JPH0226016A - Lithography of circuit pattern - Google Patents

Lithography of circuit pattern

Info

Publication number
JPH0226016A
JPH0226016A JP17502988A JP17502988A JPH0226016A JP H0226016 A JPH0226016 A JP H0226016A JP 17502988 A JP17502988 A JP 17502988A JP 17502988 A JP17502988 A JP 17502988A JP H0226016 A JPH0226016 A JP H0226016A
Authority
JP
Japan
Prior art keywords
film
metal thin
electron beam
thin film
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17502988A
Other languages
Japanese (ja)
Inventor
Masahiro Dan
檀 昌宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17502988A priority Critical patent/JPH0226016A/en
Publication of JPH0226016A publication Critical patent/JPH0226016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid charging of a photoresist film or a base film under it securely and facilitate accurate electron beam application control by applying the electron beam to the photoresist film through a metal thin film on a substrate. CONSTITUTION:First, metal such as chrome having a high light shielding effect is applied to the whole one main surface of a reticle substrate 1 by a method such as evaporation and sputtering to form a light shielding film 3 (base film) and then a photoresist film 4 made of polymer resin is built up the light shielding film 3. Then a metal thin film 5 made of aluminum is formed on the photoresist film 4. A reticle 2 obtained like this is housed in a cassette 7 and fixed and, in this state, the reticle surface (metal thin film surface) is scanned to X- and Y-directions by a scanning-controlled electron beam 6. with this constitution, the applied electrons are discharged out through the metal thin film 5, so that charging of the photoresist film or the base film under it can be avoided and accurate electron beam application control can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子線描画によるマスク製造に適用して有効
な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a technique that is effective when applied to mask manufacturing by electron beam lithography.

〔従来の技術〕[Conventional technology]

この種の技術について記載されている例としては、株式
会社工業調査会昭和61年11月18日発行、「電子材
料別冊、超LSI製造・試験装置ガイドブックJPil
O〜114がある。
An example of this type of technology described is "Electronic Materials Special Volume, VLSI Manufacturing and Testing Equipment Guidebook JPil," published by Kogyo Kenkyukai Co., Ltd. on November 18, 1986.
There are 0 to 114.

前記文献にも記載されているように、半導体ウェハに所
定の回路パターンを転写する際には、石英ガラス等で構
成されたマスク基板上にクロム(Cr)の蒸着により遮
光パターンを形成したマスクあるいはレチクル(以下単
に「マスク」と総称する)を用いることが知られている
As described in the above-mentioned literature, when transferring a predetermined circuit pattern onto a semiconductor wafer, a mask or mask is used in which a light-shielding pattern is formed by vapor deposition of chromium (Cr) on a mask substrate made of quartz glass or the like. It is known to use a reticle (hereinafter simply referred to as a "mask").

前記マスクは、第5図に示されるように、マスク基板1
5を構成する石英ガラスの主面全体にわたってクロム(
Cr)等の蒸着あるいはスパッタリングによって遮光膜
3(基礎膜)を被着し、その上面にポリマー等からなる
フォトレジスト材を均一膜厚で塗布する。続いて、該フ
ォトレジスト膜4上に対して電子線を所定形状に沿って
照射し、該照射部分のフォトレジスト膜の化学的特性を
変化させることによって該照射部分あるいは非照射部分
のフォトレジスト膜を除去し、下層の遮光膜を所定形状
に露出させる。次に、この部分露出遮光膜部分をエツチ
ング除去することによりマスク基板15上に所定形状の
遮光パターンが得られるものである。
The mask has a mask substrate 1 as shown in FIG.
Chromium (
A light shielding film 3 (base film) is deposited by vapor deposition or sputtering of Cr) or the like, and a photoresist material made of polymer or the like is applied to the upper surface of the light shielding film 3 to a uniform thickness. Next, the photoresist film 4 is irradiated with an electron beam along a predetermined shape, and the chemical properties of the photoresist film in the irradiated part are changed, thereby changing the photoresist film in the irradiated part or the non-irradiated part. is removed to expose the underlying light-shielding film in a predetermined shape. Next, by etching away this partially exposed light shielding film portion, a light shielding pattern of a predetermined shape is obtained on the mask substrate 15.

ところで電子線照射においては、前記フォトレジスト膜
4上に電子の帯電状態を生じ、そのクーロン効果によっ
て後続の描画における電子線が影響を受け、正確な電子
線の照射制御が困難となる場合がある。特に、誘電率の
高いフォトレジスト膜上に異物が付着されている場合に
は、この部分に電荷の集中が生じ、電子線照射によるパ
ターン描画が不良となる確率の極めて高いことが知られ
ている。
By the way, in electron beam irradiation, a charged state of electrons is generated on the photoresist film 4, and the electron beam in subsequent drawing is affected by the Coulomb effect, making it difficult to accurately control the electron beam irradiation. . In particular, when foreign matter is attached to a photoresist film with a high dielectric constant, it is known that charge is concentrated in this area, and there is an extremely high probability that pattern drawing by electron beam irradiation will be defective. .

上記のような帯電状態を防止するために、第4図に示す
ように、マスク11を収容固定するカセット12におい
て、ばね13等の付勢手段によって一面側に付勢された
状態のマスク11に対してアースピン14を該マスク面
のほぼ垂直上方より突き刺すようにし、マスク基板15
上のフォトレジスト膜4および遮光膜3に対してアース
ピン14を接触させ、カセット12を通じて電子をマス
ク11の外部に放出する技術が一般に行われている。
In order to prevent the above-mentioned charging state, as shown in FIG. On the other hand, the ground pin 14 is pierced from almost perpendicularly above the mask surface, and the mask substrate 15 is
A commonly used technique is to bring an earth pin 14 into contact with the upper photoresist film 4 and light shielding film 3, and to emit electrons to the outside of the mask 11 through the cassette 12.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前記技術においては、アースピン14による
点接触により電子の放出を行うため、アースピン14と
フォトレジスト膜4あるいは遮光膜3との接触が確実に
行われているか否かが微妙な場合があり、複数本(例え
ば4本)のアースピン14のうち1本でも非接触状態、
すなわちアースが不完全な状態となっていると、該非接
触状態の7オトレジスト膜領域あるいは遮光膜領域に電
子の帯電現象を生じ、該範囲における電子線の照射制御
が困難となる場合のあることが本発明者によって明らか
にされた。
However, in the above technique, since electrons are emitted by point contact by the earth pin 14, there are cases where it is delicate whether the earth pin 14 is in reliable contact with the photoresist film 4 or the light shielding film 3. Even one of the plurality of (for example, four) earth pins 14 is in a non-contact state,
In other words, if the grounding is incomplete, electron charging may occur in the non-contact 7 photoresist film region or light shielding film region, making it difficult to control electron beam irradiation in that region. revealed by the present inventor.

本発明は、前記課題に着目してなされたものであり、そ
の目的は、フォトレジスト膜あるいは遮光膜に右ける帯
電現象を生じることなく、信頼性の高い電子線描画を実
現できる技術を提供することにある。
The present invention has been made with attention to the above-mentioned problems, and its purpose is to provide a technology that can realize highly reliable electron beam lithography without causing the charging phenomenon that affects the photoresist film or the light-shielding film. There is a particular thing.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述台よび添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、概ね次の通りである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、基板上に所定の回路パターンを形成する際に
、基板上の基礎膜上に7オトレジスト膜を形成した後、
該フォトレジスト膜上に金属薄膜を被着し、該金属薄膜
を透過させてその下層のフォトレジスト層への電子線照
射を行うものである。
That is, when forming a predetermined circuit pattern on a substrate, after forming a 7 photoresist film on the base film on the substrate,
A metal thin film is deposited on the photoresist film, and the electron beam is transmitted through the metal thin film to irradiate the underlying photoresist layer.

〔作用〕[Effect]

前記した手段によれば、基板上の金属薄膜を通じてフォ
トレジスト膜に対して電子線照射を行うことにより、照
射の際の電子は金属薄膜を通じて外部に放出されるため
、フォトレジスト膜あるいは下層の遮光膜等の基礎膜へ
の帯電を確実に防止でき、正確な電子線の照射制御を実
現できる。
According to the above-mentioned means, by irradiating the photoresist film with an electron beam through the metal thin film on the substrate, the electrons during the irradiation are emitted to the outside through the metal thin film. It is possible to reliably prevent charging of base films such as membranes, and realize accurate electron beam irradiation control.

〔実施例〕〔Example〕

第1図(a)〜(社)は本発明の実施例である回路パタ
ーンの描画手順を示す説明図、第2図は本発明による一
実施例に用いられるカセットを示す斜視図、第3図は本
実施例のレチクルの断面構造を示す断面図である。
FIGS. 1(a) to 1(a) are explanatory diagrams showing a circuit pattern drawing procedure according to an embodiment of the present invention, FIG. 2 is a perspective view showing a cassette used in an embodiment of the present invention, and FIG. FIG. 2 is a cross-sectional view showing the cross-sectional structure of the reticle of this example.

本実施例にふける基板はレチクル基板1であり、本実施
例を通じて得られるレチクル2は、例えば5:1の比率
によって図示されないウェハ上に所定の回路パターンを
縮小投影露光するためのものである。当該レチクル基板
1は所定厚の板状石英ガラスを四角形状に切断・研磨し
て得られるものである。
The substrate used in this embodiment is a reticle substrate 1, and the reticle 2 obtained through this embodiment is for performing reduction projection exposure of a predetermined circuit pattern on a wafer (not shown) at a ratio of, for example, 5:1. The reticle substrate 1 is obtained by cutting and polishing a plate-shaped quartz glass of a predetermined thickness into square shapes.

前記レチクル基板1に対して、その−生面全体にまずク
ロム(Cr)等の遮光効果の高い金属を蒸着あるいはス
パッタリング等の方法で被着し、遮光膜3(基礎膜)を
形成する。
First, a highly light-shielding metal such as chromium (Cr) is deposited on the entire raw surface of the reticle substrate 1 by vapor deposition or sputtering to form a light-shielding film 3 (base film).

続いて、前記遮光膜3上にポリマー樹脂からなるフォト
レジスト膜4を積層する。このようなフォトレジスト膜
4の積層は、例えば高速回転状態のレチクル基板1 (
遮光膜面)に対して液状のフォトレジスト液を所定滴数
だけ滴下し、これを高速回転の遠心力により遮光膜面の
全面に広げる、いわゆる回転塗布法により行われる。
Subsequently, a photoresist film 4 made of polymer resin is laminated on the light shielding film 3. Such a stack of photoresist films 4 can be formed, for example, on the reticle substrate 1 (
This is done by a so-called spin coating method in which a predetermined number of drops of a liquid photoresist solution are dropped onto the light-shielding film surface and spread over the entire surface of the light-shielding film using centrifugal force of high speed rotation.

次に、前記フォトレジスト膜4の上層にアルミニウム(
A1)からなる金属薄膜5を被着する。
Next, aluminum (
A thin metal film 5 consisting of A1) is deposited.

該金属薄膜5の被着は蒸着あるいはスパッタリングによ
り可能であり、該金属薄膜5の膜厚は20〜500オン
グストロ一ム程度となるように制御されている。但し、
該金属薄膜5が十分に導電性を有しており、かつ電子線
6の透過効率の高いものであれば前記膜厚の範囲に限定
されない。以上のようにして第3図に示される断面構造
となる。
The metal thin film 5 can be deposited by vapor deposition or sputtering, and the thickness of the metal thin film 5 is controlled to be approximately 20 to 500 angstroms. however,
The film thickness is not limited to the above range as long as the metal thin film 5 has sufficient conductivity and has a high transmission efficiency for the electron beam 6. As described above, the cross-sectional structure shown in FIG. 3 is obtained.

このようにして得られたレチクル2は第2図に示される
カセット7内に収容固定される。該収容手順は、まずカ
セット7内のばね8等の付勢手段を付勢方向に抗して保
持し、この状態で金属薄膜5の面が上面、すなわち露出
面となるようにしてレチクル2を側方よりスライドさせ
ながら同図の矢印方向に挿入する。ここで、本実施例で
用いられるカセット7は少なくとも、前記金属薄膜5と
接触される部分が導電性金属で構成されており、該カセ
ット部分はアースされている。
The reticle 2 thus obtained is housed and fixed in a cassette 7 shown in FIG. In this accommodation procedure, first, the biasing means such as the spring 8 in the cassette 7 is held against the biasing direction, and in this state, the reticle 2 is placed so that the surface of the metal thin film 5 is the upper surface, that is, the exposed surface. Insert it in the direction of the arrow in the same figure while sliding it from the side. Here, at least the portion of the cassette 7 used in this embodiment that comes into contact with the metal thin film 5 is made of a conductive metal, and this cassette portion is grounded.

このようにレチクル2はカセット7に収容された状態で
、第1図(a)に示されるように電子線6がXY力方向
走査制御されてレチクル面(金属薄膜面)上を照射する
With the reticle 2 housed in the cassette 7 in this manner, the electron beam 6 is scan-controlled in the XY force directions and irradiates the reticle surface (metal thin film surface) as shown in FIG. 1(a).

ここで、第1図■に示されるように、電子線6は金属薄
膜5を透過してその下層のフォトレジスト膜4に達する
。ここで、フォトレジスト膜4において電子線6の照射
された範囲4aは化学的特性が変化し、いわゆる潜像が
形成された状態となる。
Here, as shown in FIG. 1, the electron beam 6 passes through the metal thin film 5 and reaches the underlying photoresist film 4. Here, the chemical characteristics of the area 4a of the photoresist film 4 irradiated with the electron beam 6 change, and a so-called latent image is formed.

この状態で、前記レチクル2をカセット7より取り出し
てアルカリ性の水溶液、あるいはTMAR<fトラメチ
ルアンモニウムハイドロオキサイド)等の有機系の現像
液によって潜像形成部分(電子線照射範囲4a)の金属
薄膜5およびフォトレジスト膜4を除去する。これによ
って第1図(C)に示されるように、レチクル基板1上
にフォトレジスト膜4による所定パターンが形成される
In this state, the reticle 2 is taken out from the cassette 7 and the metal thin film 5 in the latent image forming area (electron beam irradiation range 4a) is treated with an alkaline aqueous solution or an organic developer such as TMAR<f tramethylammonium hydroxide). Then, the photoresist film 4 is removed. As a result, a predetermined pattern of the photoresist film 4 is formed on the reticle substrate 1, as shown in FIG. 1(C).

このように、本実施例−では金属薄膜5とフォトレジス
ト膜4との同一工程における同時除去が可能であるため
、パターン形成に際して処理工程が増加することはない
In this way, in this embodiment, the metal thin film 5 and the photoresist film 4 can be removed simultaneously in the same process, so that the number of processing steps is not increased during pattern formation.

次に、上記により残着状態となっているフォトレジスト
膜4をマスクとして遮光膜3のエツチング処理を行う。
Next, the light-shielding film 3 is etched using the photoresist film 4 remaining as a mask as described above.

このようなエツチング処理は公知技術のため詳細な説明
を省略するが、当該エツチング処理によって第1図(6
)に示されるような、遮光膜3による回路パターンが完
成される。
Since such etching processing is a well-known technique, a detailed explanation will be omitted.
) A circuit pattern is completed using the light shielding film 3 as shown in FIG.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Nor.

たとえば、以上の実施例では5;1の縮小投影露光を行
うレチクルを例に説明したが、■=1の等倍露光を行う
いわゆるマスクであってもよい。
For example, in the above embodiments, a reticle that performs 5:1 reduction projection exposure is used as an example, but a so-called mask that performs equal-magnification exposure of 5:1 may also be used.

また、以上の説明では主として本発明者によってなされ
た発明をその利用分野である、レチクルの形成に適用し
た場合について説明したが、これに限定されるものでは
なく、たとえば半導体ウェハ上における電子線によるパ
ターンの直接描画にも適用できる。
Further, in the above explanation, the invention made by the present inventor is mainly applied to the field of application, which is the formation of a reticle, but the present invention is not limited to this. It can also be applied to direct drawing of patterns.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下記の通りである
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

すなわち、基板上の金属薄膜を通じてフォトレジスト膜
に対して電子線照射を行うことにより、照射の際の電子
は金属薄膜を通じて外部に放出されるため、フォトレジ
スト膜あるいは下層の基礎膜への帯電を確実に防止でき
、正確な電子線の照対制御を実現できる。
In other words, by irradiating the photoresist film with an electron beam through the metal thin film on the substrate, the electrons during the irradiation are emitted to the outside through the metal thin film, thereby reducing the charge on the photoresist film or the underlying base film. This can be reliably prevented and accurate electron beam comparison control can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の実施例である回路パタ
ーンの描画方法の手順を示す説明図、 第2図は本発明による一実施例に用いられるカセットを
示す斜視図、 第3図は実施例のレチクルの断面構造を示す断面図、 第4図は従来技術のカセット構造を示す断面図、第5図
は従来技術におけるマスクの断面構造を示す断面図であ
る。 1・・・レチクル基板、2・・・レチクル、3・・・遮
光膜、4・・・フォトレジスト膜、4a・・・電子線照
射範囲、5・・・金属薄膜、6・・・電子線、7・・・
カセット、8・・・ばね(付勢手段)、11・・・マス
ク、12・・・カセット、13・・・ばね(付勢手段)
、14・・・アースビン、15・・・マスク基板。 第 図 第 図 /
1(a) to 1(d) are explanatory views showing the steps of a circuit pattern drawing method according to an embodiment of the present invention; FIG. 2 is a perspective view showing a cassette used in an embodiment of the present invention; FIG. 3 is a cross-sectional view showing the cross-sectional structure of the reticle of the embodiment, FIG. 4 is a cross-sectional view showing the cassette structure of the prior art, and FIG. 5 is a cross-sectional view showing the cross-sectional structure of the mask in the prior art. DESCRIPTION OF SYMBOLS 1... Reticle substrate, 2... Reticle, 3... Light shielding film, 4... Photoresist film, 4a... Electron beam irradiation range, 5... Metal thin film, 6... Electron beam ,7...
Cassette, 8... Spring (biasing means), 11... Mask, 12... Cassette, 13... Spring (biasing means)
, 14... Earth bin, 15... Mask board. Fig. Fig./

Claims (1)

【特許請求の範囲】 1、基板上に所定の回路パターンを形成する際に、基板
上の基礎膜上にフォトレジスト膜を形成した後、該フォ
トレジスト膜上に金属薄膜を被着し、該金属薄膜を透過
させてその下層のフォトレジスト層への電子線照射を行
うことを特徴とする回路パターンの描画方法。 2、前記基板が透明体からなるマスク基板であり、該マ
スク基板上に形成された基礎膜が遮光膜であることを特
徴とする請求項1記載の回路パターンの描画方法。 3、電子線照射後に、該電子線照射部分の金属薄膜とフ
ォトレジスト膜とを処理液によって同一工程で除去する
ことを特徴とする請求項1記載の回路パターンの描画方
法。 4、上記金属薄膜が50〜200オングストロームの膜
厚で形成されたアルミニウム被膜であることを特徴とす
る請求項1記載の回路パターンの描画方法。
[Claims] 1. When forming a predetermined circuit pattern on a substrate, a photoresist film is formed on the base film on the substrate, a metal thin film is deposited on the photoresist film, and the metal thin film is deposited on the photoresist film. A method for drawing a circuit pattern characterized by irradiating an electron beam through a metal thin film to a photoresist layer below. 2. The method for drawing a circuit pattern according to claim 1, wherein the substrate is a mask substrate made of a transparent material, and the base film formed on the mask substrate is a light-shielding film. 3. The method for drawing a circuit pattern according to claim 1, wherein after the electron beam irradiation, the metal thin film and the photoresist film in the electron beam irradiated portion are removed in the same step using a processing liquid. 4. The method for drawing a circuit pattern according to claim 1, wherein the metal thin film is an aluminum film formed with a thickness of 50 to 200 angstroms.
JP17502988A 1988-07-15 1988-07-15 Lithography of circuit pattern Pending JPH0226016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17502988A JPH0226016A (en) 1988-07-15 1988-07-15 Lithography of circuit pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17502988A JPH0226016A (en) 1988-07-15 1988-07-15 Lithography of circuit pattern

Publications (1)

Publication Number Publication Date
JPH0226016A true JPH0226016A (en) 1990-01-29

Family

ID=15988973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17502988A Pending JPH0226016A (en) 1988-07-15 1988-07-15 Lithography of circuit pattern

Country Status (1)

Country Link
JP (1) JPH0226016A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193065A (en) * 1992-12-24 1994-07-12 Giken Seisakusho Co Ltd Press-in pile driving and drawing machine and press-in piling method for concrete pile, and clamping method therefor
JPH06200525A (en) * 1992-12-28 1994-07-19 Giken Seisakusho Co Ltd Pile press-in method, and pile press-in and pull-out machine therefor
JPH06228960A (en) * 1993-01-28 1994-08-16 Giken Seisakusho Co Ltd Pile jacking method and pile jacking and pulling-out machine
KR100402990B1 (en) * 2001-10-26 2003-10-23 한국과학기술연구원 The optical switching manufacture method using UV LIGA
JP2009268977A (en) * 2008-05-08 2009-11-19 Mitsubishi Rayon Co Ltd Method of forming projecting and recessed parts on coating film surface having thin film metal layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193065A (en) * 1992-12-24 1994-07-12 Giken Seisakusho Co Ltd Press-in pile driving and drawing machine and press-in piling method for concrete pile, and clamping method therefor
JPH06200525A (en) * 1992-12-28 1994-07-19 Giken Seisakusho Co Ltd Pile press-in method, and pile press-in and pull-out machine therefor
JPH06228960A (en) * 1993-01-28 1994-08-16 Giken Seisakusho Co Ltd Pile jacking method and pile jacking and pulling-out machine
KR100402990B1 (en) * 2001-10-26 2003-10-23 한국과학기술연구원 The optical switching manufacture method using UV LIGA
JP2009268977A (en) * 2008-05-08 2009-11-19 Mitsubishi Rayon Co Ltd Method of forming projecting and recessed parts on coating film surface having thin film metal layer

Similar Documents

Publication Publication Date Title
US5656397A (en) Mask having a phase shifter and method of manufacturing same
EP0489542B1 (en) Lithographic techniques
US9760008B2 (en) Direct current superposition freeze
US6723475B2 (en) Reflection-type mask for use in pattern exposure, manufacturing method therefor, exposure apparatus, and method of manufacturing a device
US4814244A (en) Method of forming resist pattern on substrate
US20020045132A1 (en) Pattern forming method and pattern forming apparatus
US6017658A (en) Lithographic mask and method for fabrication thereof
US20040101790A1 (en) Photolithography method including a double exposure/double bake
US8974683B2 (en) Method and system for modifying resist openings using multiple angled ions
JPH0226016A (en) Lithography of circuit pattern
US6096459A (en) Method for repairing alternating phase shifting masks
US20040253802A1 (en) Method of plating electrode formation
US5885756A (en) Methods of patterning a semiconductor wafer having an active region and a peripheral region, and patterned wafers formed thereby
US5064748A (en) Method for anisotropically hardening a protective coating for integrated circuit manufacture
US6156480A (en) Low defect thin resist processing for deep submicron lithography
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
JP2001272769A (en) Photomask and method for manufacturing the same as well as method for manufacturing semiconductor device
KR20000017439A (en) Semiconductor-device manufacturing method having resist-film developing process according to wet treatment
JP3722597B2 (en) Water-soluble polymer coating method and pattern forming method
EP1169670A2 (en) Photolithography method and apparatus configuration for performing photolithography
JPH05265182A (en) Manufacture of photomask having phase shift layer
JPH07244370A (en) Pattern forming method
JPS61262741A (en) Masking substrate
JPH07325385A (en) Forming method of photoresist film and photoplate
GB1583459A (en) Masks their manufacture and the manufacture of microminiature solid-state devices using such masks