JPH02263064A - Device for refrigeration cycle - Google Patents

Device for refrigeration cycle

Info

Publication number
JPH02263064A
JPH02263064A JP8350289A JP8350289A JPH02263064A JP H02263064 A JPH02263064 A JP H02263064A JP 8350289 A JP8350289 A JP 8350289A JP 8350289 A JP8350289 A JP 8350289A JP H02263064 A JPH02263064 A JP H02263064A
Authority
JP
Japan
Prior art keywords
refrigerant
adsorbent
flow path
refrigeration cycle
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8350289A
Other languages
Japanese (ja)
Inventor
Takeshi Sakai
猛 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8350289A priority Critical patent/JPH02263064A/en
Priority to US07/451,305 priority patent/US4972676A/en
Priority to FR8917126A priority patent/FR2641065A1/fr
Publication of JPH02263064A publication Critical patent/JPH02263064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To efficiently separate a specific refrigerant so as to improve the efficiency of the operation and achieve the operation at high temperatures by providing a first part of line wherein a specific refrigerant is adsorbed, a second part of line whereby refrigerant is returned to a refrigeration cycle line, a third part of line whereby the refrigerant is released from the adsorption, a directional control valve for shifting between the first and the third parts of line, and a means for storing the refrigerant released from the adsorption. CONSTITUTION:From a mixture of refrigerants in a gasified highly pressurized state fed in a flow to a gas feed inlet 12 of an adsorption tower 11, R-114 is preferentially adsorbed by activated alumina 15; the refrigerant consisting mainly of R-22, which passes through the activated alumina 15 without being adsorbed, is piped back by return pipes 22 to the low temperature side in a refrigeration-cycle line 1. After continuation of this adsorption process for a certain period of time, a command from a control unit 31 causes a directional control valve 16 to shift to the connection between the adsorption tower 11 and a storage tank 20. Then the activated alumina 15 is depressurized and the refrigerant consisting mainly of R-114, which has been under adsorption, is released from the activated alumina 15 and stored in a storage tank 20.

Description

【発明の詳細な説明】 [発明の[1的] (産業上の利用分野) この発明は、高沸点冷媒と低、A11:点冷媒とを混合
した非共沸混合冷媒を封入した冷凍サイクル装置に係り
、特に冷凍サイクル回路内を循環する混合冷媒の組成を
可変するための冷媒分離系の改りに関する。
Detailed Description of the Invention [Object 1] (Industrial Application Field) This invention provides a refrigeration cycle device in which a non-azeotropic mixed refrigerant, which is a mixture of a high boiling point refrigerant and a low, A11: point refrigerant, is enclosed. In particular, the present invention relates to a modification of a refrigerant separation system for varying the composition of a mixed refrigerant circulating within a refrigeration cycle.

(従来の技術) 空気調和機では、ヒートポンプサイクルで得られる熱を
用いて、暖房に加え、給湯なども行なえるようにしたも
のが提案されている。
(Prior Art) Air conditioners have been proposed that use heat obtained from a heat pump cycle to provide hot water in addition to space heating.

ところで、従来より、空気調和機に使用されている冷凍
サイクル装置には、単一成分の冷媒、例えばR−22で
代表されるフロンガスが利用されている。ところが、単
一成分の冷媒では性能的に不十分である。特に暖房時に
はその運転に適すな効率重視の高効率運転し、給湯など
高温が必要な場合には高温度が重視の高温運転のできる
ものが望まれている。
Incidentally, refrigeration cycle devices used in air conditioners have conventionally utilized a single-component refrigerant, for example, a fluorocarbon gas represented by R-22. However, single-component refrigerants are insufficient in terms of performance. In particular, there is a need for a system that can operate at high efficiency, emphasizing efficiency suitable for heating, and that can operate at a high temperature, emphasizing high temperature, when high temperatures are required, such as when heating hot water.

そこで、近年、沸点が異なる複数種の冷媒を混合した混
合冷媒を冷凍サイクル回路に封入しておき、この冷凍サ
イクル内を循環する混合冷媒の組成を運転目的に応じて
可変できるようにした冷凍サイクル装置が開発されつつ
ある。
Therefore, in recent years, refrigeration cycles have been developed in which a mixed refrigerant made by mixing multiple types of refrigerants with different boiling points is sealed in the refrigeration cycle circuit, and the composition of the mixed refrigerant circulating within the refrigeration cycle can be varied according to the operational purpose. Devices are being developed.

これには、混合冷媒の組成を可変するために、混合冷媒
中から、ある冷媒種を分離することが必要となる。
This requires separating a certain type of refrigerant from the mixed refrigerant in order to vary the composition of the mixed refrigerant.

そこで、冷凍サイクル装置では冷媒分離系として、従来
、加熱源で混合冷媒を熱して出来た各種冷媒の蒸気を冷
やし、再び液体にして冷媒を分ける、蒸溜を用いた方法
が代表的なものとして検討されている。
Therefore, as a refrigerant separation system for refrigeration cycle equipment, we are currently considering a typical method that uses distillation, in which the vapor of various refrigerants produced by heating a mixed refrigerant with a heating source is cooled and then liquefied again to separate the refrigerants. has been done.

(発明が解決しようとする課題) ところが、蒸溜を用いた方法によると、高効率(能率)
、高温といった運転を行なう組成に操作するには、有る
程度量」二の塔高をもつ蒸溜塔が必要である。このため
、高効率(能力)、高温運転を行なうためには、冷凍サ
イクル装置を大、形にせざるを得ない難点がある。しか
も、冷凍サイクル回路から加熱用配管を設置したり、ヒ
ーターなどを新たに設置したりして、加熱源を専用に設
置しなければならない。加えて、そうした加熱源に供給
するエネルギーも必要で、構造的にも簡単ではなかった
(Problem to be solved by the invention) However, according to the method using distillation, high efficiency (efficiency)
In order to operate on compositions that operate at high temperatures, a distillation column with a certain amount of height is required. Therefore, in order to achieve high efficiency (capacity) and high-temperature operation, the refrigeration cycle device must be made larger and smaller. Moreover, a dedicated heating source must be installed by installing heating piping from the refrigeration cycle circuit or installing a new heater. In addition, energy was required to supply such a heating source, and the structure was not simple.

この発明はこのようなりI情に着目してなされたもので
、その目的とするところは、装置の小形化。
This invention was made in view of this situation, and its purpose is to miniaturize the device.

効率に優れた特定冷媒の分離で、高効率運転あるいは高
温運転を行なうことができる冷凍サイクル上記[1的を
達成するために請求項1に記載の発明の冷凍サイクル装
置は、混合冷媒のうち特定種の冷媒を吸着する吸着体と
、冷凍ザイクル回路の高圧側に接続され該高圧側の混合
冷媒を前記吸着体に導き特定種の冷媒を吸着させる第1
の流路と、前記吸着体に接続され吸着せずに通過する冷
媒を冷凍サイクル回路に戻す第2の流路と、前記吸蒋体
に接続され該吸着体を減圧させ吸着体から冷媒を脱着さ
せる第3の流路と、前記第1の流路と前記第3の流路を
交互に切換える切換弁と、前記第3の流路に接続され前
記脱着された冷媒を貯蔵する貯蔵手段とを設けて、冷媒
分離系を構成゛する。
A refrigeration cycle device capable of performing high-efficiency operation or high-temperature operation by separating a specific refrigerant with excellent efficiency. an adsorbent that adsorbs a specific type of refrigerant; and a first adsorbent that is connected to the high pressure side of the refrigeration cycle circuit and that guides the mixed refrigerant on the high pressure side to the adsorbent and adsorbs a specific type of refrigerant.
a second flow path that is connected to the adsorbent and returns the refrigerant that passes through without being adsorbed to the refrigeration cycle circuit; and a second flow path that is connected to the suction body and depressurizes the adsorbent and desorbs the refrigerant from the adsorbent. a switching valve that alternately switches between the first flow path and the third flow path; and a storage means connected to the third flow path and storing the desorbed refrigerant. A refrigerant separation system is constructed by providing a refrigerant separation system.

同じく請求項2に記載の発明の冷凍サイクル装置は、混
合冷媒のうち高沸点種の冷媒を吸着する吸着体と、この
吸着体の下方に設けた該吸着体から精製ガスを流出する
精製ガス出口と、冷凍サイクル回路の気液分離器に接続
され冷媒を前記吸着体に導き高沸点種の冷媒を吸着させ
る第1の流路と、前記吸着体に接続され吸着せずに通過
する冷媒を冷凍サイクル回路に戻す第2の流路と、前記
吸着体の精製ガス出口に接続され該吸着体を減圧させ吸
着体から高沸点種の冷媒を脱着させる第3の流路と、前
記第1の流路と前記第3の流路を交互に切換える切換弁
と、前記吸着体より下側に位置して設置され前記第3の
流路を流出してくる高沸点種の冷媒を貯蔵する貯蔵手段
とを設けて、冷媒分離系を構成する。
The refrigeration cycle device according to the invention according to claim 2 also includes an adsorbent that adsorbs a high-boiling refrigerant among mixed refrigerants, and a purified gas outlet provided below the adsorbent through which purified gas flows out from the adsorbent. a first flow path connected to the gas-liquid separator of the refrigeration cycle circuit to guide the refrigerant to the adsorbent and adsorb high-boiling point refrigerant; a second flow path that returns to the cycle circuit; a third flow path that is connected to the purified gas outlet of the adsorbent and depressurizes the adsorbent and desorbs high-boiling refrigerant from the adsorbent; a switching valve that alternately switches between the flow path and the third flow path; and a storage means that is installed below the adsorbent and stores the high boiling point refrigerant that flows out of the third flow path. is provided to constitute a refrigerant separation system.

同じく請求項3に記載の発明の冷凍サイクル装置は、混
合冷媒のうち高沸点種の冷媒を吸着する吸着体と、冷凍
サイクル回路の気液分離器の液出口に接続され液相冷媒
を前記吸着体に導き高沸点種の冷媒を吸着させる第1の
流路と、前記吸着体に接続され吸着せずに通過する冷媒
を冷凍サイクル回路に戻す第2の流路と、前記吸着体に
接続され該吸着体を減圧させ吸着体から高沸点種の冷媒
を脱着させる第3の流路と、前記第1の流路と前記第3
の流路を交互に切換える切換弁と、前記第3の流路に放
熱部を設けかつ前記第1の流路に前記放熱部とつながる
受熱部を設けてなり前記第1の流1路を流れる冷媒に気
化熱を供給する熱交換手段と、前記第3の流路に接続さ
れ前記脱着された高沸点種の冷媒を貯蔵する貯蔵手段と
を設けて、冷媒分離系を構成する。
The refrigeration cycle device according to the invention according to claim 3 also includes an adsorbent that adsorbs a high boiling point refrigerant among the mixed refrigerant, and an adsorbent that is connected to a liquid outlet of a gas-liquid separator of a refrigeration cycle circuit and absorbs the liquid phase refrigerant. a first channel for adsorbing high-boiling point refrigerant into the body; a second channel connected to the adsorbent and returning the refrigerant passing through without being adsorbed to the refrigeration cycle circuit; a third channel for depressurizing the adsorbent and desorbing a high boiling point refrigerant from the adsorbent;
a switching valve that alternately switches the flow path, a heat radiation part is provided in the third flow path, and a heat receiving part connected to the heat radiation part is provided in the first flow path, and the first flow flows through one path. A refrigerant separation system is configured by providing a heat exchange means for supplying heat of vaporization to the refrigerant, and a storage means connected to the third flow path and storing the desorbed high-boiling refrigerant.

(作 用) 請求項1に記載の冷凍サイクル装置によると、交互に切
換わる切換弁にて、混合冷媒のうちの特定種の冷媒は、
吸着体に吸着し、さらに吸着体から脱着されて貯蔵手段
に貯蔵されていく。また吸着体に吸着されずに通過する
冷媒は、冷凍サイクルに戻っていく。これにより、大形
になる蒸溜搭。
(Function) According to the refrigeration cycle device according to claim 1, the switching valve that switches alternately selects a specific type of refrigerant from the mixed refrigerant.
It is adsorbed to the adsorbent, and further desorbed from the adsorbent and stored in a storage means. Moreover, the refrigerant that passes through without being adsorbed by the adsorbent returns to the refrigeration cycle. This makes the distillation tower larger.

余分なエネルギーが必要となる問題をもたらす加熱源な
どを必要とせずに、高効率運転、高温運転の組成変化に
必要な冷媒の分離を行なうことができる。
It is possible to separate the refrigerant required for compositional changes in high-efficiency operation and high-temperature operation without the need for a heating source, which poses the problem of requiring extra energy.

請求項2に記載の冷凍サイクル装置によると、交互に切
換わる切換弁にて、混合冷媒のうちの高沸点冷媒が主の
冷媒は、吸着体に吸着し、さらに吸着体から脱着されて
貯蔵手段に貯蔵されていく。
According to the refrigeration cycle device according to the second aspect, the refrigerant, which is mainly a high boiling point refrigerant in the mixed refrigerant, is adsorbed on the adsorbent by the switching valve which is switched alternately, and is further desorbed from the adsorbent and stored in the storage means. It will be stored in

また吸着体に吸着されずに通過する低沸点冷媒が主の冷
媒は、冷凍サイクルに戻っていく。これにより、請求項
1と同様、大形になる蒸溜搭、余分なエネルギーが必要
となる問題をもたらす加熱源などを必要とせずに、高効
率運転、高温運転の組成変化に必、要な冷媒の分離を行
なうことができる。
Moreover, the refrigerant, mainly low boiling point refrigerant, which passes through without being adsorbed by the adsorbent, returns to the refrigeration cycle. As a result, similar to claim 1, it is possible to use the refrigerant necessary for high-efficiency operation and compositional changes in high-temperature operation without requiring a large-sized distillation tower or a heating source that requires extra energy. can be separated.

しかも、分離工程の際、高沸点冷媒は濃度の上昇から部
分的に液化し、これが途中で滞って貯蔵手段へ流出しな
いおそれがあるが、吸着体の精製ガス出口は下部に有り
、さらに吸着体の下方に貯蔵手段が有るので(いずれも
重力方向に沿って有る)、たとえ高沸点冷媒が液化して
も、途中で滞ることなしに冷媒を貯蔵手段に回収するこ
とかできる。
Moreover, during the separation process, the high boiling point refrigerant partially liquefies due to the increase in concentration, and there is a risk that this will stagnate during the separation process and not flow out to the storage means. Since the storage means is located below the refrigerant (both along the direction of gravity), even if the high boiling point refrigerant liquefies, the refrigerant can be recovered to the storage means without being stagnated on the way.

請求項3に記載の冷凍サイクル装置によると、交互に切
換わる切換弁にて、混合冷媒のうちの高沸点冷媒が主の
冷媒は、吸着体に吸着し、さらに吸着体から脱着されて
貯蔵手段に液化貯蔵されていく。また吸着体に吸着され
ずに通過する低沸点冷媒が主の冷媒は、冷凍サイクルに
戻っていく。
According to the refrigeration cycle device according to the third aspect, the refrigerant, which is mainly a high boiling point refrigerant in the mixed refrigerant, is adsorbed on the adsorbent by the switching valve which is switched alternately, and is further desorbed from the adsorbent and stored in the storage means. It is liquefied and stored. Moreover, the refrigerant, mainly low boiling point refrigerant, which passes through without being adsorbed by the adsorbent, returns to the refrigeration cycle.

そして、高沸点冷媒が液化貯蔵される際に発生する熱が
放熱部を介して受熱部へ供給され、これで気液分離器か
ら流出する冷媒の気化させていく。
Heat generated when the high-boiling refrigerant is liquefied and stored is supplied to the heat receiving part via the heat radiating part, thereby vaporizing the refrigerant flowing out from the gas-liquid separator.

これにより、請求項1と同様、大形になる蒸溜搭。As a result, the distillation tower becomes large in size as in claim 1.

余分なエネルギーが必要となる問題をもたらす加熱源な
どを必要とせずに、高効率運転、高温運転の組成変化に
必要な冷媒の分離を行なうことができる。しかも、液化
貯蔵の際に発生する高沸点冷媒からの熱が、そのまま気
液分離器がら出る冷媒をガス化させるための熱として供
給されるので、熱損失を抑制しっつ成否圧力を高めるこ
とができ、効率良く分離効率を高めることができる。
It is possible to separate the refrigerant required for compositional changes in high-efficiency operation and high-temperature operation without the need for a heating source, which poses the problem of requiring extra energy. Moreover, the heat from the high-boiling refrigerant generated during liquefaction storage is directly supplied as heat to gasify the refrigerant coming out of the gas-liquid separator, suppressing heat loss while increasing success/failure pressure. It is possible to efficiently increase the separation efficiency.

(実施例) 以下、この発明を第1図ないし第3図に示す第1の実施
例にもとづいて説明する。第1図は例えば空気調和機に
用いられるヒートポンプ式の冷凍サイクル装置を示し、
1は冷凍サイクル回路である。冷凍サイクル回路1は、
例えば密閉形圧縮機2に、冷暖房切換用の四方弁3.室
内側熱交換器4(凝縮器に相当)、膨張弁5(減圧装置
に相当)、気液分離器6.膨張弁7(減圧装置に相当)
、室外側熱交換器8(蒸発器に相当)を順次、冷媒配管
9を介して接続して構成される。また冷凍サイクル回路
1内には、混合冷媒、例えば「R22(53mo1%)
」(分子径が小さく沸点が低い冷媒)とrR−114(
47mo1%)」(分子径か大きく沸点が高い冷媒)と
を混合した冷媒が封入されている。
(Embodiment) The present invention will be described below based on a first embodiment shown in FIGS. 1 to 3. Figure 1 shows a heat pump type refrigeration cycle device used for example in an air conditioner.
1 is a refrigeration cycle circuit. The refrigeration cycle circuit 1 is
For example, a hermetic compressor 2 has a four-way valve 3 for switching between air conditioning and heating. Indoor heat exchanger 4 (corresponding to a condenser), expansion valve 5 (corresponding to a pressure reducing device), gas-liquid separator 6. Expansion valve 7 (equivalent to pressure reducing device)
, an outdoor heat exchanger 8 (corresponding to an evaporator) are successively connected via refrigerant piping 9. In addition, the refrigeration cycle circuit 1 contains a mixed refrigerant, for example, "R22 (53 mo1%)".
” (refrigerant with small molecular diameter and low boiling point) and rR-114 (
47mo1%) (a refrigerant with a large molecular diameter and a high boiling point) is sealed.

一方、11は冷媒分離系を構成する吸着塔(吸着体に相
当)である。吸着塔11は、最下部に供給ガス人口12
を兼ねる精製ガス出口13か設けられ、最上部に排気ガ
ス出口14が設けられている。また吸着塔11内には、
混合冷媒のうちのrR−114Jを優先的に吸着する吸
着剤として、[R−114Jに対する平衡吸着特性が大
きい、例えば主細孔径が100人の活性アルミナ15が
充填されている。なお、第2図にrR−22Jと対比し
た平衡吸着特性を示す。
On the other hand, 11 is an adsorption tower (corresponding to an adsorbent) constituting a refrigerant separation system. The adsorption tower 11 has a supply gas population 12 at the bottom.
A purified gas outlet 13 is also provided, and an exhaust gas outlet 14 is provided at the top. In addition, inside the adsorption tower 11,
As an adsorbent that preferentially adsorbs rR-114J of the mixed refrigerant, activated alumina 15, which has a large equilibrium adsorption property for R-114J, for example, has a main pore diameter of 100, is filled. Incidentally, FIG. 2 shows the equilibrium adsorption characteristics in comparison with rR-22J.

また吸着塔11の精製ガス出口13には、三方弁で構成
された供給・貯留切換用の切換弁16が接続されている
。そして、この三方弁16の一方の口部は、」二記気液
分離器6の液出口6aに接続された混合冷媒供給管17
(第1の流路に相当)に接続されている。なお、18は
混合冷媒供給管17に介装された例えば減圧弁で構成さ
れた供給量調整弁である。また三方弁16のもう一方の
口部には、精製冷媒貯留管19(第3の流路に相当)を
介して、吸着塔11の下側(重力方向)に配置された貯
留タンク20(貯蔵手段に相当)が接続されている。こ
れにより、切換弁16を[気液分離器60吸着塔11」
側に切換えることにより、吸着塔11に冷凍ザイクル回
路1の高圧側の冷媒を導いてrR−114Jを活性アル
ミナ15に吸着させ、また切換弁16を「吸着塔110
貯留タンク20」側に切換えることにより、活性アルミ
す15に吸iRしたrR−11,4Jを減圧から脱着し
て、貯留タンク20に流入できるようにしている。
Further, the purified gas outlet 13 of the adsorption tower 11 is connected to a switching valve 16 configured as a three-way valve for switching between supply and storage. One mouth of the three-way valve 16 is connected to a mixed refrigerant supply pipe 17 connected to the liquid outlet 6a of the second gas-liquid separator 6.
(corresponding to the first flow path). Note that the reference numeral 18 denotes a supply amount adjusting valve, which is interposed in the mixed refrigerant supply pipe 17 and is constituted by, for example, a pressure reducing valve. The other mouth of the three-way valve 16 is connected to a storage tank 20 (storage tank 20) disposed below (in the gravity direction) the adsorption tower 11 via a purified refrigerant storage pipe 19 (corresponding to the third flow path). (equivalent to means) are connected. As a result, the switching valve 16 is
By switching the refrigerant on the high pressure side of the refrigeration cycle circuit 1 to the adsorption tower 11, rR-114J is adsorbed onto the activated alumina 15, and the switching valve 16 is switched to the "adsorption tower 110" side.
By switching to the "storage tank 20" side, rR-11,4J absorbed into the activated aluminum column 15 is desorbed from the reduced pressure and is made to flow into the storage tank 20.

また混合冷媒供給管]7と精製冷媒供給管]9との中途
部には、気化・凝縮促進用の熱交換器21(熱交換手段
に相当)が設けられている。熱交換器21は、精製冷媒
貯留管19に熱交換部で構成される放熱部21aを設け
る。また混合冷媒供給管17に前記放熱部21aとつな
がる該放熱部21aと同様な構成の受熱部21bを設け
て構成され、rR−114Jが貯留される工程の際に生
じる熱を気液分離器6から出る液相冷媒を気化させる熱
として供給すると同時に、吸着塔11から脱着されたr
R−114Jを冷却して凝縮を促進するようにしている
(液化回収)。
Further, a heat exchanger 21 (corresponding to heat exchange means) for promoting vaporization and condensation is provided in the middle of the mixed refrigerant supply pipe]7 and the purified refrigerant supply pipe]9. The heat exchanger 21 includes a heat dissipation section 21a configured as a heat exchange section in the purified refrigerant storage pipe 19. Further, the mixed refrigerant supply pipe 17 is provided with a heat receiving part 21b having a similar configuration to the heat radiating part 21a and connected to the heat radiating part 21a, and the heat generated during the process of storing rR-114J is transferred to the gas-liquid separator 6. At the same time, the r
R-114J is cooled to promote condensation (liquefaction recovery).

また」二記吸着塔11の排気ガス出口14には、戻り用
の流通管22(第2の流路に相当)が接続されている。
Further, a return flow pipe 22 (corresponding to a second flow path) is connected to the exhaust gas outlet 14 of the adsorption tower 11.

この流通管22のもう一方の端部は、」二記冷凍サイク
ル回路1の低圧側となる、例えば膨張弁7と室外側熱交
換器8との間の冷媒配管部分に接続されている。そして
、この流通管22には、吸着塔11側から順にパージ用
のタンク23゜電磁開閉弁24.戻り量を調整する抵抗
となる例えば減圧弁で構成された戻り用の流量調整弁2
5が順に設けられている。なお、タンク23には例えば
吸着塔11の約215の容積をもつタンクが用いられる
。また流m調整弁25の下流側の流通管部分には、貯留
タンク20に接続された、管路中に逆1に弁26を設け
てなるタンク内ガス成分戻し用のガス成分戻し管27が
接続されている。このガス成分戻し管27によって、貯
留タンク20内の気相冷媒を冷凍サイクル回路1に戻し
て、貯留タンク20内の「R−114Jの純度を高める
ようにしている。さらに流量調整弁25の下流側の流通
管部分には、貯留タンク20に接続された、管路中に電
磁開閉弁28を設けた液相冷媒流出管29が接続されて
いて、貯留タンク20に貯留されたrR−114Jを冷
凍サイクル回路1に戻すことができるようになっている
。なお、30は流通管22の最下流側に設けた冷凍サイ
クル戻り用の電磁開閉弁である。
The other end of the flow pipe 22 is connected to a refrigerant piping section on the low-pressure side of the refrigeration cycle circuit 1, for example, between the expansion valve 7 and the outdoor heat exchanger 8. This flow pipe 22 includes, in order from the adsorption tower 11 side, a purge tank 23, an electromagnetic on-off valve 24, and a purge tank 23. Return flow rate adjustment valve 2, which is configured with a pressure reducing valve, for example, and serves as a resistance to adjust the return amount.
5 are provided in order. Note that the tank 23 is, for example, a tank having a capacity of about 215 that of the adsorption tower 11. Further, in the flow pipe portion downstream of the flow m adjustment valve 25, there is a gas component return pipe 27 connected to the storage tank 20 for returning gas components in the tank, which is provided with a valve 26 in the reverse direction in the pipe line. It is connected. This gas component return pipe 27 returns the gas phase refrigerant in the storage tank 20 to the refrigeration cycle circuit 1 to increase the purity of the R-114J in the storage tank 20. A liquid-phase refrigerant outflow pipe 29 connected to the storage tank 20 and equipped with an electromagnetic shut-off valve 28 in the pipe is connected to the side distribution pipe, and the rR-114J stored in the storage tank 20 is It can be returned to the refrigeration cycle circuit 1. Note that 30 is an electromagnetic on-off valve for returning to the refrigeration cycle, which is provided at the most downstream side of the flow pipe 22.

他方、31は制御部(マイクロコンピュータおよびその
周辺回路からなる)である。この制御部31の入力部に
は操作部32が接続されている。
On the other hand, 31 is a control section (consisting of a microcomputer and its peripheral circuits). An operating section 32 is connected to an input section of this control section 31 .

また制御部31の出力部は、切換弁16および電磁開閉
弁24に接続されていて、操作部32から組成1J変の
操作信号が入ると、第3図に示されるように切換弁]6
を一定時間毎(1:1の割)にyIl圧側(供給側;気
液分A111器6側)と減圧側(貯留側;貯留タンク2
0側)とを交互に切替えると同時に、その切換動に連動
して電磁開閉弁24を昇圧時に「開」に、減圧時に「閉
」になるようにしている。そして、この弁制御にて、」
−記特定種の冷媒の吸着と脱着を交互に繰返す冷媒分離
工程を形成するようにしている。むろん、制御部31の
制御により、この分離」1程中、供給量調整弁18およ
び電磁開閉弁30は「開」側に作動するようになってい
る。
Further, the output section of the control section 31 is connected to the switching valve 16 and the electromagnetic on-off valve 24, and when an operation signal for changing the composition 1J is input from the operation section 32, the switching valve]6 is connected as shown in FIG.
at fixed time intervals (1:1 ratio) on the yIl pressure side (supply side; gas-liquid A111 vessel 6 side) and the reduced pressure side (storage side; storage tank 2).
0 side), and at the same time, in conjunction with the switching, the electromagnetic on-off valve 24 is opened when the pressure is increased and closed when the pressure is decreased. And with this valve control,
- A refrigerant separation process is formed in which adsorption and desorption of the specific type of refrigerant are alternately repeated. Of course, under the control of the control section 31, the supply amount adjustment valve 18 and the electromagnetic on-off valve 30 are operated to the "open" side during this "separation" step 1.

なお、制御部31には、密閉形圧縮機2.四方弁3.電
磁開閉弁28などの機器も接続されていて、各機器を操
作部32から入力される設定情報にしたがって制御する
ようにしている。
Note that the control unit 31 includes a hermetic compressor 2. Four-way valve 3. Devices such as an electromagnetic on-off valve 28 are also connected, and each device is controlled according to setting information input from the operating section 32.

但し、第1図中の矢印Aは重力(上下)方向を示してい
る。
However, arrow A in FIG. 1 indicates the direction of gravity (up and down).

しかして、こうした空気調和機において、操作部32を
操作して高温暖房運転(rR−114Jの濃度が高い運
転)を行なうときは、操作部32から入力された設定情
報にしたがって供給量調整弁18および電磁開閉弁30
が「閉」ならびに四方弁3が暖房側に切替ってい・く。
Therefore, in such an air conditioner, when operating the operation section 32 to perform high temperature heating operation (operation with a high concentration of rR-114J), the supply amount adjustment valve 18 is operated according to the setting information input from the operation section 32. and electromagnetic on-off valve 30
is "closed" and the four-way valve 3 is switched to the heating side.

そして、それと共に密閉形圧縮機2が運転を始めていく
。これにより、密閉形圧縮機2から吐出した冷媒が、室
内側熱交換器4.膨張弁5.気液分離器6.膨張弁7、
室外側熱交換器8を順に循環していく。つまり、暖房サ
イクルが構成され、rR−114Jの濃度か高い組成の
冷媒を用いた高温運転が行なわれていく。
At the same time, the hermetic compressor 2 starts operating. As a result, the refrigerant discharged from the hermetic compressor 2 is transferred to the indoor heat exchanger 4. Expansion valve 5. Gas-liquid separator6. expansion valve 7,
It circulates through the outdoor heat exchanger 8 in order. In other words, a heating cycle is configured, and high-temperature operation is performed using a refrigerant with a high concentration or composition of rR-114J.

そして、この温度を重視した運転から、効率を重点にお
いた運転に換えるべく、操作部32を操作すると、制御
部31の指令により、供給量調整弁18および電磁開閉
弁30が「開」になる。そして、それと共に切換弁16
および電磁開閉弁24が、第3図のタイミングチャート
に示されるように一定時間毎に交互に切替わり、冷凍サ
イクル回路1゛内の混合冷媒からrR−114Jを分離
していく。
Then, when the operating unit 32 is operated in order to change from an operation that emphasizes temperature to an operation that emphasizes efficiency, the supply amount adjustment valve 18 and the electromagnetic on-off valve 30 are opened in response to a command from the control unit 31. . At the same time, the switching valve 16
The electromagnetic on-off valve 24 is alternately switched at regular intervals as shown in the timing chart of FIG. 3, separating rR-114J from the mixed refrigerant in the refrigeration cycle circuit 1'.

すなわち、分離工程について説明すれば、切換弁16が
「気液分離器6と吸着塔11とを連通ずる側」に切換わ
ると、上記気液分離器6の内部で分離されている、「R
−22」の濃度が高< rR−14」の濃度が低い気相
、「R−22Jの濃度が低く rR,−114Jの濃度
が高い液相うち、液相が混合冷媒供給管17に流出・さ
れてくる。ついで、この低沸点成分が濃縮された冷媒は
混合冷媒供給管17を通過する際、さらには受熱部21
bを通過する際に、外部の熱、後述のrR−1,14J
が貯蔵されるときに生じる熱と熱交換して気化していく
。これにより、冷媒はガス化され、かなり圧力が上昇し
ていく。そして、このガス化した高圧が冷媒が吸着塔1
1の供給ガス人口12(精製ガス出口13と同じ)に供
給されていく。これにより、混合冷媒のうちのrR−1
14Jが優先的に活性アルミナ15に順次吸着されてい
く。また吸着せずに活性アルミナ15中を通過する「R
22」が主な冷媒は、戻り用の流通管22を通って冷凍
サイクル回路1の低圧側に戻っていく。
That is, to explain the separation process, when the switching valve 16 is switched to "the side that communicates the gas-liquid separator 6 and the adsorption tower 11", the "R" separated inside the gas-liquid separator 6 is
The liquid phase flows into the mixed refrigerant supply pipe 17. Then, when this refrigerant with concentrated low boiling point components passes through the mixed refrigerant supply pipe 17, it further passes through the heat receiving section 21.
When passing through b, external heat, rR-1, 14J described below
It evaporates by exchanging heat with the heat generated when it is stored. As a result, the refrigerant is gasified and the pressure increases considerably. Then, this gasified high pressure refrigerant is transferred to the adsorption tower 1.
1 is supplied to the supply gas population 12 (same as the purified gas outlet 13). As a result, rR-1 of the mixed refrigerant
14J is preferentially adsorbed onto activated alumina 15 one after another. In addition, "R" passes through activated alumina 15 without being adsorbed.
The refrigerant, which is mainly ``22'', returns to the low pressure side of the refrigeration cycle circuit 1 through the return flow pipe 22.

そして、こうした吸着工程が一定の時間経過すると、制
御部31の指令により、今度は切換弁16が「吸着塔1
1と貯留タンク20とを連通ずる側」に切換わる。する
と、活性アルミナ15が減圧され、先の吸着工程で吸着
したrR−114Jが主な冷媒は活性アルミナ15から
脱着されていく。
When this adsorption step has passed for a certain period of time, the control unit 31 commands the switching valve 16 to switch to "adsorption tower 1".
1 and the storage tank 20. Then, the activated alumina 15 is depressurized, and the refrigerant, mainly rR-114J, adsorbed in the previous adsorption step is desorbed from the activated alumina 15.

ここで、この脱着の際、上記吸着工程時にタンク23内
に蓄えられた冷媒([R−22J濃度が高)の圧力が吸
着塔11に逆流して、吸着塔11内の分圧を高めるので
、活性アルミナ15は高い再生効率で、初期状態にまで
再生されていく。これにより、吸着材の物理・化学的吸
着力に依存する割合の高い吸着分離が行なわれていく。
During this desorption, the pressure of the refrigerant ([R-22J concentration is high) stored in the tank 23 during the adsorption step flows back into the adsorption tower 11, increasing the partial pressure inside the adsorption tower 11. , the activated alumina 15 is regenerated to its initial state with high regeneration efficiency. As a result, adsorption separation that is highly dependent on the physical and chemical adsorption power of the adsorbent is performed.

そして、この脱着された冷媒は精製冷媒貯留管17およ
び放熱部21aを通過する際に、外気との熱交換および
放熱部21aから冷却され、液化されていく。そして、
この液化した冷媒が貯留タンク20内に貯留され、rR
−1,14jが主成分の冷媒が冷凍サイクル回路1の混
合冷媒から分離されていく。実験によれば、貯留タンク
20にはr 47 mo1%」からr 98 mo1%
」に精製された[R−114Jが貯留されるものであっ
た。
Then, when this desorbed refrigerant passes through the purified refrigerant storage pipe 17 and the heat radiation part 21a, it exchanges heat with the outside air and is cooled from the heat radiation part 21a, and is liquefied. and,
This liquefied refrigerant is stored in the storage tank 20, and rR
The refrigerant whose main components are -1 and 14j is separated from the mixed refrigerant of the refrigeration cycle circuit 1. According to experiments, the storage tank 20 contains between 47 mo1% and 98 mo1% r.
[R-114J purified to ``] was stored.

こうした分離により、冷凍サイクル回路1内を循環する
混合冷媒の組成は、かなりrR−22Jの濃度が高い組
成に変化していく。実験によれば、冷凍サイクル回路1
内を循環する混合冷媒の組成は、30分で「R−22J
がr 86 [1Io1%」に、rR−114Jがr 
14 mo1%」に変化した。なお、密閉形圧縮機2の
吐出温度は、高温運転時に「90℃」程度であったもの
が、組成変化により「30分」後には「50℃」程度ま
で下降した。
Due to such separation, the composition of the mixed refrigerant circulating in the refrigeration cycle circuit 1 changes to a composition with a considerably high concentration of rR-22J. According to experiments, refrigeration cycle circuit 1
The composition of the mixed refrigerant circulating inside the
is r 86 [1Io1%”, rR-114J is r
14 mo1%”. Note that the discharge temperature of the hermetic compressor 2 was approximately 90° C. during high-temperature operation, but decreased to approximately 50° C. after 30 minutes due to a change in composition.

しかるに、冷凍サイクルは、先の高温運転の状態から効
率を重視した高効率の運転に切換っていく 。
However, the refrigeration cycle switches from the previous high-temperature operation to high-efficiency operation that emphasizes efficiency.

なお、元の高温運転に切換えるときは電磁開閉弁28.
30を「開」にして、貯留された冷媒を冷凍サイクル回
路1中へ流出させればよい。
In addition, when switching to the original high temperature operation, use the electromagnetic on-off valve 28.
30 to "open" to allow the stored refrigerant to flow into the refrigeration cycle circuit 1.

かくして、大形になる。余分なエネルギーが必要となる
等の問題をもたらす、加熱源、蒸溜塔を必要とせずに、
高効率運転、高温運転を行なうことができる。
Thus, it becomes large. without the need for a heating source or distillation tower, which would require extra energy and other problems.
High efficiency operation and high temperature operation are possible.

しかも、rR’−114Jは高沸点であるので、吸着分
離の際、濃度の上昇によって、吸着塔11内において精
製ガスの一部が部分的に液化することがあるが、吸着塔
11の精製ガス出口13は下部にあり、さらにこの吸着
塔13の下側に貯留タンク20を設けた構造を用いてい
るので、途中の塔内部分、さらには配管部分などに滞る
ことなく、液化した冷媒を回収することができる。
Moreover, since rR'-114J has a high boiling point, a part of the purified gas in the adsorption tower 11 may partially liquefy due to an increase in concentration during adsorption separation. Since the outlet 13 is located at the bottom and the storage tank 20 is provided below the adsorption tower 13, the liquefied refrigerant can be recovered without stagnation in the interior of the tower or even in the pipes. can do.

そのうえ、熱交換器21を用いて、液化貯蔵の際に発生
するrR−114Jからの熱を気液分離器6から流出す
る冷媒をガス化する熱として供給すると同時に、気化に
よって冷やされる放熱部21aで液化貯蔵されるrR−
114Jから熱を奪うようにした構造は、相互の間で熱
サイクルが形成されるので、熱損失なく冷媒の気化と凝
縮とを行なうことができ、分離効率(吸着圧力;大)。
Moreover, the heat exchanger 21 is used to supply the heat from rR-114J generated during liquefaction storage as heat for gasifying the refrigerant flowing out from the gas-liquid separator 6, and at the same time, the heat radiating section 21a is cooled by vaporization. rR- stored in liquefaction at
The structure that takes heat from 114J forms a thermal cycle between them, so the refrigerant can be vaporized and condensed without heat loss, resulting in high separation efficiency (high adsorption pressure).

貯蔵効率の双方の向上を図ることができる。しかも、た
とえ低沸点成分が濃縮された液相冷媒を気化させるのに
多量の熱量を必要としても、凝縮熱をそのまま利用する
分、気化させる熱量は少なくてすむ。実験によれば、低
沸点成分が濃縮された液相冷媒を気化させるのにヒータ
熱量としてIK W程度の熱量力に必要であったものが
、約2/3の熱量で十分な吸着圧力を得ることができた
It is possible to improve both storage efficiency. Moreover, even if a large amount of heat is required to vaporize a liquid phase refrigerant in which low boiling point components are concentrated, the amount of heat required for vaporization is small because the heat of condensation is directly utilized. According to experiments, the heater heat required to vaporize a liquid-phase refrigerant with concentrated low boiling point components was approximately IKW, but sufficient adsorption pressure can be obtained with approximately 2/3 of the heat. I was able to do that.

また、第4図はこの発明の第2の実施例を示す。Further, FIG. 4 shows a second embodiment of the present invention.

第2の実施例は、この発明を、冷媒の沸点差に起因する
吸着4A(マクロポア)への凝縮現象に依存する割合い
の高い吸着分離を採用した冷凍サイクル装置に適用した
ものである。
In the second embodiment, the present invention is applied to a refrigeration cycle device that employs highly adsorption separation that relies on the condensation phenomenon into adsorption 4A (macropores) caused by the difference in boiling points of refrigerants.

詳しくは、第4図に示す空気調和機は、第1の実施例の
パージ用のタンク23および電磁開閉弁24に代えて、
逆止弁40を戻り用の流通管22に設けている。そして
、第1の実施例のようにパージはせず、圧力差による凝
縮、蒸発たけで、吸着・再生を繰返して、rR−114
Jを分離貯蔵するようにしている。
Specifically, the air conditioner shown in FIG. 4 has, in place of the purge tank 23 and electromagnetic on-off valve 24 of the first embodiment,
A check valve 40 is provided in the return flow pipe 22. Then, without purging as in the first embodiment, adsorption and regeneration are repeated by condensation and evaporation due to pressure difference, and rR-114
J is stored separately.

また第5図は、この発明の第3の実施例を示す。Further, FIG. 5 shows a third embodiment of the present invention.

第3の実施例は、第1および第2の実施例のような一部
の吸着塔11でなく、二基式の冷凍サイクル装置を示し
ている。
The third embodiment shows a two-unit refrigeration cycle device instead of some adsorption towers 11 as in the first and second embodiments.

すなわち、第5図に示す空気調和機について説明すれば
、一対(二つ)の吸着塔43.43は、いずれも最下部
に供給ガス人口40を兼ねる精製ガス出口41を有し、
最上部に排気ガス出口42を有して構成されている。こ
の吸着塔43.43が水平方向に並設されている。なお
、いずれの吸着塔43.43にも、第1および第2の実
施例と同様、主細孔径の活性アルミナ44が充填されて
いる。
That is, to explain the air conditioner shown in FIG. 5, each of the pair (two) adsorption towers 43, 43 has a purified gas outlet 41 at the bottom that also serves as the supply gas population 40,
It has an exhaust gas outlet 42 at the top. These adsorption towers 43, 43 are arranged in parallel in the horizontal direction. Incidentally, both adsorption towers 43 and 43 are filled with activated alumina 44 having the main pore diameter, as in the first and second embodiments.

また吸着塔43.43の一方の精製ガス出口41には、
四方弁で構成される切換弁45を介して混合冷媒供給管
17および精製冷媒貯留管19が接続される。これによ
り、先の実施例と同様、吸着塔43.43の下側に設置
した貯留タンク20をつないでいる。また各吸j′i塔
4B、43の排気ガス出口42には、戻り用の流通管2
2に・11列に接続されている。そして、このυト気ガ
ス出口42につながる並列管路部分43a、43aには
、それぞれ逆止弁46が設けられている。また並列管路
部分43a、43a間には、パージ抵抗となる減圧弁4
7が接続されていて、脱着再生量を高めるべく吸着塔4
3.43内へ精製ガスの一部を供給できるようにしてい
る。なお、戻り用の流通管22には一ヒ流側に流量調整
抵抗となる戻り用の調整弁25を設け、下流側に電磁開
閉弁30を設けている。
In addition, at one purified gas outlet 41 of the adsorption tower 43.43,
The mixed refrigerant supply pipe 17 and the purified refrigerant storage pipe 19 are connected via a switching valve 45 configured as a four-way valve. This connects the storage tanks 20 installed below the adsorption towers 43 and 43, as in the previous embodiment. In addition, a return flow pipe 2 is provided at the exhaust gas outlet 42 of each absorption tower 4B, 43.
Connected to 2 and 11 columns. A check valve 46 is provided in each of the parallel pipe portions 43a, 43a connected to the υ gas outlet 42. Moreover, a pressure reducing valve 4 serving as a purge resistance is provided between the parallel pipe portions 43a and 43a.
7 is connected to adsorption tower 4 to increase the amount of desorption and regeneration.
Part of the purified gas can be supplied into the 3.43. The return flow pipe 22 is provided with a return adjustment valve 25 serving as a flow rate adjustment resistance on the first flow side, and an electromagnetic on-off valve 30 on the downstream side.

そして、操作部32から組成可■の信号が入ると、一定
時間毎に切換弁45を切換えて、吸着塔43.43を気
液分離器6側と貯留タンク20側とに交互に連通するさ
せるようになっている。
When a signal from the operating unit 32 indicating that composition is possible is received, the switching valve 45 is switched at regular intervals to alternately connect the adsorption towers 43 and 43 to the gas-liquid separator 6 side and the storage tank 20 side. It looks like this.

つまり、第3の実施例は、一方の吸着塔43が吸着して
いるときは、他方の吸着塔43は脱着するようにしてい
て、この連続的な工程で冷媒を分離するようにしている
。むろん、第3の実施例においても、加熱源、蒸溜塔を
必要とせずに、高効率運転、高温運転を行なうことがで
きる効果の他、第1の実施例と同様、途中の塔内部分、
配管部分などに滞ることなく液化した冷媒を回収できる
、さらには熱損失なく冷媒の気化と凝縮とを行なうこと
かできる効果を奏することはいうまでもない。
That is, in the third embodiment, when one adsorption tower 43 is adsorbing, the other adsorption tower 43 is desorbing, and the refrigerant is separated in this continuous process. Of course, in the third embodiment, in addition to the effect of being able to perform high-efficiency operation and high-temperature operation without the need for a heating source or a distillation column, similar to the first embodiment, the internal part of the column,
Needless to say, the liquefied refrigerant can be recovered without stagnation in piping sections, and further, the refrigerant can be vaporized and condensed without heat loss.

但し、上述の第2および第3の実施例において、第1図
と同じ構成部品には同一符号を附してその説明を省略し
た。
However, in the second and third embodiments described above, the same components as in FIG. 1 are given the same reference numerals and their explanations are omitted.

なお、」二連した実施例では、分離用の吸石月として活
性アルミナ、ゼオライトを用いたが、これに限らず、分
子ふるい炭、活性炭素繊維、活性炭。
In addition, in the two consecutive examples, activated alumina and zeolite were used as the stone absorber for separation, but the present invention is not limited thereto, and molecular sieve carbon, activated carbon fiber, and activated carbon may also be used.

シリカゲルなどの吸着祠を用いてもよく、吸イク祠には
特に限定されるものではない。なお、実験によれば50
〜200人の主細孔径を有する活性アルミナ、活性炭、
シリカゲルなどがrR−1,14Jを優先的に吸着する
ものとして良いものであった。
An adsorption ash such as silica gel may be used, and the suction ash is not particularly limited. According to experiments, 50
Activated alumina, activated carbon, with main pore size of ~200
Silica gel and the like were good because they preferentially adsorbed rR-1,14J.

また−上述した実施例では混合冷媒組成、目標吐出温度
を数字を挙げて説明したが、これも特に限定されるもの
ではない。むろん、貯蔵する手段についても、特に実施
例に限定されるものではない。
Furthermore, in the above-described embodiments, the mixed refrigerant composition and target discharge temperature were explained using numbers, but these are not particularly limited either. Of course, the storage means is not particularly limited to the examples.

[発明の効果コ 以上説明したように請求項1ないし請求項3に記載の発
明によれば、吸jE1体を用いて特定種の冷媒を分離す
ることができる。
[Effects of the Invention] As described above, according to the inventions recited in claims 1 to 3, a specific type of refrigerant can be separated using the adsorbent jE1 body.

それ故、加熱源、蒸溜塔を必要とせずに、高効率運転、
高温運転を得ることができ、冷凍サイクル装置の小形化
ならびに効率の向」二を図ることができる。
Therefore, high efficiency operation is possible without the need for a heating source or distillation tower.
High-temperature operation can be achieved, and the refrigeration cycle device can be made smaller and its efficiency can be improved.

しかも、請求項2に記載の発明によれば、上記効果に加
え、吸着体の精製ガス出口は下部に有り、さらに吸着体
の下方に貯蔵手段が有るので、たとえ高沸点冷媒が液化
しても、途中で滞ることなしに冷媒を貯蔵手段に回収す
ることができる。
Moreover, according to the invention as set forth in claim 2, in addition to the above-mentioned effects, the purified gas outlet of the adsorbent is located at the bottom, and the storage means is further provided below the adsorbent, so even if the high boiling point refrigerant is liquefied, , the refrigerant can be recovered to the storage means without being stagnated on the way.

また請求項3に記載の発明によれば、熱交換手段の設置
によって、液化貯蔵の際に発生する高沸点冷媒からの熱
が、そのまま気液分離器からの液相冷媒をガス化させる
ための熱として供給されるので、熱損失を抑制しつつ吸
j1圧力を高めることができる効果もあり、分離効率を
効率良く高めることができる。
Further, according to the invention as set forth in claim 3, by installing the heat exchange means, heat from the high boiling point refrigerant generated during liquefaction storage is directly used to gasify the liquid phase refrigerant from the gas-liquid separator. Since it is supplied as heat, it has the effect of increasing the suction j1 pressure while suppressing heat loss, and the separation efficiency can be efficiently increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はこの発明の第1の実施例を示し、
第1図はこの発明を適用した冷凍サイクル装置を、吸着
材の物理・化学的吸着力に依存する割合いの高い一部式
の冷媒分離系と共に示す概略構成図、第2図はその吸着
塔の吸着体(活性アルミナ)の吸着特性を示す線図、第
3図は冷媒を吸着分離するための二つの弁のタイミング
を示すタイミングチャート、第4図はこの発明の第2の
実施例の冷凍サイクル装置を、冷媒沸点差に起因する吸
着祠への凝縮現象に依存する割合いの高・ζ い−塔式の冷媒分離系とン」<す概略構成図、第4図し はこの発明の第3の実施例の冷凍サイクル装置を、二基
式の冷媒分離系と示す概略構成図である。 1・・・冷凍サイクル回路、2・・・密閉形圧縮機(圧
縮機)、4・・・室内側熱交換器(凝縮器)、5.7・
・・膨張弁(減圧装置)、6・・・気液分離器、8・・
・室外側熱交換器(蒸発器)、9・・・冷媒配管、11
・・・吸着塔(吸イ(1体)、12・・・供給ガス人口
、13・・・精製ガス出口、14・・・排気ガス出口、
16・・・切換弁、17・・・混合冷媒供給管(第1の
流路)、19・・・精製冷媒供給管(第3の流路)、2
0・・・貯留タンク(貯蔵手段)、21・・・熱交換器
(熱交換手段)、2]、a・・・放熱部、21b・・・
受熱部、22・・・戻り用の流通管(第2の流路)。
1 to 3 show a first embodiment of this invention,
Figure 1 is a schematic configuration diagram showing a refrigeration cycle device to which the present invention is applied, together with a one-piece refrigerant separation system that is highly dependent on the physical and chemical adsorption power of the adsorbent, and Figure 2 is an adsorption tower for the refrigerant separation system. Fig. 3 is a timing chart showing the timing of two valves for adsorbing and separating refrigerant, and Fig. 4 is a diagram showing the adsorption characteristics of the adsorbent (activated alumina) of this invention. Figure 4 shows a schematic configuration diagram of a high-tower-type refrigerant separation system that relies on the condensation phenomenon in an adsorption tank caused by the difference in refrigerant boiling points. It is a schematic block diagram which shows the refrigeration cycle apparatus of 3rd Example as a two-unit type refrigerant separation system. 1... Refrigeration cycle circuit, 2... Hermetic compressor (compressor), 4... Indoor heat exchanger (condenser), 5.7.
... Expansion valve (pressure reducing device), 6... Gas-liquid separator, 8...
・Outdoor heat exchanger (evaporator), 9... Refrigerant piping, 11
... Adsorption tower (suction (1 body), 12... Supply gas population, 13... Purified gas outlet, 14... Exhaust gas outlet,
16...Switching valve, 17...Mixed refrigerant supply pipe (first flow path), 19...Refined refrigerant supply pipe (third flow path), 2
0... Storage tank (storage means), 21... Heat exchanger (heat exchange means), 2], a... Heat radiation part, 21b...
Heat receiving part, 22... return flow pipe (second flow path).

Claims (1)

【特許請求の範囲】 1、圧縮機に凝縮器、減圧装置、蒸発器を順に接続し、
かつ高沸点冷媒と低沸点冷媒とを混合した非共沸混合冷
媒を封入してなる冷凍サイクル回路と、前記混合冷媒の
うち特定種の冷媒を吸着する吸着体と、前記冷凍サイク
ル回路の高圧側に接続され該高圧側の混合冷媒を前記吸
着体に導き特定種の冷媒を吸着させる第1の流路と、前
記吸着体に接続され前記吸着せずに通過する冷媒を前記
冷凍サイクル回路に戻す第2の流路と、前記吸着体に接
続され該吸着体を減圧させ吸着体から冷媒を脱着させる
第3の流路と、前記第1の流路と前記第3の流路を交互
に切換える切換弁と、前記第3の流路に接続され前記脱
着された冷媒を貯蔵する貯蔵手段とを具備したことを特
徴とする冷凍サイクル装置。 2、圧縮機に凝縮器、減圧装置、気液分離器、蒸発器を
順に接続し、かつ高沸点冷媒と低沸点冷媒とを混合した
非共沸混合冷媒を封入してなる冷凍サイクル回路と、前
記混合冷媒のうち高沸点種の冷媒を吸着する吸着体と、
この吸着体の下方に設けた該吸着体から精製ガスを流出
する精製ガス出口と、前記気液分離器に接続され冷媒を
前記吸着体に導き高沸点種の冷媒を吸着させる第1の流
路と、前記吸着体に接続され吸着せずに通過する冷媒を
前記冷凍サイクル回路に戻す第2の流路と、前記吸着体
の精製ガス出口に接続され該吸着体を減圧させ吸着体か
ら高沸点種の冷媒を脱着させる第3の流路と、前記第1
の流路と前記第3の流路を交互に切換える切換弁と、前
記吸着体より下側に位置して設置され前記第3の流路を
流出してくる高沸点種の冷媒を貯蔵する貯蔵手段とを具
備したことを特徴とする冷凍サイクル装置。 3、圧縮機に凝縮器、減圧装置、気液分離器、蒸発器を
順に接続し、かつ高沸点冷媒と低沸点冷媒とを混合した
非共沸混合冷媒を封入してなる冷凍サイクル回路と、前
記混合冷媒のうち高沸点種の冷媒を吸着する吸着体と、
前記気液分離器の液出口に接続され液相冷媒を前記吸着
体に導き高沸点種の冷媒を吸着させる第1の流路と、前
記吸着体に接続され吸着せずに通過する冷媒を前記冷凍
サイクル回路に戻す第2の流路と、前記吸着体に接続さ
れ該吸着体を減圧させ吸着体から高沸点種の冷媒を脱着
させる第3の流路と、前記第1の流路と前記第3の流路
を交互に切換える切換弁と、前記第3の流路に放熱部を
設けかつ前記第1の流路に前記放熱部とつながる受熱部
を設けてなり前記第1の流路を流れる冷媒に気化熱を供
給する熱交換手段と、前記第3の流路に接続され前記脱
着された高沸点種の冷媒を貯蔵する貯蔵手段とを具備し
たことを特徴とする冷凍サイクル装置。
[Claims] 1. Connecting a condenser, a pressure reducing device, and an evaporator to the compressor in order,
and a refrigeration cycle circuit sealed with a non-azeotropic mixed refrigerant that is a mixture of a high boiling point refrigerant and a low boiling point refrigerant, an adsorbent that adsorbs a specific type of refrigerant among the mixed refrigerant, and a high pressure side of the refrigeration cycle circuit. a first flow path connected to the adsorbent for guiding the mixed refrigerant on the high pressure side to the adsorbent and adsorbing a specific type of refrigerant; and a first flow path connected to the adsorbent and returning the refrigerant passing through without being adsorbed to the refrigeration cycle circuit. a second flow path, a third flow path that is connected to the adsorbent and depressurizes the adsorbent and desorbs the refrigerant from the adsorption body; the first flow path and the third flow path are alternately switched; A refrigeration cycle device comprising: a switching valve; and storage means connected to the third flow path and storing the desorbed refrigerant. 2. A refrigeration cycle circuit in which a condenser, a pressure reduction device, a gas-liquid separator, and an evaporator are connected in order to a compressor, and a non-azeotropic mixed refrigerant mixture of a high-boiling point refrigerant and a low-boiling point refrigerant is enclosed; an adsorbent that adsorbs a high boiling point refrigerant among the mixed refrigerant;
A purified gas outlet provided below the adsorbent for allowing the purified gas to flow out from the adsorbent; and a first channel connected to the gas-liquid separator to guide the refrigerant to the adsorbent and adsorb high-boiling point refrigerant. a second flow path connected to the adsorbent and returning the refrigerant passing through without being adsorbed to the refrigeration cycle circuit; and a second flow path connected to the purified gas outlet of the adsorbent to depressurize the adsorbent and remove the high boiling point from the adsorbent. a third flow path for desorbing the seed refrigerant;
a switching valve that alternately switches between the flow path and the third flow path, and a storage that is installed below the adsorbent and stores the high boiling point refrigerant that flows out of the third flow path. A refrigeration cycle device characterized by comprising means. 3. A refrigeration cycle circuit in which a condenser, a pressure reduction device, a gas-liquid separator, and an evaporator are connected in order to a compressor, and a non-azeotropic mixed refrigerant mixture of a high-boiling point refrigerant and a low-boiling point refrigerant is enclosed; an adsorbent that adsorbs a high boiling point refrigerant among the mixed refrigerant;
a first flow path connected to the liquid outlet of the gas-liquid separator to guide the liquid phase refrigerant to the adsorbent and adsorb high-boiling point refrigerant; a second flow path that returns to the refrigeration cycle circuit; a third flow path that is connected to the adsorbent and depressurizes the adsorbent and desorbs high-boiling refrigerant from the adsorbent; the first flow path and the a switching valve that alternately switches the third flow path; a heat radiating section is provided in the third flow path; and a heat receiving section connected to the heat radiating section is provided in the first flow path; A refrigeration cycle device comprising: heat exchange means for supplying heat of vaporization to the flowing refrigerant; and storage means connected to the third flow path and storing the desorbed high-boiling point refrigerant.
JP8350289A 1988-12-23 1989-03-31 Device for refrigeration cycle Pending JPH02263064A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8350289A JPH02263064A (en) 1989-03-31 1989-03-31 Device for refrigeration cycle
US07/451,305 US4972676A (en) 1988-12-23 1989-12-15 Refrigeration cycle apparatus having refrigerant separating system with pressure swing adsorption
FR8917126A FR2641065A1 (en) 1988-12-23 1989-12-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8350289A JPH02263064A (en) 1989-03-31 1989-03-31 Device for refrigeration cycle

Publications (1)

Publication Number Publication Date
JPH02263064A true JPH02263064A (en) 1990-10-25

Family

ID=13804258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8350289A Pending JPH02263064A (en) 1988-12-23 1989-03-31 Device for refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH02263064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177581A (en) * 2004-12-21 2006-07-06 Mitsubishi Electric Corp Refrigeration cycle device using non-azeotropic refrigerant
JP2009121725A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Refrigerating device and multistage refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177581A (en) * 2004-12-21 2006-07-06 Mitsubishi Electric Corp Refrigeration cycle device using non-azeotropic refrigerant
JP2009121725A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Refrigerating device and multistage refrigerating device

Similar Documents

Publication Publication Date Title
US4972676A (en) Refrigeration cycle apparatus having refrigerant separating system with pressure swing adsorption
US4183227A (en) Heat pump
JP6004381B2 (en) Adsorption refrigerator
JPH02230068A (en) Absorption freezer and its operating method
JP3341516B2 (en) Adsorption refrigerator
US20220169535A1 (en) Adsorption desalination system using multi-effect evaporation apparatus
WO2012085605A1 (en) Adsorption thermal compressor technology and apparatuses
JP5187827B2 (en) Adsorption heat pump system using low-temperature waste heat
US20100300124A1 (en) Refrigerating machine comprising different sorption materials
JPH02263064A (en) Device for refrigeration cycle
Meunier Thermal swing adsorption refrigeration (heat pump)
JP2004293905A (en) Adsorption type refrigerating machine and its operating method
JP3353839B2 (en) Refrigeration output control method of adsorption chiller and adsorption chiller capable of refrigeration output control
JP4086011B2 (en) Refrigeration equipment
JP2000179978A (en) Method for operating adsorption type refrigerating system
JPH11190566A (en) Refrigerating unit
JP2011191032A (en) Compression refrigerating cycle
JP2000329422A (en) Adsorption refrigeration unit
JPH02263055A (en) Refrigerating cycle device
JPH06272989A (en) Refrigerator
JPH11223416A (en) Refrigerating device
JPH04316966A (en) Adsorption type refrigerating machine and operating method thereof
JP2005172380A (en) Adsorption-type heat pump
JP4434027B2 (en) Adsorption heat increasing device
JPH04316965A (en) Adsorption type refrigerating machine