JPH0226058A - Heat sink for hybrid integrated circuit - Google Patents

Heat sink for hybrid integrated circuit

Info

Publication number
JPH0226058A
JPH0226058A JP63175039A JP17503988A JPH0226058A JP H0226058 A JPH0226058 A JP H0226058A JP 63175039 A JP63175039 A JP 63175039A JP 17503988 A JP17503988 A JP 17503988A JP H0226058 A JPH0226058 A JP H0226058A
Authority
JP
Japan
Prior art keywords
solder
heat sink
insulating plate
recess
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63175039A
Other languages
Japanese (ja)
Inventor
Masayuki Ozawa
小沢 正之
Isao Okazaki
功夫 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP63175039A priority Critical patent/JPH0226058A/en
Publication of JPH0226058A publication Critical patent/JPH0226058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve thermal stability and fatigue resistance of a solder- connection part by providing a recess to the heat sink surface solder-connecting an insulating plate while further providing a projection part to the same surface inside the recess. CONSTITUTION:An insulating plate 9 for a semiconductor connection-fixing a semiconductor element is connected to a heat sink 1 provided with a recess 1a larger than the size of this insulating plate 9 by 0.2 to 2mm. Further, a plurality of projection parts 1b are formed inside the same surface with the recess 1a. Then, a solder shape between the insulating plate 9 and the heat sink 1 is controlled for preventing stress concentration between the insulating plate 9 and the solder 10 while reducing thermal stress. Accordingly, shearing strain generated by repeated thermal stress is tilted near the solder connection center so that the thermal stress is reduced. Thereby, thermal stability and fatigue resistance of the solder-connection part is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、混成集積回路用ヒートシンクと半導体素子用
絶縁板との接続方法に係り、特にはんだ接続部への熱ス
トレスを緩和するのに好適な混成集積回路用ヒートシン
クに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of connecting a heat sink for a hybrid integrated circuit and an insulating plate for a semiconductor element, and is particularly suitable for alleviating thermal stress on solder joints. This invention relates to a heat sink for a hybrid integrated circuit.

〔従来の技術〕[Conventional technology]

従来の混成集積回路用ヒートシンク(以下ヒートシンク
と略す)は、特願昭54−25587号に記載のように
、半導体素子用絶縁板(以下絶縁板と略す)はんだ接続
部のヒートシンク形状が平担となっていた。
As described in Japanese Patent Application No. 54-25587, conventional heat sinks for hybrid integrated circuits (hereinafter referred to as heat sinks) have flat heat sink shapes at the solder joints of insulating plates for semiconductor elements (hereinafter referred to as insulating plates). It had become.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般にヒートシンクは、半導体素子の自己発熱を効率良
く外部へ放熱する必要があり、特に半導体素子は熱に弱
いため非常に重要なことである。
In general, a heat sink is required to efficiently radiate the self-heated heat of a semiconductor element to the outside, and this is particularly important because semiconductor elements are sensitive to heat.

通常、ヒートシンクと絶縁板との接続は、ろう材などに
よって接続固定されるが、半導体素子や絶縁板などの自
重によりはんだのフィレット形状をコントロール出来な
く、そのため、絶縁板とはんだとの界面に応力が集中し
、繰り返し熱ストレスにより、接続界面を起点にクラッ
クが生じ半導体素子発熱の熱伝導に大きな悪影響を与え
ている。
Normally, the connection between a heat sink and an insulating plate is fixed using a brazing material or the like, but the shape of the solder fillet cannot be controlled due to the weight of the semiconductor element or insulating plate, and as a result, stress is applied to the interface between the insulating plate and the solder. is concentrated and repeated thermal stress causes cracks to occur starting from the connection interface, which has a large negative impact on the heat conduction of heat generated by the semiconductor element.

更に、前記半導体素子や絶縁板などの自重により、はん
だ厚みを均一に、且つ厚く出来ない問題があった。
Furthermore, there is a problem in that it is not possible to make the solder thickness uniform and thick due to the weight of the semiconductor element and the insulating plate.

本発明の目的は、繰り返し熱ストレスによるはんだ接続
部の接続寿命を延ばすため、ヒートシンクに凹部を設け
、更に凹部と同一面内に凸部を設け、絶縁板とはんだ界
面に応力集中しないフィレット形状にコントロールする
と同時に、はんだ厚みを均一に、且つ厚く確保出来るヒ
ートシンクを提供することにある。
The purpose of the present invention is to provide a heat sink with a concave part and a convex part in the same plane as the concave part, in order to extend the connection life of solder joints due to repeated thermal stress, so that the heat sink has a fillet shape that does not concentrate stress at the interface between the insulating plate and the solder. To provide a heat sink that can control and at the same time ensure a uniform and thick solder thickness.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、絶縁板をはんだ接続するヒートシンク面に
凹部を設け、更に凹部内の同一面に凸起を設ける事によ
って、はんだ接続部の耐熱疲労性が向上する。従って、
半導体素子が自己発熱した熱量を効率良くヒートシンク
へ熱伝導する事が達成できる。
The above object is to improve the thermal fatigue resistance of the solder joint by providing a recess on the heat sink surface to which the insulating plate is soldered and further providing a protrusion on the same surface within the recess. Therefore,
It is possible to efficiently conduct heat generated by the semiconductor element to the heat sink.

〔作用〕[Effect]

本発明によるヒートシンクは、絶縁板をはんだ接続する
場所に凹部を設け、更に凹部内の同一面に複数個の凸部
を設けることによって、絶縁板とヒートシンク間のはん
だ形状をコントロールし、絶縁板とはんだ間の応力集中
を防止し、且つ熱応力が低減する。その結果、繰り返し
熱応力によって生ずる剪断ひずみを、はんだ接続中央付
近に傾り、その熱応力が軽減するため、はんだ接続部の
耐熱疲労性が向上する。
In the heat sink according to the present invention, a recess is provided at the location where the insulating plate is soldered, and a plurality of protrusions are provided on the same surface within the recess to control the shape of the solder between the insulating plate and the heat sink. This prevents stress concentration between solders and reduces thermal stress. As a result, the shear strain caused by repeated thermal stress is tilted toward the center of the solder connection, reducing the thermal stress and improving the thermal fatigue resistance of the solder connection.

〔実施例〕〔Example〕

本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described with reference to FIG.

ヒートシンク1にセラミック基板2と、トランジスタチ
ップ3がマウントされており、前記セラミック基板には
、厚膜回路が形成されており、ボンディング用パッド4
、半導体チップ5、およびチップコンデンサ6などの電
子部品がはんだ7で接続固定され電子回路を構成する。
A ceramic substrate 2 and a transistor chip 3 are mounted on a heat sink 1, a thick film circuit is formed on the ceramic substrate, and a bonding pad 4 is mounted on the ceramic substrate.
, a semiconductor chip 5, and a chip capacitor 6 are connected and fixed with solder 7 to form an electronic circuit.

一方、トランジスタ部は、トランジスタチップ3、モリ
ブデン板8、絶縁基板9と積み重ね、前記絶縁基板8の
底面に、凹部1aを設け、更に凹部内の同一面に例えば
、4ケ所の凸部1bを設けたヒートシンク1に各々をは
んだ1oを用いて接続固定しAQワイヤ11を用いてト
ランジスタチップ電極3aとパッド4を電気的に配線し
混成集積回路を構成している。
On the other hand, the transistor part is stacked with a transistor chip 3, a molybdenum plate 8, and an insulating substrate 9, and a recess 1a is provided on the bottom surface of the insulating substrate 8, and further, for example, four protrusions 1b are provided on the same surface within the recess. Each is connected and fixed to a heat sink 1 using solder 1o, and transistor chip electrodes 3a and pads 4 are electrically wired using AQ wires 11 to form a hybrid integrated circuit.

このような構造において、絶縁板9はトランジスタチッ
プ3とヒートシンク1との電気的絶縁を行なうと同時に
、トランジスタチップ3で発熱した熱を速やかにヒート
シンク1へ伝熱する機能を有する。ここで、12はセラ
ミック基板2をヒートシンク1に接着固定するための接
着剤12である。
In such a structure, the insulating plate 9 has the function of electrically insulating the transistor chip 3 and the heat sink 1, and at the same time, quickly transmitting the heat generated by the transistor chip 3 to the heat sink 1. Here, 12 is an adhesive 12 for adhesively fixing the ceramic substrate 2 to the heat sink 1.

第2図に本実施例による、はんだ厚みに対する絶縁板9
とヒートシンク1間のはんだ10の耐熱疲労性を示す。
FIG. 2 shows an insulating plate 9 according to the solder thickness according to this embodiment.
The thermal fatigue resistance of the solder 10 between the heat sink 1 and the heat sink 1 is shown.

絶縁板9とヒートシンク1の線膨張差は、約10 x 
10−6/’Cあるため使用時の温度変化によって、は
んだ10に繰り返し熱応力が発生する。はんだ10の接
続寿命予測は、一般にCoffin−Mansonの式
を拡張したもので予測でき本実施例では理論式に従い、
はんだ厚みを厚くして熱応力の低減を図ったものである
The difference in linear expansion between the insulating plate 9 and the heat sink 1 is approximately 10 x
Since the temperature is 10-6/'C, thermal stress is repeatedly generated in the solder 10 due to temperature changes during use. The connection life of the solder 10 can generally be predicted by extending the Coffin-Manson equation, and in this example, according to the theoretical equation,
The solder thickness is increased to reduce thermal stress.

第2図に示すように、はんだが厚くなる程、耐熱疲労性
が向上する。しかし、実際には、はんだ厚みが増加する
ことにより、はんだ自身の熱抵抗。
As shown in FIG. 2, the thicker the solder, the better the thermal fatigue resistance. However, in reality, by increasing the solder thickness, the thermal resistance of the solder itself increases.

更には、ボイド発生傾向にあるため、熱抵抗が増加する
ため、本実施例でははんだ厚みを0.2〜0.3mm程
度に管理しである。
Furthermore, since there is a tendency for voids to occur, the thermal resistance increases, so in this embodiment, the solder thickness is controlled to be about 0.2 to 0.3 mm.

一方、はんだ接続メカニズムは、母材とはんだ中のSn
とが相互拡散することであり、例えば、前記絶縁板9の
表面にNiをメタライズした場合はN1aSn  など
の金属化合物が生成し、これによって接続される。
On the other hand, the solder connection mechanism is based on Sn in the base material and solder.
For example, when the surface of the insulating plate 9 is metallized with Ni, a metal compound such as N1aSn is generated, thereby establishing the connection.

ところが、この金属化合物は大変硬く、NiやSnに比
べて2〜30倍の硬度となる。従って、大変脆い。更に
、線膨張差も前記ヒートシンク1側に比べ絶縁板9の方
が約2倍あるため、使用時の温度変化によって生じた熱
応力が、金属化合物の界面に集中する。以上の結果、は
んだ厚みを厚くしても前記絶縁板9界面に沿ってき裂が
進展し、接続寿命を低下させる。
However, this metal compound is extremely hard, and is 2 to 30 times harder than Ni or Sn. Therefore, it is very fragile. Furthermore, since the linear expansion difference is approximately twice as large on the insulating plate 9 as on the heat sink 1 side, thermal stress caused by temperature changes during use is concentrated at the interface of the metal compound. As a result, even if the solder thickness is increased, cracks will grow along the interface of the insulating plate 9, reducing the connection life.

しかし、本実施例のように、前記絶縁板9の底面に1例
えば絶縁板9の寸法より0.2〜2 、 OInm大き
い凹部1aをヒートシンク1に設ければ、はんだヒイレ
ットが制御出来、結果的には絶縁板9界面付近への応力
集中を分散する事が出来る。従って、寿命予測式とほぼ
一致する結果が得られ、はんだ接合部の大幅な長寿命化
が達成できる。
However, as in this embodiment, if the heat sink 1 is provided with a concave portion 1a on the bottom surface of the insulating plate 9, for example, 0.2 to 2 OInm larger than the dimension of the insulating plate 9, the solder heel can be controlled. In this way, stress concentration near the interface of the insulating plate 9 can be dispersed. Therefore, a result that almost matches the life prediction formula can be obtained, and a significantly longer life of the soldered joint can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来より使用するヒートシンクのはん
だ接続面に凹部を設け、更に凹部内の同一面に複数個の
凸部を設けることで、はんだ接続部の接続寿命が向上す
る。
According to the present invention, by providing a concave portion on the solder connection surface of a conventionally used heat sink and further providing a plurality of convex portions on the same surface within the concave portion, the connection life of the solder connection portion is improved.

一方、ヒートシンクの凸凹形成は、ヒートシンクプレス
加工時に同時に形成でき、更にはんだ接続部のはんだ体
積も、従来より使用するはんだシートの厚みを変えるこ
とで可能である。
On the other hand, the unevenness of the heat sink can be formed at the same time as the heat sink is pressed, and the solder volume of the solder joint can also be changed by changing the thickness of the solder sheet used in the past.

従って、コストアップの必要も殆どなく耐熱疲労性に優
れたトランジスタ実装構造を提供し得る効果がある。
Therefore, there is an effect that it is possible to provide a transistor mounting structure with excellent thermal fatigue resistance without requiring almost any increase in cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の断面構造図、第2図ははんだ厚
みと耐熱疲労性の特性図である。
FIG. 1 is a cross-sectional structural diagram of an example of the present invention, and FIG. 2 is a characteristic diagram of solder thickness and thermal fatigue resistance.

Claims (1)

【特許請求の範囲】 1、半導体素子の電極と、混成厚膜集積回路用ヒートシ
ンクとを電気的に絶縁するため用いる半導体用絶縁板と
の接続において、前記半導体素子を接続固定する半導体
用絶縁板が、該絶縁板寸法より0.2〜2mm大きい凹
部を設けたヒートシンクに接続されたことを特徴とする
混成集積回路用ヒートシンク。 2、特許請求の範囲第1項において、混成厚膜集積回路
用ヒートシンクの凹部と同一面内に複数個の凸部を形成
したことを特徴とする混成集積回路用ヒートシンク。
[Scope of Claims] 1. An insulating plate for a semiconductor that connects and fixes a semiconductor element in connection with an insulating plate for a semiconductor used for electrically insulating an electrode of a semiconductor element and a heat sink for a hybrid thick film integrated circuit. is connected to a heat sink provided with a recess 0.2 to 2 mm larger than the dimension of the insulating plate. 2. A heat sink for a hybrid integrated circuit according to claim 1, characterized in that a plurality of convex portions are formed in the same plane as the recessed portion of the heat sink for a hybrid thick film integrated circuit.
JP63175039A 1988-07-15 1988-07-15 Heat sink for hybrid integrated circuit Pending JPH0226058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175039A JPH0226058A (en) 1988-07-15 1988-07-15 Heat sink for hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63175039A JPH0226058A (en) 1988-07-15 1988-07-15 Heat sink for hybrid integrated circuit

Publications (1)

Publication Number Publication Date
JPH0226058A true JPH0226058A (en) 1990-01-29

Family

ID=15989148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175039A Pending JPH0226058A (en) 1988-07-15 1988-07-15 Heat sink for hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JPH0226058A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167454A (en) * 1990-10-31 1992-06-15 Hitachi Ltd Semiconductor device, its manufacturing, and ignition device for internal combustion engine
JPWO2008078788A1 (en) * 2006-12-26 2010-04-30 京セラ株式会社 Heat dissipation board and electronic device using the same
WO2013132644A1 (en) * 2012-03-09 2013-09-12 三菱電機株式会社 Semiconductor module
JP2015173299A (en) * 2015-07-06 2015-10-01 三菱電機株式会社 semiconductor module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167454A (en) * 1990-10-31 1992-06-15 Hitachi Ltd Semiconductor device, its manufacturing, and ignition device for internal combustion engine
JPWO2008078788A1 (en) * 2006-12-26 2010-04-30 京セラ株式会社 Heat dissipation board and electronic device using the same
JP5202333B2 (en) * 2006-12-26 2013-06-05 京セラ株式会社 Heat dissipation board and electronic device using the same
WO2013132644A1 (en) * 2012-03-09 2013-09-12 三菱電機株式会社 Semiconductor module
CN104160502A (en) * 2012-03-09 2014-11-19 三菱电机株式会社 Semiconductor module
US9443784B2 (en) 2012-03-09 2016-09-13 Mitsubishi Electric Corporation Semiconductor module including plate-shaped insulating members having different thickness
JP2015173299A (en) * 2015-07-06 2015-10-01 三菱電機株式会社 semiconductor module

Similar Documents

Publication Publication Date Title
US6914325B2 (en) Power semiconductor module
JPH07221218A (en) Semiconductor device
JP2015128194A (en) Semiconductor device
JPH10154774A (en) Semiconductor module
JPH11265976A (en) Power-semiconductor module and its manufacture
JP4722514B2 (en) Semiconductor device and insulating substrate for semiconductor device
JP2002217364A (en) Semiconductor mounting structure
JPH0226058A (en) Heat sink for hybrid integrated circuit
JPH0883864A (en) Power semiconductor device
JP2020096085A (en) Semiconductor device
JPH0196952A (en) Hermetically sealed chip carrier
JP2004128265A (en) Semiconductor module and plate-like lead
JPH0234577A (en) Ceramic-metal composite substrate
JPH03191554A (en) Semiconductor device
JPH0287654A (en) Surface mounting semiconductor device
JP2619155B2 (en) Hybrid integrated circuit device
JP2005217134A (en) Composite board and composite board apparatus
WO2020045563A1 (en) Semiconductor package and semiconductor device provided with same
JPH06268120A (en) Heat sink for power switching module
JPH0347585B2 (en)
JP2023028804A (en) Semiconductor device
JP2004319831A (en) Package for electronic component and electronic component device employing it
JPH09331150A (en) Semiconductor device
JPS63308944A (en) Semiconductor device
JPH0812947B2 (en) Circuit board