JPH02260540A - Mis type semiconductor device - Google Patents

Mis type semiconductor device

Info

Publication number
JPH02260540A
JPH02260540A JP8106789A JP8106789A JPH02260540A JP H02260540 A JPH02260540 A JP H02260540A JP 8106789 A JP8106789 A JP 8106789A JP 8106789 A JP8106789 A JP 8106789A JP H02260540 A JPH02260540 A JP H02260540A
Authority
JP
Japan
Prior art keywords
gate electrode
diffusion layer
silicide
point metal
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8106789A
Other languages
Japanese (ja)
Inventor
Makio Goto
後藤 万亀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8106789A priority Critical patent/JPH02260540A/en
Publication of JPH02260540A publication Critical patent/JPH02260540A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ease production process and improve controllability of dimensions an flatness by sandwiching a second conductivity-type low-concentration impurities diffusion layer provided on a first conductivity-type semiconductor substrate by a gate insulating film and placing it directly below a high melt-point metal silicide. CONSTITUTION:A gate electrode 104 consists of a polycrystalline silicon 104' and a Ti silicide 104'' covering the above and a sidewall. A low-concentration impurities diffusion layer 105 is placed below the Ti silicide 104'' at the sidewall part of the gate electrode 104 sandwiching a gate oxide film 103. This structure is called the GOLD structure where the gate electrode and drain part are overlapped, thus preventing deterioration of conductance due to hot carrier. Therefore, it is possible to realize a production process easily and to control the dimensions of the low-concentration impurities diffusion layer by the film thickness of a high melt-point metal easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS型半導体装置の構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of a MIS type semiconductor device.

〔従来の技術〕[Conventional technology]

半導体装置の微細化、高集積化にともないMO8型トラ
ンジスタも微細化されてきている。しかし、素子寸法を
微細化することによりホットキャリアによる特性劣化と
いう問題が生じてきている。
As semiconductor devices become smaller and more highly integrated, MO8 type transistors are also becoming smaller. However, miniaturization of element dimensions has led to the problem of deterioration of characteristics due to hot carriers.

この問題を解決するためLDD (Light 1yP
oped  Drain)という構造が提案されている
が、このLDDをさらに改良した構造が次の文献に掲載
されても−する。、(R,IZAWA。
To solve this problem, LDD (Light 1yP
A structure called "opened drain" has been proposed, but a structure that is a further improvement of this LDD is published in the following literature. ,(R,IZAWA.

T、KURE、E、TAKEDA、  ’THE  I
MPACT  OF  GATE−DRAIN  0V
ERLAPPED  LDD (GOLD)  FOR
DEEP  SUB  MICRON  VLSI’S
’、IEDM  Tech、Dii  Dp38−pp
41 1987) 〔発明が解決しようとする課題〕 しかし、前述の従来技術では、製造プロセスがかなり複
雑であり、低濃度不純物拡散層の寸法制御性が悪く、ゲ
ート電極の段差が大きいために、平坦性が悪いという課
題を有する。
T,KURE,E,TAKEDA,'THE I
MPACT OF GATE-DRAIN 0V
ERLAPPED LDD (GOLD) FOR
DEEP SUB MICRON VLSI'S
', IEDM Tech, Dii Dp38-pp
41 1987) [Problems to be Solved by the Invention] However, with the above-mentioned conventional technology, the manufacturing process is quite complicated, the dimensional control of the low concentration impurity diffusion layer is poor, and the step of the gate electrode is large, so it is difficult to achieve a flat surface. It has the problem of poor sex.

そこで本発明はこのような課題を解決するもので、その
目的とするところは、製造プロセスが容易であり、寸法
制御性、平坦性が良好な半導体装置を提供するところに
ある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a semiconductor device that is easy to manufacture and has good dimensional controllability and flatness.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMIS型半導体装置は、ゲート電極が、多結晶
SLと、少くともその側壁に設けられた高融点金属シリ
サイドからなり、第1導電型半導体基板に設けられた第
2導電型紙濃度不純物拡散層が、ゲート絶縁膜をはさみ
、前記高融点金属シリサイドの直下に位置することを特
徴とする。
In the MIS type semiconductor device of the present invention, the gate electrode is made of a polycrystalline SL and a high melting point metal silicide provided at least on the sidewall thereof, and a second conductivity type paper provided in the first conductivity type semiconductor substrate is impurity-diffused. The semiconductor device is characterized in that the layers sandwich a gate insulating film and are located directly below the high melting point metal silicide.

〔実 施 例〕〔Example〕

以下図面を用いて、本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による半導体装置を表わす断面図であり
、101はP型St基板、102は素子分離用酸化膜、
103はゲート酸化膜、104はゲート電極であり、多
結晶シリコン104′と、その上部及び側壁を覆ったT
iシリサイド104′により形成されている。105は
低濃度N型不純物拡散層、106は高濃度不純物拡散層
であり、図で示したように前記低濃度不純物拡散層10
5はゲート酸化膜103をはさんで前記ゲート電極10
4側壁部の前記Tiシリサイド104′の下部に配置さ
れている。この構造はゲート電極とドレイン部がオーバ
ラップした、いわゆるGOLD構造であり、この構造を
用いることにより、ホットキャリアによるコンダクタン
スの劣化が避けられることは言うまでもない。
FIG. 1 is a cross-sectional view showing a semiconductor device according to the present invention, in which 101 is a P-type St substrate, 102 is an oxide film for element isolation,
103 is a gate oxide film, 104 is a gate electrode, which includes polycrystalline silicon 104' and a T layer covering the upper and side walls thereof.
It is formed of i-silicide 104'. 105 is a low concentration N-type impurity diffusion layer, 106 is a high concentration impurity diffusion layer, and as shown in the figure, the low concentration impurity diffusion layer 10
5 is the gate electrode 10 with the gate oxide film 103 in between.
The Ti silicide 104' is disposed under the Ti silicide 104' of the fourth side wall portion. This structure is a so-called GOLD structure in which the gate electrode and the drain portion overlap, and it goes without saying that by using this structure, conductance deterioration due to hot carriers can be avoided.

次に本発明の製造方法を簡単に示す。Next, the manufacturing method of the present invention will be briefly described.

1)P型St基板101上にLOCO3法で素子分離用
酸化膜102を2000〜7000A形成するした後に
、ゲート酸化膜103を熱酸化法により100〜300
人形成する。
1) After forming the element isolation oxide film 102 with a thickness of 2000 to 7000A on the P-type St substrate 101 using the LOCO3 method, a gate oxide film 103 with a thickness of 100 to 300A is formed using the thermal oxidation method.
Form people.

2)多結晶Stを全面にCVD法で1000〜5000
人形成し、N型不純物を拡散法で注入した後フォトエツ
チングすることで、ゲート電極の1部104′を形成す
る。
2) Polycrystalline St is coated with 1000 to 5000 by CVD method on the entire surface.
A portion 104' of the gate electrode is formed by forming a gate electrode, injecting an N-type impurity by a diffusion method, and then photoetching.

3)前記ゲート電極の1部(多結晶Siパターン)10
4′をマスクにAs5P等をDO3E量10日〜10I
4の範囲でイオン注入し、低濃度不純物拡散層105を
形成する。
3) Part of the gate electrode (polycrystalline Si pattern) 10
Using 4′ as a mask, apply As5P etc. to DO3E amount for 10 days to 10 I.
Ions are implanted in a range of 4 to form a low concentration impurity diffusion layer 105.

4)全面にスパッタ法でTiを200〜1000人形成
し、ハロゲンランプを用い、800℃前後の温度で30
sec程度アニールを行うことにより、前記多結晶51
104’の上面及び側面にTiシリサイド104′が形
成される。未反応Tiは、この後に選択エッチ液(アン
モニアと過酸化水素の混合水溶液)を用いて除去する。
4) Form 200 to 1,000 layers of Ti on the entire surface by sputtering, and heat for 30 minutes at a temperature of around 800°C using a halogen lamp.
By performing annealing for about sec, the polycrystalline 51
Ti silicide 104' is formed on the top and side surfaces of 104'. Unreacted Ti is then removed using a selective etchant (mixed aqueous solution of ammonia and hydrogen peroxide).

この工程により多結晶5L104’の上部及び側壁をT
iシリサイド104′が覆った形のゲート電極104が
完成する。
Through this process, the upper and side walls of the polycrystalline 5L104' are
A gate electrode 104 covered with i-silicide 104' is completed.

5)前記ゲート電極104をマスクにAs、P等をDO
SE量1015〜10I6の範囲でイオン注入し、熱ア
ニールすることで、高濃度不純物拡散層106を形成し
、本発明の半導体装置は完成する。
5) Do As, P, etc. using the gate electrode 104 as a mask
By implanting ions with an SE amount in the range of 1015 to 10I6 and thermal annealing, a high concentration impurity diffusion layer 106 is formed, and the semiconductor device of the present invention is completed.

以上実施例を用いて、本発明の半導体装置を説明してき
たが、本発明の主旨を逸脱しない範囲で種々変更可能な
ことは言うまでもない。
Although the semiconductor device of the present invention has been described above using embodiments, it goes without saying that various changes can be made without departing from the gist of the present invention.

例えば本実施例ではゲート電極の上部、側壁にTiシリ
サイドが設けられているが側壁だけでもかまわない。ま
たシリサイドに用いる高融点金属は、Ti以外に、Co
 s N t SP t s W−、T a sMo等
でもよい。また本実施例ではNchTrを用いたが、P
chTrにも適用しうる。
For example, in this embodiment, Ti silicide is provided on the top and side walls of the gate electrode, but it is also possible to use only the side walls. In addition to Ti, the high melting point metal used for silicide is Co.
s N t SP t s W-, Ta sMo, etc. may be used. In addition, although NchTr was used in this example, P
It can also be applied to chTr.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、実施例で示したように製造プロセスが
非常に容易であり、低濃度不純物拡散層の寸法は高融点
金属の膜厚により容易に制御しうる。また、ゲート電極
は初期の多結晶Stの膜厚に比較し問題になるほどの膜
厚増加はないため、平桿性は良い。さらに高融点金属シ
リサイドによりゲート配線の低抵抗もはかられた、すぐ
れたGOLD構造の半導体装置を提供できるという効果
を有する。
According to the present invention, as shown in the examples, the manufacturing process is very easy, and the dimensions of the low concentration impurity diffusion layer can be easily controlled by controlling the film thickness of the high melting point metal. Further, since the thickness of the gate electrode does not increase so much as to cause a problem compared to the initial film thickness of polycrystalline St, the flatness of the gate electrode is good. Furthermore, it is possible to provide a semiconductor device with an excellent GOLD structure in which the gate wiring has low resistance due to the high melting point metal silicide.

【図面の簡単な説明】 第1図は本発明の半導体装置を表わす主要断面図。 101 ・ 102・ 103・ 104 Φ P型St基板 素子分離用酸化膜 ゲート酸化膜 ゲート電極 104′ 104′ 105・ 106・ 多結晶5t Tiシリサイド 低濃度N型不純物拡散層 高濃度N型不純物拡散層 以 出願人 セイコーエプソン株式会社[Brief explanation of drawings] FIG. 1 is a main sectional view showing a semiconductor device of the present invention. 101・ 102・ 103・ 104Φ P type St substrate Oxide film for element isolation gate oxide film gate electrode 104' 104' 105・ 106・ polycrystalline 5t Ti silicide Low concentration N-type impurity diffusion layer High concentration N type impurity diffusion layer Below Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] ゲート電極が、多結晶Siと少くともその側壁に設けら
れた高融点金属シリサイドからなり、第1導電型半導体
基板に設けられた第2導電型紙濃度不純物拡散層が、ゲ
ート絶縁膜をはさみ、前記高融点金属シリサイドのほぼ
直下に位置することを特徴とするMIS型半導体装置。
The gate electrode is made of polycrystalline Si and high melting point metal silicide provided at least on the side walls thereof, and a second conductivity type paper concentration impurity diffusion layer provided on the first conductivity type semiconductor substrate sandwiches the gate insulating film. An MIS type semiconductor device characterized by being located almost directly under a high melting point metal silicide.
JP8106789A 1989-03-31 1989-03-31 Mis type semiconductor device Pending JPH02260540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8106789A JPH02260540A (en) 1989-03-31 1989-03-31 Mis type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8106789A JPH02260540A (en) 1989-03-31 1989-03-31 Mis type semiconductor device

Publications (1)

Publication Number Publication Date
JPH02260540A true JPH02260540A (en) 1990-10-23

Family

ID=13736049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8106789A Pending JPH02260540A (en) 1989-03-31 1989-03-31 Mis type semiconductor device

Country Status (1)

Country Link
JP (1) JPH02260540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596207A (en) * 1994-04-08 1997-01-21 Texas Instruments Incorporated Apparatus and method for detecting defects in insulative layers of MOS active devices
US6004831A (en) * 1991-09-25 1999-12-21 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a thin film semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004831A (en) * 1991-09-25 1999-12-21 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a thin film semiconductor device
US6979840B1 (en) * 1991-09-25 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having anodized metal film between the gate wiring and drain wiring
US5596207A (en) * 1994-04-08 1997-01-21 Texas Instruments Incorporated Apparatus and method for detecting defects in insulative layers of MOS active devices

Similar Documents

Publication Publication Date Title
JPH02260540A (en) Mis type semiconductor device
JPH02271674A (en) Semiconductor device
JPH0368133A (en) Solid phase diffusion
JPS62266829A (en) Formation of shallow junction layer
JPH02298074A (en) Mos transistor and manufacture thereof
JP2001036078A5 (en)
JPH05110005A (en) Mos type transistor semiconductor device and manufacture thereof
JPH02288341A (en) Mis-type semiconductor device
JP2926897B2 (en) Method for manufacturing semiconductor device
JPH0319370A (en) Semiconductor device
JPH0227769A (en) Semiconductor device
JPH1074848A (en) Manufacture of semiconductor storage device
JPH04303944A (en) Manufacture of semiconductor device
JPH04112579A (en) Mos type semiconductor device
JP2623711B2 (en) Semiconductor device
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JPS613461A (en) Manufacture of semiconductor device
JPS6379377A (en) Manufacture of mis-fet
JPH021943A (en) Manufacture of semiconductor device
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JP2601209B2 (en) Method for manufacturing semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPS616867A (en) Manufacture of semiconductor device
JPH08204192A (en) Mos semiconductor device and its manufacture