JPH0225990B2 - - Google Patents

Info

Publication number
JPH0225990B2
JPH0225990B2 JP57149997A JP14999782A JPH0225990B2 JP H0225990 B2 JPH0225990 B2 JP H0225990B2 JP 57149997 A JP57149997 A JP 57149997A JP 14999782 A JP14999782 A JP 14999782A JP H0225990 B2 JPH0225990 B2 JP H0225990B2
Authority
JP
Japan
Prior art keywords
compound
nco
substrate
silicon oxide
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57149997A
Other languages
Japanese (ja)
Other versions
JPS5939714A (en
Inventor
Iwakichi Sugyama
Seiji Endo
Yukihisa Takaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Seiyaku Kogyo KK
Original Assignee
Matsumoto Seiyaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Seiyaku Kogyo KK filed Critical Matsumoto Seiyaku Kogyo KK
Priority to JP57149997A priority Critical patent/JPS5939714A/en
Publication of JPS5939714A publication Critical patent/JPS5939714A/en
Publication of JPH0225990B2 publication Critical patent/JPH0225990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は珪素酸化物被覆形成法、特に常温付近
の低温で任意に有機基を増減出来る基体表面の珪
素酸化物被覆形成法である。 電子部品用絶縁膜、プラスチツクやガラスの表
面安定化、金属メツキ、薄膜表面の保護や積層
板、液晶セル面配向膜の表面処理等の目的で基板
上に高純度な珪素酸化物被覆を形成して使用する
事は広く知られている。 これらの被覆形成はSiO2のスパツタ、真空蒸
着やシランのCVD法或は基体が珪素の場合には
熱酸化法での処理が行われている。更に最近は取
扱いが簡単で大面積処理に適するものとしてゾ
ル/ゲル法として分類される溶液法が注目されて
来ている。この溶液法は他の方法の如く特別な処
理装置を用いる事なく安全に広表面の処理が出来
る利点があり、この為の処理剤としてはハロゲン
化シランやアルキルシリケートを加水分解するか
又はアルコール−酸水溶液を加えて成る珪素化合
物の結合基の一部又は全てが加水分解されたゾ
ル/ゲルを用いるものであり特公昭52−16488、
特公昭52−20825、特開昭55−34276、特開昭57−
74370、特開昭57−105463、特開昭57−100940〜
44にその諸例が開示されている。 しかしこれらのゾル/ゲル法の場合も被膜形成
は通常200〜600℃の高温で焼成処理しないと酸化
物膜が形成されないので作業の連続性に欠け適用
材質にも制限が生じる為室温又は連続処理が可能
な低温域で珪素酸化物被覆処理をする方法の開発
が要請されていた。そこで室温付近の低温で珪素
酸化物被覆を形成する方法について研究した結果
分子中にSi−NCO結合を含むシランイソシアネ
ートで基体を処理する方法が有効である事を認め
本発明に至つた。 かくて本発明は分子中にSi−NCO結合を有す
るシランイソシアネート化合物で各種材質の基体
表面を処理することからなる珪素酸化物被覆形成
法を提供するものである。 本発明では、かかるシランイソシアネート化合
物とこの化合物と反応してSi−O−M結合(Mは
金属又は非金属元素)を形成し得る多価金属化合
物又はヘテロ元素化合物を併用して基体表面を処
理することによつて珪素酸化物被覆を形成するこ
ともできる。本発明では主として前記シランイソ
シアネート化合物として分子中にSiに直結する
NCO基を少くとも2個含有する化合物が用いら
れる。 本発明について更に詳細に説明すれば、ここで
用いられるシランイソシアネート化合物としては
式Si(NCO)4、RoSi(NCO)4-o、(RO)oSi−
(NCO)4-o(式中Rは置換基を有するか又は有し
ない炭化水素基、n=1、2又は3)の化合物、
又はこれらの化合物の縮合物があげられる。又無
水珪酸やポリシロキサン化合物と上記式の化合物
と縮合したSiに直結したNCO基を2個以上含む
化合物も同様に本発明に用いることができる。こ
のような珪素化合物は単独でまたは2種以上混合
して用いることができる。上記式中Rはメチル、
エチル、ビニル、フエニルその他の置換されない
又は置換された飽和又は不飽和の脂肪族又は芳香
族の炭化水素基であり希望する物性などに応じて
このような有機基を任意に選択、増減してこれら
を導入した珪素酸化物被覆を形成することができ
る。又上記式中n=1〜3の化合物中主としてn
=1〜2の化合物が本発明で用いられるが、n=
3の化合物の場合は基板表面をアルキルシリル化
処理する効果がある。 これらの珪素化合物でプラスチツク、ガラス、
金属その他の各種材質の基体表面を処理するに当
つては、いわゆる流延法、スピンナー法、スプレ
ー法、バーコート法、蒸着法、CVD法等多数の
方法が用いられる。これらの方法で基体表面を処
理して前記珪素化合物を塗布、噴霧などするとき
は、上記のように分子中にSi−NCO結合を有す
る化合物中のSiに直結したNCO基は、特別な触
媒を用いることなく空気中の水分や基体表面の水
分或はOH基等と容易に室温で反応してシロキサ
ン結合を形成するので、単にかかるシランイソシ
アネートを含む化合物で常態雰囲気下に基体表面
を処理するだけで硬化して容易に基体表面に珪素
酸化物被覆を形成することができるのである。 このシランイソシアネート化合物は必要により
他の化合物を併用することができる。たとえば
NCO基と反応する活性水素を有しない化合物を
溶剤として併用することができる。溶剤として用
いることのできる化合物としては例えばn−ヘキ
サン、ベンゼン、トルエン、キシレン、塩化メチ
レン、トリクロルエチレン(トリクレン)、フツ
化炭化水素(フレオン)、ジメチルホルムアミド
(DMF)、ジメチルスルホキシド(DMSO)、ニ
トロベンゼン、酢酸メチル、酢酸エチル、酢酸ブ
チル等を挙げることができる。 又処理に際して密着性やアルカリ移行防止やそ
の他の機能を与えるために、処理時にシランイソ
シアネート化合物中のSiと反応してSi−O−M結
合(Mは下記の如き金属又は非金属元素)を形成
しうる多価金属化合物又はヘテロ元素化合物を併
用することができる。この目的に使用することが
できる化合物としては上記MとしてMg、Ca、
Zn、B、Al、Sn、Ti、Zr、Sb、In、V、Ta、
As、P、Fe、Co、Ni、Cr等の金属又は非金属元
素を含む化合物があげられる。而してこれらの化
合物はアルコキシド、キレート、アシレート、水
酸化物等種々の化合物で使用できるが、非水系で
シランイソシアネート化合物又はこれと前記の如
き溶剤とからなる溶液に溶解できるものでなけれ
ばならない。 本発明の方法は上述のように常態室温の雰囲気
下で処理して良好な珪素酸化物被覆が形成される
が必要により加温して処理することもできること
勿論でありこれによるときは被覆の安定化を促進
することができて好ましい。 かくして本発明の方法によれば室温又はその付
近の低温で湿気硬化法により基体の珪素酸化物被
覆が形成できるが、又希望する物性に応じて有機
基を任意に導入した珪素酸化物被覆が形成できる
ので工業上有用である。 以下に本発明の実施例を示す。例中部は重量部
を示す。 実施例 1−6 硬質スライドガラスを洗剤及びアルコールで充
分に洗浄して試片とした。この試片を10cm/min
の速度の浸漬引上げ法で下記各例の化合物を処理
し65%RH25℃の雰囲気で硬化させ形成させた被
覆の物性を測定した。
The present invention is a method for forming a silicon oxide coating, particularly a method for forming a silicon oxide coating on the surface of a substrate, in which organic groups can be arbitrarily increased or decreased at low temperatures around room temperature. We form high-purity silicon oxide coatings on substrates for purposes such as insulating films for electronic components, surface stabilization of plastics and glass, metal plating, protection of thin film surfaces, laminates, and surface treatment of liquid crystal cell surface alignment films. Its use is widely known. These coatings are formed by SiO 2 sputtering, vacuum evaporation, silane CVD, or when the substrate is silicon, thermal oxidation. Furthermore, recently, a solution method classified as a sol/gel method has been attracting attention because it is easy to handle and suitable for large area processing. This solution method has the advantage of being able to safely treat a wide surface area without using special treatment equipment like other methods, and the treatment agent used for this purpose is hydrolysis of halogenated silanes and alkyl silicates, or alcohol- It uses a sol/gel in which some or all of the bonding groups of a silicon compound are hydrolyzed by adding an acid aqueous solution.
Special Publication No. 52-20825, No. 55-34276, No. 57-
74370, JP-A-57-105463, JP-A-57-100940~
Examples are disclosed in 44. However, even in the case of these sol/gel methods, the oxide film cannot be formed unless the film is formed by firing at a high temperature of 200 to 600°C, so the work is not continuous, and there are restrictions on the materials that can be used, so it is necessary to process at room temperature or continuously. There was a demand for the development of a method for coating silicon oxide at low temperatures. Therefore, as a result of research into a method of forming a silicon oxide coating at a low temperature near room temperature, it was found that a method of treating a substrate with silane isocyanate containing a Si-NCO bond in the molecule was effective, leading to the present invention. Thus, the present invention provides a method for forming a silicon oxide coating, which comprises treating the surface of a substrate made of various materials with a silane isocyanate compound having a Si--NCO bond in the molecule. In the present invention, the substrate surface is treated using a combination of such a silane isocyanate compound and a polyvalent metal compound or a hetero element compound that can react with this compound to form a Si-O-M bond (M is a metal or a non-metal element). A silicon oxide coating can also be formed by doing this. In the present invention, mainly the silane isocyanate compound is directly bonded to Si in the molecule.
Compounds containing at least two NCO groups are used. To explain the present invention in more detail, the silane isocyanate compounds used herein include formulas Si(NCO) 4 , RoSi (NCO) 4-o , (RO) oSi-
(NCO) 4-o (wherein R is a hydrocarbon group with or without a substituent, n = 1, 2 or 3),
Or condensates of these compounds can be mentioned. Further, a compound containing two or more NCO groups directly bonded to Si, which is condensed with a silicic anhydride or a polysiloxane compound and a compound of the above formula, can also be used in the present invention. Such silicon compounds can be used alone or in combination of two or more. In the above formula, R is methyl,
Ethyl, vinyl, phenyl, and other unsubstituted or substituted saturated or unsaturated aliphatic or aromatic hydrocarbon groups, and such organic groups can be arbitrarily selected and increased or decreased depending on the desired physical properties. A silicon oxide coating can be formed. In the above formula, n=1 to 3, mainly n
=1 to 2 compounds are used in the present invention, but n=
In the case of compound No. 3, there is an effect of alkylsilylation treatment on the substrate surface. These silicon compounds can be used to make plastics, glass,
In treating the surface of a substrate made of metal or other various materials, a number of methods are used, such as the so-called casting method, spinner method, spray method, bar coating method, vapor deposition method, and CVD method. When treating the surface of a substrate using these methods and coating or spraying the silicon compound, the NCO group directly bonded to Si in the compound having an Si-NCO bond in the molecule as described above must be treated with a special catalyst. It easily reacts at room temperature with moisture in the air, moisture on the surface of the substrate, or OH groups, etc. to form siloxane bonds without using silane isocyanate, so simply treat the surface of the substrate with a compound containing such silane isocyanate in a normal atmosphere. It is possible to easily form a silicon oxide coating on the substrate surface by curing the silicon oxide coating. This silane isocyanate compound can be used in combination with other compounds if necessary. for example
A compound having no active hydrogen that reacts with the NCO group can be used in combination as a solvent. Examples of compounds that can be used as solvents include n-hexane, benzene, toluene, xylene, methylene chloride, trichlorethylene (triclene), fluorinated hydrocarbons (freon), dimethylformamide (DMF), dimethylsulfoxide (DMSO), and nitrobenzene. , methyl acetate, ethyl acetate, butyl acetate, and the like. Also, in order to provide adhesion, prevent alkali migration, and other functions during processing, it reacts with Si in the silane isocyanate compound to form a Si-O-M bond (M is a metal or nonmetallic element as shown below). A polyvalent metal compound or a hetero element compound that can be used may be used in combination. Compounds that can be used for this purpose include Mg, Ca,
Zn, B, Al, Sn, Ti, Zr, Sb, In, V, Ta,
Compounds containing metal or nonmetallic elements such as As, P, Fe, Co, Ni, and Cr can be mentioned. Therefore, these compounds can be used in various forms such as alkoxides, chelates, acylates, and hydroxides, but they must be non-aqueous and soluble in a solution consisting of a silane isocyanate compound or the above-mentioned solvent. . In the method of the present invention, as described above, a good silicon oxide coating is formed by processing in an atmosphere at normal room temperature, but it is of course possible to perform the treatment under heating if necessary, and when this is used, the coating is stabilized. This is preferable because it can promote the Thus, according to the method of the present invention, a silicon oxide coating can be formed on a substrate by a moisture curing method at room temperature or a low temperature in the vicinity thereof, but a silicon oxide coating can also be formed into which organic groups are optionally introduced depending on the desired physical properties. It is industrially useful. Examples of the present invention are shown below. The middle part of the example shows parts by weight. Example 1-6 A hard glass slide was thoroughly washed with detergent and alcohol to prepare a specimen. 10cm/min of this specimen
The physical properties of the coatings formed by treating the compounds of the following examples with a dipping/pulling method at a speed of 25% and curing them in an atmosphere of 65% RH and 25°C were measured.

【表】 実施例 7 液中ガス導入管と気化ガス導出管を設けた密閉
ガラスフラスコにSi(NCO)4を入れ充分に乾燥し
たN2ガスを通しつつフラスコ温度を80℃に昇温
させた。この状態で導出管から出るSi(NCO)4
化物を含むN2ガスを各種基体表面に吹き付けて
処理し65%RH、25℃の雰囲気で硬化させた。得
られた被覆は良好な物性を示した。
[Table] Example 7 Si(NCO) 4 was placed in a sealed glass flask equipped with a submerged gas inlet pipe and a vaporized gas outlet pipe, and the flask temperature was raised to 80°C while sufficiently dry N 2 gas was passed through. . In this state, N 2 gas containing Si(NCO) 4 vapor released from the outlet tube was sprayed onto the surfaces of various substrates to cure them in an atmosphere of 65% RH and 25°C. The resulting coating showed good physical properties.

【表】 イルム
実施例 8 CH3Si(NCO)310部、Si(NCO)490部の混合物
をシリコン単結晶板に2000rpmでスピンナー塗布
して25℃65%RHで20分間放置後赤外線ランプで
160℃に5分間加熱して均一膜を得た。 この処理膜の表面抵抗1015Ω/cm2であり煮沸テ
ストは25時間であつた。
[Table] Illum Example 8 A mixture of 10 parts of CH 3 Si (NCO) 3 and 90 parts of Si (NCO) 4 was applied to a silicon single crystal plate using a spinner at 2000 rpm, left at 25°C, 65% RH for 20 minutes, and then exposed to an infrared lamp. in
A uniform film was obtained by heating to 160°C for 5 minutes. The surface resistance of this treated membrane was 10 15 Ω/cm 2 and the boiling test was for 25 hours.

Claims (1)

【特許請求の範囲】 1 分子中にSi−NCO結合を含むシランイソシ
アネート化合物で基体表面を処理することからな
る珪素酸化物被覆形成法。 2 シランイソシアネート化合物が分子中にSiに
直結するNCO基を少くとも2個含有する化合物
を含むものである特許請求の範囲第1項記載の方
法。 3 分子中にSi−NCO結合を含むシランイソシ
アネート化合物と、この化合物と反応してSi−O
−M結合(Mは金属又は非金属元素)を形成し得
る多価金属化合物又はヘテロ元素化合物を併用し
て基体表面を処理することからなる特許請求の範
囲第1項記載の方法。
[Scope of Claims] 1. A method for forming a silicon oxide coating, which comprises treating the surface of a substrate with a silane isocyanate compound containing a Si-NCO bond in its molecule. 2. The method according to claim 1, wherein the silane isocyanate compound contains a compound containing at least two NCO groups directly bonded to Si in the molecule. 3 A silane isocyanate compound containing a Si-NCO bond in the molecule reacts with this compound to form Si-O
2. The method according to claim 1, which comprises treating the surface of the substrate using a polyvalent metal compound or a hetero element compound capable of forming a -M bond (M is a metal or a non-metal element).
JP57149997A 1982-08-31 1982-08-31 Formation of silicon oxide coat Granted JPS5939714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57149997A JPS5939714A (en) 1982-08-31 1982-08-31 Formation of silicon oxide coat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149997A JPS5939714A (en) 1982-08-31 1982-08-31 Formation of silicon oxide coat

Publications (2)

Publication Number Publication Date
JPS5939714A JPS5939714A (en) 1984-03-05
JPH0225990B2 true JPH0225990B2 (en) 1990-06-06

Family

ID=15487205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149997A Granted JPS5939714A (en) 1982-08-31 1982-08-31 Formation of silicon oxide coat

Country Status (1)

Country Link
JP (1) JPS5939714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0891953A1 (en) * 1997-07-15 1999-01-20 Central Glass Company, Limited Glass plate with water-repellent film and method for producing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598520B1 (en) * 1986-01-21 1994-01-28 Seiko Epson Corp MINERAL PROTECTIVE FILM
JP2812121B2 (en) * 1986-01-21 1998-10-22 セイコーエプソン株式会社 Optical article manufacturing method
JP2655036B2 (en) * 1986-01-21 1997-09-17 セイコーエプソン株式会社 Optical article manufacturing method
US5783299A (en) * 1986-01-21 1998-07-21 Seiko Epson Corporation Polarizer plate with anti-stain layer
US5759643A (en) * 1987-01-16 1998-06-02 Seiko Epson Corporation Polarizing plate and method of production
JPH07113683B2 (en) * 1987-04-02 1995-12-06 セイコーエプソン株式会社 Optical article having inorganic coating film and method for producing the same
JPH062833B2 (en) * 1988-06-03 1994-01-12 帝人株式会社 Release film
JPH05341108A (en) * 1993-01-20 1993-12-24 Seiko Epson Corp Method for reforming surface of inorganic coat film
JPH0682603A (en) * 1993-02-03 1994-03-25 Seiko Epson Corp Antireflective optical article and its surface reforming method
JPH0688902A (en) * 1993-02-03 1994-03-29 Seiko Epson Corp Optical article having inorganic coating film and modifying method for its surface
JPH0682605A (en) * 1993-04-08 1994-03-25 Seiko Epson Corp Optical article having inorganic coating film and its surface reforming method
US6942924B2 (en) 2001-10-31 2005-09-13 Chemat Technology, Inc. Radiation-curable anti-reflective coating system
JP3915054B2 (en) * 2002-03-05 2007-05-16 株式会社トリケミカル研究所 Film forming material, film forming method, and element
JP4353379B2 (en) * 2006-12-19 2009-10-28 株式会社トリケミカル研究所 Film forming material, film forming method, and element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0891953A1 (en) * 1997-07-15 1999-01-20 Central Glass Company, Limited Glass plate with water-repellent film and method for producing same

Also Published As

Publication number Publication date
JPS5939714A (en) 1984-03-05

Similar Documents

Publication Publication Date Title
JPH0225990B2 (en)
TW589356B (en) Composition for forming ceramic material and process for producing ceramic material
JP3701700B2 (en) Method for forming Si-O containing film
KR100289850B1 (en) Method of coating substrate with silica precursor
JPH07283212A (en) Formation of covering containing si-o
JPS5898367A (en) Silicone film forming composition and production thereof
JPH0559154B2 (en)
JP2000026610A (en) Boron-and/or aluminum-containing mixture, composite material and coating
JPS58167597A (en) Fluoroaminosilane
JP3998979B2 (en) Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film
US5820923A (en) Curing silica precursors by exposure to nitrous oxide
EP0724000B1 (en) Method of forming an insoluble coating on a substrate
JP3251761B2 (en) Method for depositing borosilicate-containing coatings on electronic substrates
JP2752968B2 (en) Method of forming silica-based coating
JPS62247302A (en) Method for modifying surface of inorganic coat film
WO2020217902A1 (en) Mixed composition
JPH032271A (en) Preceramic composition and ceramic product
JP2520834B2 (en) Inorganic film forming method and film forming article
KR102462034B1 (en) Agent for forming adhesive coating for aluminum oxide or aluminum substrate
JPH078900A (en) Production of high water-repellent material
JP3100704B2 (en) Sealing agent for inorganic coating and method for sealing inorganic coating
JPH0726062B2 (en) Surface treatment agent for inorganic coated film
JPH0532410A (en) Flattended film
JPH04351684A (en) Protective film
JPH028966B2 (en)