解用陽極を得ることが可能である。 以下実施例により本発明を更に詳説する。例中
の組成%は特記なき限りモル基準である。 実施例1 比較例1 市販チタン板(1×10×0.1cm)をアセトン脱
脂後10重量%熱蓚酸溶液中でエツチング処理を行
い、その表面に下記組成の溶液を塗布した。 H2PtCl6・6H2O 1.00g H2IrO6・6H2O 0.43〃 テレピン油 2.0ml ラベンダー油 10.0〃 エチルアルコール 20.0〃 濃塩酸 0.5〃 これを120℃で20分間乾燥し、その後500℃の電
気炉内で10分間焼成することによりPt70%と
IrO230%の第1被覆層を形成させた。この表面に
下記組成の溶液を塗布した。 SnCl2 3.70g RuCl3・3H2O 1.00〃 H2IrCl6・6H2O 1.30〃 濃塩酸 1.0ml n−ブチルアルコール 30.0〃 これを120℃で20分間乾燥し、その後480℃の電
気炉内で10分間焼成することによりSnO275%と
RuO215%とIrO210%の第2被覆層を形成させた。 この第1、2被覆層の被着操作を交互に4回ず
つ繰返すことにより、第1被覆層は合計0.46mg/
cm2、第2被覆層は合計0.50mg/cm2となつた。 上記の第1被覆層のみを同様に合計0.46mg/cm2
被覆した電極を比較電極として各塩素過電圧を飽
和食塩水(NaCl310g/、PH1.0)中80℃でカ
レントインタラプター法にて測定した。 その結果両電極とも電流密度30A/dm2にて塩
素過電圧は30mvを示した。 次に1NH2SO4中80℃の酸素過電圧を測定した
ところ、電流密度30A/dm2にて本発明電極は
410mv、比較電極は410mvであり、酸素過電圧
に差はなかつた。 更に、両電極をHClO4(2mol/)とNaCl
(1mol/)との混合液中において50℃、電流密
度200A/dm2にて促進消耗試験を行い、電極表
面が不働態化し急激に電位上昇するまでの時間を
測定した。その結果本発明電極は310時間、比較
電極は56時間で電位上昇が生じ、前者は後者の5
倍以上の耐久性を示し、耐久性に大きな差のある
ことが分つた。 実施例2 比較例2 実施例1における第1被覆層(4回塗布)は同
様にし、第2被覆層(4回塗布0.50mg/cm2)の組
成比を第5表の如く変化させた以外は実施例1と
同様にして電極を作製した。この電極の塩素過電
圧を飽和食塩水(NaCl300g/、PH2.0)中80
℃、電流密度30A/dm2で実施例1と同様に塩素
過電圧を測定した。 また発生する塩素中に含まれる酸素量をガスク
ロマトグラフイーで分析し、第3表の結果を得
た。
[Table] From this table, it can be seen that the oxygen overvoltage between the first coating layer and the second coating layer differs by only 10 mV at a current density of 30 A/dm 2 , and the second coating layer is lower. The present invention is an anode comprising a plurality of unit layers including a contact active layer as a first coating layer and a catalyst protection layer as a second coating layer, and the chlorine overvoltage thereof exhibits a low value as shown by the catalyst active layer. The oxygen overvoltage does not reduce the high value exhibited by the catalytic active layer, and provides a durable anode that minimizes peeling and dissolution of the platinum-iridium oxide layer. In the anode of the present invention, even if the performance of the catalytic active layer deteriorates, the voltage does not rise suddenly, and the potential is at most the same as that of the catalytic protective layer.When this happens, electrolysis can be stopped and the anode can be recoated. One of the features is that the electrolytic cell can be managed very easily. The first coating layer of the present invention has a composition of 20 to 80 mol% platinum and 20 to 80 mol% iridium oxide. If the iridium oxide content is less than 20 mol %, stability of the electrode potential cannot be obtained and the chlorine overvoltage tends to fluctuate over time. Moreover, when it exceeds 80 mol%, the chlorine generation efficiency tends to decrease. The second coating layer of the present invention includes 3 to 15 mol% of iridium oxide, 5 to 25 mol% of ruthenium oxide, and tin oxide.
The composition is 60-92 mol%. When iridium oxide and ruthenium oxide are less than the above range, the chlorine overvoltage tends to increase, and conversely when it is greater than the above range, the oxygen overvoltage decreases, so both are unfavorable. It has been found that iridium oxide and ruthenium oxide have a low oxygen overvoltage when used alone, but when they are mixed as in the present invention, they exhibit a high oxygen overvoltage. The reason for this is not clear, but it is thought that when iridium oxide and ruthenium oxide are mixed, the crystal structure is distorted, resulting in a change in electrochemical properties. Examples of the metal used in the valve metal base of the present invention include metals that form passive films, such as titanium, tantalum, zirconium, niobium, tungsten, and molybdenum, and/or alloys thereof.
Usually, titanium and/or its alloys are preferably used from the viewpoint of economy, electromechanical properties, workability, etc. Electrodes can be plate-shaped, rod-shaped, expanded,
Various shapes such as porous are possible. The coating layer of the present invention is formed as follows. The first coating layer (a) is obtained by degreasing the surface of the valve metal base, roughening the surface by etching it with acid treatment, blasting, etc., and then brushing the surface with a mixed solution of a platinum compound and an iridium compound. , by roll coating, spraying, dipping, or other means. The platinum compounds include chloroplatinic acid, ammonium chloroplatinate, potassium chloroplatinate, dinitrodiaminoplatinic acid, etc., and the iridium compounds include iridium trichloride, chloroiridic acid, ammonium chloroiridate, sodium chloroiridate, etc. Examples of the catalyst for the mixed solution include water, ethyl alcohol, methyl alcohol, propyl alcohol, butyl alcohol, lavender oil, anise oil, linaloe oil, turpentine oil, toluene, methyl ether, and ethyl ether. After applying this, 150 ~
It is dried at 200°C for several minutes, and then heat-treated at 300-800°C for 10-20 minutes in an electric furnace in an air or oxygen atmosphere. If the heat treatment temperature is less than 300°C, thermal decomposition will not occur completely, and if it exceeds 800°C, oxidation of the metal substrate will progress and the substrate will be damaged. The second coating layer (b) is formed by coating stannous chloride, stannous sulfate, stannous acetate, 2-
It is formed by applying a mixed solution of a tin compound such as ethylhexanetin, a ruthenium compound such as ruthenium chloride, ruthenium chloride, and an iridium compound such as iridium chloride or chloroiridic acid, followed by drying and firing. As the solvent, water, ethyl alcohol, methyl alcohol, propyl alcohol, butyl alcohol, methyl ether, ethyl ether, etc. are used. Among these, alcohols are preferred. After coating, dry at 150-200°C for several minutes to evaporate the solvent, then heat in an electric furnace in air or oxygen atmosphere.
These compounds are thermally decomposed by heat treatment at 400 to 600°C. Platinum forming the first coating layer produced in this way.
At the above firing temperature, the tin oxide, ruthenium oxide, and iridium oxide that make up the iridium oxide mixture and the second coating layer contain many crystals that have a common rutile structure and have similar unit cell volumes, so the close contact between these dissimilar metals is reduced. It is thought that this increases the adhesive strength between the two layers. In the present invention, it is necessary to alternately deposit the layers (a) and (b) a number of times, and the use of such an anode brings out its effects significantly. For normal purposes of use, it is desirable to apply each of the coating layers (a) and (b) three or more times, and this operation can be done by appropriately adjusting the amount of solvent. The total amount of platinum-iridium oxide in layer (a) is 7 g/
m 2 is sufficient, and the use of expensive platinum group metals can be saved. Further, the total amount of titanium oxide, ruthenium oxide, and iridium oxide in layer (b) must be 4 g/m 2 or more, and if it is less than that, the ability as a catalyst protective layer is insufficient. (Effects of the Invention) In this way, the platinum-iridium oxide coating layer maintains the low chlorine overvoltage and high oxygen overvoltage, suppresses the dissolution and peeling phenomenon of expensive platinum group metals in electrolytes, and achieves durability. It is possible to obtain an anode for alkali chloride electrolysis. The present invention will be explained in more detail with reference to Examples below. Composition percentages in the examples are on a molar basis unless otherwise specified. Example 1 Comparative Example 1 A commercially available titanium plate (1 x 10 x 0.1 cm) was degreased with acetone, etched in a 10% by weight hot oxalic acid solution, and a solution having the following composition was applied to its surface. H 2 PtCl 6・6H 2 O 1.00g H 2 IrO 6・6H 2 O 0.43〃 Turpentine oil 2.0ml Lavender oil 10.0〃 Ethyl alcohol 20.0〃 Concentrated hydrochloric acid 0.5〃 Dry this at 120℃ for 20 minutes, then dry at 500℃ Pt70% by firing in an electric furnace for 10 minutes
A first coating layer of 30% IrO 2 was formed. A solution having the following composition was applied to this surface. SnCl 2 3.70g RuCl 3・3H 2 O 1.00〃 H 2 IrCl 6・6H 2 O 1.30〃 Concentrated hydrochloric acid 1.0ml n-butyl alcohol 30.0〃 Dry this at 120℃ for 20 minutes, then in an electric furnace at 480℃ 75% SnO2 by baking for 10 minutes
A second coating layer of 15% RuO 2 and 10% IrO 2 was formed. By repeating the deposition operation of the first and second coating layers alternately four times, the total amount of the first coating layer is 0.46mg/
cm 2 , and the second coating layer had a total amount of 0.50 mg/cm 2 . Similarly, the total amount of only the above first coating layer is 0.46 mg/cm 2
Using the coated electrode as a reference electrode, each chlorine overvoltage was measured in saturated saline (NaCl310g/, PH1.0) at 80°C by the current interrupter method. As a result, both electrodes showed a chlorine overvoltage of 30 mV at a current density of 30 A/dm 2 . Next, we measured the oxygen overvoltage at 80°C in 1NH 2 SO 4 and found that the electrode of the present invention at a current density of 30 A/dm 2
The voltage was 410 mV, and the voltage of the reference electrode was 410 mV, and there was no difference in oxygen overvoltage. Furthermore, both electrodes were heated with HClO 4 (2 mol/) and NaCl.
(1 mol/) in a mixed solution at 50° C. and a current density of 200 A/dm 2 , and the time until the electrode surface became passivated and the potential suddenly increased was measured. As a result, the potential of the electrode of the present invention increased after 310 hours, and the potential of the comparison electrode increased after 56 hours.
It was found that there was a large difference in durability, showing more than double the durability. Example 2 Comparative Example 2 The first coating layer (coated 4 times) was the same as in Example 1, except that the composition ratio of the second coating layer (0.50 mg/cm 2 coated 4 times) was changed as shown in Table 5. An electrode was produced in the same manner as in Example 1. The chlorine overvoltage of this electrode was set to 80% in saturated saline (NaCl300g/, PH2.0).
The chlorine overvoltage was measured in the same manner as in Example 1 at a temperature of 30 A/dm 2 at a current density of 30 A/dm 2 . Furthermore, the amount of oxygen contained in the generated chlorine was analyzed by gas chromatography, and the results shown in Table 3 were obtained.

【表】 実施例 3 エキスパンドチタン(10×10×0.12cm、目開き
8.0lw×3.6sw×1.2st、lwは長径mm、swは短径mm、
stは切り幅mm)に、実施例1と同様の方法でPt70
%とIrO230%の第1被覆層及びSnO275%と
IrO210%とRuO215%の第2被覆層を交互に6回
ずつ被覆して第1被覆層は合計0.69mg/cm2、第2
被覆層は合計0.80mg/cm2とした。 この電極を陽イオン交換膜(商品名ナフイオン
901、デユポン社製)を設けた電解槽の陽極とし、
略同面積のニツケル製エキスパンドメタルを陰極
として極間距離3mmとして食塩水の電解を行つ
た。陽極液組成はNaCl280g/、PH3.0、陰極
液組成は32重量%NaOH水溶液である。電解温
度80℃、電流密度30A/dm2にて塩素過電圧を測
定したところ30mvであり、600日間の運転期間
中略一定であつた。 また、この間の塩素ガス中の酸素ガス濃度は約
0.5容量%で運転中略一定であつた。 実施例4 比較例3 市販チタン板(30×25×0.3cm)に実施例1と
同様の方法でPt40%とIrO260%の第1被覆層と
SnO275%とIrO215%とRuO210%の第2被覆層を
交互に6回ずつ被覆して第1被覆層は合計0.69
mg/cm2、第2被覆層は合計0.80mg/cm2とした。こ
の電極を陽極とし、略同面積のステンレス鋼板
(sus304製)を陰極として極間距離3mmで海水電
解を行つた。電流密度15A/dm2にて槽電圧は
3.90vとなり、300日間の運転期間中槽電圧の上昇
は認められなかつた。また塩素発生の効率は85%
であつた。 比較のために、上記第1被覆層のみを6回被覆
して合計0.69mg/cm2とした以外は実施例4と同様
に試験した。初期の槽電圧は3.90vと略一定であ
り、塩素発生効率は85%であつたが、運転開始後
93日目より徐々に槽電圧が上昇し、150日経過後
には4.25vとなつた。また塩素発生効率は76%に
低下していた。
[Table] Example 3 Expanded titanium (10 x 10 x 0.12 cm, opening
8.0lw×3.6sw×1.2st, lw is long axis mm, sw is short axis mm,
st is the cutting width (mm) and Pt70 in the same manner as in Example 1.
% and a first coating layer of 30% IrO 2 and 75% SnO 2
The second coating layer of 10% IrO 2 and 15% RuO 2 was coated alternately six times, and the first coating layer had a total concentration of 0.69 mg/cm 2 , and the second coating layer had a total concentration of 0.69 mg/cm 2 .
The total amount of the coating layer was 0.80 mg/cm 2 . This electrode is connected to a cation exchange membrane (product name: Nafion).
901, manufactured by DuPont) as the anode of an electrolytic cell equipped with
Electrolysis of saline water was carried out using a nickel expanded metal with approximately the same area as the cathode and an interelectrode distance of 3 mm. The composition of the anolyte is NaCl 280g/, pH 3.0, and the composition of the catholyte is 32% by weight NaOH aqueous solution. The chlorine overvoltage was measured at an electrolysis temperature of 80° C. and a current density of 30 A/dm 2 and was found to be 30 mV, which remained approximately constant during the 600 days of operation. Also, during this period, the oxygen gas concentration in chlorine gas is approximately
It remained approximately constant during operation at 0.5% by volume. Example 4 Comparative Example 3 A first coating layer of 40% Pt and 60% IrO 2 was applied to a commercially available titanium plate (30 x 25 x 0.3 cm) in the same manner as in Example 1.
A second coating layer of 75% SnO 2 , 15% IrO 2 and 10% RuO 2 was coated alternately 6 times each to give a total of 0.69% of the first coating layer.
mg/cm 2 , and the total amount of the second coating layer was 0.80 mg/cm 2 . Seawater electrolysis was performed using this electrode as an anode and a stainless steel plate (made of SUS304) of approximately the same area as a cathode with a distance between the electrodes of 3 mm. At a current density of 15A/ dm2 , the cell voltage is
The voltage was 3.90v, and no increase in cell voltage was observed during the 300 days of operation. Also, the efficiency of chlorine generation is 85%
It was hot. For comparison, a test was conducted in the same manner as in Example 4, except that only the first coating layer was coated six times to give a total of 0.69 mg/cm 2 . Initially, the tank voltage was approximately constant at 3.90V, and the chlorine generation efficiency was 85%, but after the start of operation,
The cell voltage gradually increased from day 93 and reached 4.25v after 150 days. In addition, the chlorine generation efficiency had decreased to 76%.

Claims (1)

【特許請求の範囲】 1 バルブ金属基体上に (a) 白金20〜80モル%とルチル構造を有する酸化
イリジウム20〜80モル%との混合物よりなる第
1被覆層、 (b) ルチル構造を有する、酸化イリジウム3〜15
モル%と酸化ルテニウム5〜25モル%及び酸化
スズ60〜92モル%の混合物よりなる第2被覆
層、 上記(a)(b)単位層を複数層設けたことを特徴とす
る塩化アルカリ電解用陽極。
[Scope of Claims] 1. On a valve metal base, (a) a first coating layer consisting of a mixture of 20 to 80 mol% of platinum and 20 to 80 mol% of iridium oxide having a rutile structure; (b) having a rutile structure; , iridium oxide 3-15
a second coating layer made of a mixture of 5 to 25 mol% of ruthenium oxide and 60 to 92 mol% of tin oxide; anode.
JP61086665A 1986-04-15 1986-04-15 Anode for electrolysis Granted JPS62243790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61086665A JPS62243790A (en) 1986-04-15 1986-04-15 Anode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61086665A JPS62243790A (en) 1986-04-15 1986-04-15 Anode for electrolysis

Publications (2)

Publication Number Publication Date
JPS62243790A JPS62243790A (en) 1987-10-24
JPH0238669B2 true JPH0238669B2 (en) 1990-08-31

Family

ID=13893329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086665A Granted JPS62243790A (en) 1986-04-15 1986-04-15 Anode for electrolysis

Country Status (1)

Country Link
JP (1) JPS62243790A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1270649B (en) * 1994-10-11 1997-05-07 Solvay ELECTRODE FOR AN ELECTROCHEMICAL PROCEDURE AND USE OF THE ELECTRODE
US7258778B2 (en) * 2003-03-24 2007-08-21 Eltech Systems Corporation Electrocatalytic coating with lower platinum group metals and electrode made therefrom
JP5582762B2 (en) * 2009-11-09 2014-09-03 デノラ・テック・インコーポレーテッド Electrodes for use in the electrolysis of halogen-containing solutions
EP2390385B1 (en) 2010-05-25 2015-05-06 Permelec Electrode Ltd. Anode for electrolysis and manufacturing method thereof
JP5456744B2 (en) 2010-11-04 2014-04-02 ペルメレック電極株式会社 Electrolytic sampling method
IT1403585B1 (en) * 2010-11-26 2013-10-31 Industrie De Nora Spa ANODE FOR CHLORINE ELECTROLYTIC EVOLUTION
PE20170888A1 (en) * 2014-11-24 2017-07-07 Industrie De Nora Spa ANODE FOR ELECTROLYTIC DETACHMENT OF CHLORINE
CN104562078B (en) * 2014-12-24 2017-05-10 蓝星(北京)化工机械有限公司 Electrode for electrolysis, preparation method of electrode and electrolytic bath
IT201800010760A1 (en) 2018-12-03 2020-06-03 Industrie De Nora Spa ELECTRODE FOR THE ELECTROLYTIC EVOLUTION OF GAS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328262A (en) * 1976-08-30 1978-03-16 Nippon Electric Co Method of examining capacitor
JPS59190381A (en) * 1983-03-11 1984-10-29 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Catalyst for coating anode and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328262A (en) * 1976-08-30 1978-03-16 Nippon Electric Co Method of examining capacitor
JPS59190381A (en) * 1983-03-11 1984-10-29 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Catalyst for coating anode and manufacture

Also Published As

Publication number Publication date
JPS62243790A (en) 1987-10-24

Similar Documents

Publication Publication Date Title
US5334293A (en) Electrode comprising a coated valve metal substrate
EP2098616B1 (en) Cathode for hydrogen generation
EP0129374B1 (en) Cathode for use in electrolytic cell
FI57132B (en) ELEKTROLD AVSEDD FOER ANVAENDNING VID ELEKTROKEMISKA PROCESSER
JP2006515389A5 (en)
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
CA2519522A1 (en) Electrocatalytic coating with platinum group metals and electrode made therefrom
KR100735588B1 (en) Cathode for electrolysing aqueous solutions
US4336282A (en) Process for production of electrode for use in electrolysis
FI72149C (en) Electrocatalytic electrode.
KR870001769B1 (en) Electrodes and method for its manufacture
JPH0238669B2 (en)
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
JPH02247392A (en) Anode with dimensional stability and its use for producing bichromate and chromic acid of alkalic metal
US4572770A (en) Preparation and use of electrodes in the electrolysis of alkali halides
JPS6134519B2 (en)
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
JP5317012B2 (en) Manufacturing method of low hydrogen overvoltage cathode
JPH0238668B2 (en)
JP2596821B2 (en) Anode for oxygen generation
JPS6152385A (en) Electrode for electrolyzing diluted aqueous sodium chloride solution
NO861978L (en) CATALYTIC COMPOSITION MATERIALS, SPECIFICALLY FOR ELECTROLYSE ELECTRODES, AND MANUFACTURING METHOD.
EP0032819B1 (en) Method of preventing deterioration of palladium oxide anode in a diaphragm type alkali metal chloride electrolytic cell
US3956083A (en) Electrochemical anode and process using the anode
JPH02282490A (en) Oxygen generating anode and production thereof