JPH0682603A - Antireflective optical article and its surface reforming method - Google Patents

Antireflective optical article and its surface reforming method

Info

Publication number
JPH0682603A
JPH0682603A JP5016505A JP1650593A JPH0682603A JP H0682603 A JPH0682603 A JP H0682603A JP 5016505 A JP5016505 A JP 5016505A JP 1650593 A JP1650593 A JP 1650593A JP H0682603 A JPH0682603 A JP H0682603A
Authority
JP
Japan
Prior art keywords
optical article
film
antireflection
coating
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5016505A
Other languages
Japanese (ja)
Inventor
Mikito Nakajima
幹人 中島
Etsuo Okanoe
悦男 岡上
Takao Mogami
隆夫 最上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5016505A priority Critical patent/JPH0682603A/en
Publication of JPH0682603A publication Critical patent/JPH0682603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To prevent tarnish due to water, to obviate a decrease in adhesion due to water and to improve the durability of an antireflection coating by allowing an end-silanol org. silane compd. having a hydrophobic group with the surface of the coating. CONSTITUTION:A single or multiple-layered antireflection coating with the surface layer film consisting essentially of SiO2 is provided on the surface of a synthetic resin substrate to constitute an optical article. An end-silanol org. silane compd. is allowed to react with the surface of the coating. Trimethylsilanol, triethylsilanol, diphenylsilanediol, triphenylsilanol, 1,4-bis(hydroxyldimethylsilyl)benzene, etc., are exemplified as the silane compd. The silane compd. is applied on the surface by the dip, spinner or spray method and subjected to a reaction. The gaseous silane compd. is allowed to react with the coating surface in vacuum or in the atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反射防止性を有する光
学物品及びその表面状態の改質法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical article having an antireflection property and a method for modifying the surface condition thereof.

【0002】[0002]

【従来の技術】真空蒸着法、イオンプレーティング法、
スパッタリング法などによって得られる無機コート膜
は、レンズ,ディスプレー装置のパネルや種々の光学材
料の反射防止膜,ハードコート膜,各種機能性膜などに
広く用いられている。特にSiO2膜は、その基板との
付着力、硬度、取扱い易さなどの点で幅広く使用されて
いる。
2. Description of the Related Art Vacuum deposition method, ion plating method,
The inorganic coating film obtained by the sputtering method or the like is widely used for lenses, panels of display devices, antireflection films of various optical materials, hard coat films, various functional films, and the like. In particular, the SiO 2 film is widely used because of its adhesion to the substrate, hardness, and ease of handling.

【0003】[0003]

【発明が解決しようとする課題】しかし、SiO2等の
無機コート膜は、Si,Na,Ca等の不純物を含む水
滴等が付着した場合、乾燥する過程に於いて不純物が無
機コート膜表面に残り、無機コート膜と強固に結合し,
いわゆるヤケ現象を起こす。
However, when an inorganic coating film such as SiO 2 is adhered with water droplets containing impurities such as Si, Na, Ca, etc., the impurities are deposited on the surface of the inorganic coating film during the drying process. The rest is firmly bonded to the inorganic coating film,
The so-called burn phenomenon occurs.

【0004】また、蒸着による膜はバルクに比べ一般に
密度が小さく、膜内での水分子、気体分子等の移動も容
易であると考えられている。そのため、水分子等が膜の
表面に吸着、その後拡散により膜と基材の界面に達し、
膜の密着性に悪影響を及ぼすなど、耐久性の低下を招い
ていた。
In addition, a film formed by vapor deposition generally has a lower density than a bulk film, and it is considered that water molecules, gas molecules and the like can easily move within the film. Therefore, water molecules are adsorbed on the surface of the film, and then reach the interface between the film and the substrate by diffusion,
This adversely affects the adhesiveness of the film, leading to a decrease in durability.

【0005】そこで本発明は、この様な問題点を解決す
るもので、その目的とするところは、反射防止性を有す
る光学物品の表面状態を改質し、上記に挙げたようなヤ
ケ現象を解消できうる機能を表面に持たせるところにあ
る。
Therefore, the present invention is intended to solve such a problem, and an object thereof is to modify the surface condition of an optical article having an antireflection property to prevent the above-mentioned burn-off phenomenon. There is a function that can be solved on the surface.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の反射
防止性を有する光学物品及びその表面改質法は、合成樹
脂基材に設けられた表層膜が主としてSiO2からなる
単層または多層の反射防止膜の表面に疎水性を有する末
端シラノール有機シラン化合物を反応させたことを特徴
とする。
That is, an optical article having an antireflection property and a method for modifying the surface thereof according to the present invention include a single-layer or multi-layer structure in which a surface layer film provided on a synthetic resin substrate is mainly composed of SiO 2 . It is characterized in that the surface of the antireflection film is reacted with a terminal silanol organosilane compound having hydrophobicity.

【0007】さらには、真空中あるいは大気中で気体の
上記シラン化合物を反応させたことを特徴とする。
Further, the invention is characterized in that the gaseous silane compound is reacted in vacuum or in the atmosphere.

【0008】反射防止性を有する光学物品に処理を行な
うには、すでに基材上に存在しているコート膜の性質,
密着性,耐久性を低下させずに処理を行なう必要があ
る。その為には、密着性,耐久性を低下させない温度及
び環境で、かつ反射防止膜等を処理する場合、分光特性
に影響を与えないなど、処理前の諸特性に影響を与えな
い程度の表面付近で反応を行なう処理が望ましい。
In order to treat an optical article having an antireflection property, the nature of the coating film already present on the substrate,
It is necessary to perform the treatment without lowering the adhesion and durability. For that purpose, the surface and the temperature of the environment where adhesion and durability are not deteriorated, and when processing anti-reflection coating, etc. It is desirable to carry out the reaction in the vicinity.

【0009】光学物品表面に撥水性を付与するには、従
来から用いられているシリコンオイルを薄く塗布した
り、四フッ化エチレンを表面に形成させて表面の撥水性
を高める方法が知られている。しかし、これらの方法
は、処理剤が、表面と反応するわけではなく化学的には
表面と結合しているとは言えない。その為、拭きや溶剤
で容易に表面から処理剤が脱落していた。また、末端シ
ラノールを有する有機ポリシロキサンなどSiO2と親
和性のよいと思われる物質も、長い分子鎖に対し数少な
いシラノール基を有しているだけで、塗布して乾燥させ
ただけでは十分な密着性は得られない。十分な密着性を
得るにはSiO2表面と処理剤を反応させることが大切
である。
In order to impart water repellency to the surface of an optical article, conventionally known methods include thinly applying silicone oil or forming tetrafluoroethylene on the surface to increase the water repellency of the surface. There is. However, in these methods, the treating agent does not react with the surface and is not chemically bound to the surface. Therefore, the treating agent was easily removed from the surface by wiping or solvent. In addition, substances such as organopolysiloxanes having terminal silanols, which are thought to have a good affinity with SiO 2 , have only a few silanol groups for long molecular chains, and sufficient adhesion can be achieved simply by coating and drying. I can't get sex. It is important to react the SiO 2 surface with the treatment agent in order to obtain sufficient adhesion.

【0010】本発明で用いるシラン化合物は、水酸基を
所有する無機コート膜と脱水反応が起こり、水酸基の存
在する表面の反応に非常に有効である。
The silane compound used in the present invention undergoes a dehydration reaction with an inorganic coating film having a hydroxyl group, and is very effective for a reaction on the surface having a hydroxyl group.

【0011】例えば、SiO2膜表面付近では、下に示
すような反応が起こると考えられる。
For example, the following reaction is considered to occur near the surface of the SiO 2 film.

【0012】[0012]

【化1】 [Chemical 1]

【0013】本発明では、シラン化合物の反射防止膜表
面との反応に関与する基以外の置換基が疎水性の物を用
いる。
In the present invention, a hydrophobic substance is used as the substituent other than the group involved in the reaction of the silane compound with the surface of the antireflection film.

【0014】本発明で用いうるシラン化合物としては、
トリメチルシラノール,トリエチルシラノール,ジフエ
ニルシランジオール,トリフェニルシラノール,1,4
−ビス(ヒドロキシジメチルシリル)ベンゼン,等が挙
げられる。本発明では、これらに限定されるのではな
く、−Si−OHの結合を有する構造ならば、本発明の
目的を達成出来ることは言うまでもない。また、本発明
において、使用するシラン化合物同志が反射防止膜表面
との反応前もしくは反応後結合し、ポリマー化すること
が有り得るが、本発明の目的とするところの重合度を得
るように調整すればなんら問題はない。また、目的に応
じて1種以上のシラン化合物を混合して用いても良い。
The silane compound usable in the present invention includes:
Trimethylsilanol, triethylsilanol, diphenylsilanediol, triphenylsilanol, 1,4
-Bis (hydroxydimethylsilyl) benzene, and the like. In the present invention, it is needless to say that the present invention is not limited to these, and a structure having a bond of -Si-OH can achieve the object of the present invention. Further, in the present invention, the silane compounds used may combine with each other before or after the reaction with the surface of the antireflection film to form a polymer, which may be adjusted so as to obtain the degree of polymerization which is the object of the present invention. No problem whatsoever. Further, one or more kinds of silane compounds may be mixed and used depending on the purpose.

【0015】本発明において、疎水性の基を有するシラ
ン化合物を用いることにより、水によるヤケの防止、膜
の耐久性の向上、水による密着性の低下防止及び摩擦係
数の低下により耐摩耗性の向上などのメリットが得られ
る。
In the present invention, by using a silane compound having a hydrophobic group, it is possible to prevent burns due to water, improve the durability of the film, prevent the adhesion from decreasing due to water, and reduce the friction coefficient to improve the wear resistance. Benefits such as improvement can be obtained.

【0016】シラン化合物を反射防止膜表面に反応させ
るにはDiP法,スピンナー法,スプレー法等により表
面にシラン化合物を塗布し反応させる方法を用いる事が
出来るが、塗布膜厚を調整するためにシラン化合物を希
釈するための溶媒が必要となる。また、表面との反応に
寄与しなかったシラン化合物を洗浄するための溶媒も必
要である。水酸基を有する水系、アルコール系の溶媒
は、溶媒とシラン化合物が反応したり、溶解性、洗浄性
が悪いため、使用することが困難である。そのため、今
までは人体に有害な溶媒、環境に有害な溶媒(例えばフ
ロン)を使用することが一般的であった。フロンに関し
てはオゾン層破壊物質として世界的に全廃の動きがあ
り、環境保護の面からも使用を避けることが望ましい。
In order to react the silane compound on the surface of the antireflection film, a method of coating the silane compound on the surface and reacting it by a DiP method, a spinner method, a spray method or the like can be used. A solvent is required to dilute the silane compound. Further, a solvent for cleaning the silane compound that did not contribute to the reaction with the surface is also required. It is difficult to use a water-based or alcohol-based solvent having a hydroxyl group because the solvent and the silane compound react with each other and the solubility and the cleaning property are poor. Therefore, until now, it has been common to use a solvent harmful to the human body and a solvent harmful to the environment (for example, CFCs). CFCs are being abolished worldwide as ozone-depleting substances, and it is desirable to avoid their use in terms of environmental protection.

【0017】また、DiP法、スピンナー法、スプレー
法の場合、真空中で形成した反射防止性を有する光学物
品を、真空槽内から取り出して新たな工程を増す必要が
あり、洗浄工程も付設しなければならず効率的とは言え
ない。従って、反応方法としては、真空雰囲気中あるい
は大気中でシラン化合物のガスを反射防止膜表面と反応
させる方法など用いることが望ましい。
Further, in the case of the DiP method, the spinner method, and the spray method, it is necessary to take out an optical article having an antireflection property formed in a vacuum from the vacuum chamber to add a new step, and a washing step is additionally provided. It has to be and is not efficient. Therefore, as the reaction method, it is desirable to use a method of reacting the gas of the silane compound with the surface of the antireflection film in a vacuum atmosphere or in the air.

【0018】DiP法などの場合、塗布中の雰囲気、例
えば、湿度、温度をコントロールすることにより反応速
度が制御出来、また浸漬時間,液温,シラン化合物の濃
度を調節することにより所望の処理膜を得ることが出来
る。さらに、塗布後、コート膜の特性に影響を与えない
程度の加熱や光照射を行なうことにより反応を促進すれ
ばより効果的である。気体のシラン化合物で処理する場
合、真空槽内で反射防止膜を形成後、シラン化合物のガ
スを導入し、反応させてもよい。また、反射防止膜形成
後、アルゴンや酸素等のプラズマ雰囲気中にシラン化合
物のガスを導入し、反応性蒸着、反応性イオンプレーテ
ィング等を行なうことも可能である。
In the case of the DiP method or the like, the reaction rate can be controlled by controlling the atmosphere during coating, for example, the humidity and the temperature, and the desired treatment film can be controlled by adjusting the immersion time, the liquid temperature and the concentration of the silane compound. Can be obtained. Further, it is more effective if the reaction is promoted by performing heating or light irradiation to such an extent that the characteristics of the coat film are not affected after coating. When treating with a gaseous silane compound, the silane compound gas may be introduced and reacted after forming the antireflection film in a vacuum chamber. After forming the antireflection film, it is also possible to introduce a gas of a silane compound into a plasma atmosphere of argon, oxygen or the like, and perform reactive vapor deposition, reactive ion plating or the like.

【0019】シラン化合物との反応性を高める為に前処
理として、反射防止膜表面を、洗浄,薬品処理,プラズ
マ処理を行なうことにより効果的である。
It is effective to perform cleaning, chemical treatment, or plasma treatment on the surface of the antireflection film as a pretreatment for increasing the reactivity with the silane compound.

【0020】反応に用いるシラン化合物は、単体もしく
は混合で用いてもよく、溶媒で希釈したり、酸や塩基で
前処理して使用することも可能である。
The silane compound used in the reaction may be used alone or as a mixture, or may be diluted with a solvent or pretreated with an acid or a base before use.

【0021】反応が終了後、大気中の水分と反応したシ
ラン化合物,反射防止膜表面との反応に寄与できなかっ
たシラン化合物を洗浄により洗い流すことにより、処理
前の反射防止特性などの外観が変わらない処理を行なう
ことができる。
After the reaction is completed, the silane compound that has reacted with moisture in the atmosphere and the silane compound that could not contribute to the reaction with the surface of the antireflection film are washed away to change the appearance such as the antireflection property before the treatment. No processing can be done.

【0022】今まで述べた処理は、表層膜が主としてS
iO2からなる単層または多層の反射防止膜表面に可能
である。以下、実施例に基づき本発明を詳細に説明する
が、本発明はこれらに限定されるものではない。
In the processing described so far, the surface layer film is mainly S.
consisting iO 2 can be a single or multi-layer anti-reflection film surface. Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

【0023】[0023]

【実施例】【Example】

(実施例1)ジエチレングリコールビス(アリルカーボ
ネート)製樹脂からなる合成樹脂製レンズをアセトンで
洗浄し、その後真空蒸着法により基板温度50℃で、樹
脂表面に反射防止処理を行なった。膜構成はレンズ側か
らSiO2層がλ/4,ZrO2層とSiO2層の合計膜
厚がλ/4,ZrO2層がλ/4,最上層のSiO2層が
λ/4とした(ここでλ=520nm)。次にこのレン
ズをイソプロピルアルコールで洗浄し、十分乾燥させた
後、トリメチルシラノール50gとテトラヒドロフラン
450g混合した液温10℃の溶液に3分間浸漬した。
浸漬後、湿度75%、温度50℃の雰囲気中で15分間
放置し、その後アセトンにより洗浄を行なった。
(Example 1) A synthetic resin lens made of a resin made of diethylene glycol bis (allyl carbonate) was washed with acetone, and then the resin surface was subjected to an antireflection treatment at a substrate temperature of 50 ° C by a vacuum deposition method. The film structure was such that the SiO 2 layer was λ / 4 from the lens side, the total film thickness of the ZrO 2 layer and the SiO 2 layer was λ / 4, the ZrO 2 layer was λ / 4, and the uppermost SiO 2 layer was λ / 4. (Where λ = 520 nm). Next, this lens was washed with isopropyl alcohol, dried sufficiently, and then dipped in a solution of 50 g of trimethylsilanol and 450 g of tetrahydrofuran mixed at a liquid temperature of 10 ° C. for 3 minutes.
After the immersion, it was left for 15 minutes in an atmosphere having a humidity of 75% and a temperature of 50 ° C., and then washed with acetone.

【0024】洗浄後のレンズの外観、反射防止の特性に
大きな変化はみられなかった。
No significant change was observed in the appearance and antireflection characteristics of the lens after washing.

【0025】得られたコート膜の評価方法は以下に示す
方法を用いた。
The evaluation method of the obtained coat film was as follows.

【0026】 ヤケ性:水道水をコート膜表面にたら
し、乾燥させた後、布で残留物を拭き取った。
Burnability: Tap water was poured on the surface of the coating film, and the coating film was dried, and then the residue was wiped off with a cloth.

【0027】A:完全に拭き取れる B:一部残留物が残る C:残留物がほとんど残る 耐摩耗性:コート膜表面を布(木綿)で1kgの荷重
をかけ1000回摩擦した。傷のついた度合を以下の3
段階に分けて評価した。
A: Completely wiped off B: Partial residue remained C: Almost residue left abrasion resistance: The surface of the coated film was rubbed 1000 times with a cloth (cotton) under a load of 1 kg. The degree of scratches is the following 3
The evaluation was divided into stages.

【0028】A:全く傷がつかない B:1〜10本、細かい傷がつく C:細かく無数に傷がつく 密着性:37℃の純水に1週間浸漬した後コート膜
の密着性を調べた。
A: No scratches B: 1 to 10 fine scratches C: Countless fine scratches Adhesion: After dipping in pure water at 37 ° C. for 1 week, the adhesion of the coat film was examined. It was

【0029】JIS・D−0202に準じてクロスカッ
トテープ試験によって行なった。即ち、ナイフを用い、
基盤表面に1mm間隔に切り目を入れ、1cm2のマス
目を形成させる。次にその上にセロファン粘着テープ
(日東化学(株)製“セロテープ”)を強くおしつけた
後、表面から90゜方向へ、急に引っ張り剥離したの
ち、コート被膜の残っているマス目をもって密着性の指
標とした。
A cross-cut tape test was conducted according to JIS D-0202. That is, using a knife,
Incisions are made on the surface of the substrate at 1 mm intervals to form 1 cm 2 squares. Next, after strongly sticking a cellophane adhesive tape (“Cellotape” manufactured by Nitto Kagaku Co., Ltd.) on it, it was pulled by 90 ° from the surface and peeled off. Was used as an index.

【0030】 接触角:接触角計(協和化学(株)製
CA−D型)を用いて液滴法により測定した。
Contact angle: Measured by a droplet method using a contact angle meter (CA-D type manufactured by Kyowa Chemical Co., Ltd.).

【0031】(実施例2)実施例1で、シラン化合物に
よる処理をする前のレンズを用い、以下に示す方法で処
理を行なった。
Example 2 Using the lens before the treatment with the silane compound in Example 1, the treatment was carried out by the following method.

【0032】トリエチルシラノール100gとテトラヒ
ドロフラン300gとを混合した液温20℃の溶液に3
0秒浸漬した後、ジエチルアミン蒸気中に1分間放置
し、水洗した。得られたコート膜の評価方法は実施例1
に示した評価方法に従って行った。
3 g of a mixture of 100 g of triethylsilanol and 300 g of tetrahydrofuran at a liquid temperature of 20 ° C.
After soaking for 0 second, it was left for 1 minute in diethylamine vapor and washed with water. The evaluation method of the obtained coat film is described in Example 1.
The evaluation was performed according to the evaluation method shown in.

【0033】(実施例3)実施例1で最上層にSiO2
層を形成後、SiO2表面をアルゴンプラズマで1分間
処理を行った後に、トリメチルシラノールを5cc/m
inの割合で真空槽内へ2分間導入した。その時の表面
温度は60℃であった。その後レンズを大気中に取り出
した。外観は、処理前とほとんど変化がなかった。得ら
れたコート膜の評価方法は実施例1に従って行った。
(Embodiment 3) In Embodiment 1, the uppermost layer is SiO 2
After forming the layer, the SiO 2 surface was treated with argon plasma for 1 minute, and then trimethylsilanol was added at 5 cc / m 2.
It was introduced into the vacuum chamber at a ratio of in for 2 minutes. The surface temperature at that time was 60 ° C. After that, the lens was taken out into the atmosphere. The appearance was almost unchanged from that before the treatment. The evaluation method of the obtained coat film was performed according to Example 1.

【0034】(実施例4)イソプロピルアルコールで洗
浄されたアクリル板を、以下に述べるコーティング液
で、ディッピング法により、液温5℃、引き上げ速度2
0cm/minの条件で塗布した後、熱風乾燥炉中で70℃
で5時間加熱硬化し、さらに、殺菌ランプ((株)東芝
製GL−10)とアクリル板との距離を10cmにし、
30秒間光照射を行った。
Example 4 An acrylic plate washed with isopropyl alcohol was coated with the coating liquid described below by a dipping method at a liquid temperature of 5 ° C. and a pulling rate of 2
After coating at 0 cm / min, 70 ℃ in a hot air drying oven
And heat-cured for 5 hours, and further, the distance between the germicidal lamp (GL-10 manufactured by Toshiba Corp.) and the acrylic plate was set to 10 cm,
Light irradiation was performed for 30 seconds.

【0035】コーティング液は次の様にして作成した。The coating liquid was prepared as follows.

【0036】攪袢装置を備えた反応容器中にエタノール
200g,エタノール分散コロイダルシリカ180g
(触媒化成工業(株)製“オスカル1232”),γ−
メタクリロオキシプロピルトリメトキシシラン45g,
γ−グリシドキシプロピルトリメトキシシラン30g,
フローコントロール剤0.5g,アルミニウムアセチル
アセトネート3g及び0.05N硝酸40gを加え、室
温で2時間攪袢をし、コーティング液とした。
200 g of ethanol and 180 g of ethanol-dispersed colloidal silica in a reaction vessel equipped with a stirring device.
(Catalyst Kasei Co., Ltd. "Oscar 1232"), γ-
45 g of methacrylooxypropyltrimethoxysilane,
γ-glycidoxypropyltrimethoxysilane 30 g,
A flow control agent (0.5 g), aluminum acetylacetonate (3 g) and 0.05N nitric acid (40 g) were added, and the mixture was stirred at room temperature for 2 hours to give a coating solution.

【0037】上記の様にして得られたアクリル板に、実
施例1と同様に反射防止処理を行い、その後、ジフェニ
ルシランジオール15gメチルセロソルブ240gを混
合した液温10℃の溶液に、2分間浸漬し、その後、湿
度70%,温度40℃の雰囲気中に10分間放置した。
その後、水洗及びアセトンによる洗浄を行った。洗浄上
りの外観に特に変化はみられなかった。得られたコート
膜の評価方法は実施例1に従って行った。
The acrylic plate obtained as described above was subjected to antireflection treatment in the same manner as in Example 1, and then immersed in a solution having a liquid temperature of 10 ° C. mixed with 15 g of diphenylsilanediol and 240 g of methyl cellosolve for 2 minutes. Then, it was left for 10 minutes in an atmosphere having a humidity of 70% and a temperature of 40 ° C.
Then, washing with water and washing with acetone were performed. No particular change was observed in the appearance after washing. The evaluation method of the obtained coat film was performed according to Example 1.

【0038】(比較例1)実施例1で得られたシラン化
合物による処理をする前の反射防止膜つきの合成樹脂製
レンズを比較例1とした。
Comparative Example 1 A synthetic resin lens having an antireflection film before the treatment with the silane compound obtained in Example 1 was used as Comparative Example 1.

【0039】(比較例2)実施例4で得られたシラン化
合物による処理をする前の反射防止膜つきのアクリル板
を比較例2とした。
Comparative Example 2 An acrylic plate with an antireflection film before the treatment with the silane compound obtained in Example 4 was used as Comparative Example 2.

【0040】上記、実施例1〜4,比較例1〜2の評価
結果はまとめて表1に示した。
The evaluation results of Examples 1 to 4 and Comparative Examples 1 and 2 are summarized in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】反射防止性を有する光学物品表面に疎水
性を有するシラン化合物を反応させたことにより、光学
物品表面の物性が変化し、光学物品の特性を著しく変化
させることができる。疎水性を表面に持たせたことによ
り、水やその中に含まれる不純物と光学物品表面の結合
性が弱まり、ヤケ現象の防止につながる。
By reacting the surface of the optical article having antireflection property with the hydrophobic silane compound, the physical properties of the surface of the optical article are changed, and the characteristics of the optical article can be remarkably changed. By imparting hydrophobicity to the surface, the bond between water and impurities contained therein and the surface of the optical article is weakened, which leads to prevention of the burn phenomenon.

【0043】また、疎水性である為に、水に対し表面が
フィルターの役目をはたし、水分による反射防止膜全体
の耐久性劣化を防ぐことができる。さらに表面の摩擦係
数が低下することにより、付着したゴミなどのすべりが
よくなり耐摩耗性が向上する。さらに水滴が、容易に膜
から落ちるため、雨の日などに便利である。
Further, since it is hydrophobic, the surface acts as a filter against water, and it is possible to prevent deterioration of the durability of the entire antireflection film due to water. Further, the friction coefficient on the surface is reduced, so that the dirt and the like that have adhered are better slipped and the wear resistance is improved. In addition, water drops easily fall off the membrane, which is convenient on rainy days.

【0044】気体のシラン化合物を反応させる方法を用
いると、溶剤(例えばフロン)を使用する必要がなくな
り、地球に優しい処理が可能となる。
When the method of reacting a gaseous silane compound is used, it is not necessary to use a solvent (for example, chlorofluorocarbon), and a treatment friendly to the earth becomes possible.

【0045】本発明は、このような効果を有するため、
合成樹脂製眼鏡レンズ,カメラレンズ,表示用パネル,
時計用ガラス,窓ガラス等、反射防止性を有する光学部
品に適用することが可能である。
Since the present invention has such effects,
Synthetic resin eyeglass lens, camera lens, display panel,
It can be applied to optical components having antireflection properties such as watch glass and window glass.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂製基材に設けられた表層膜が主
としてSiO2からなる単層または多層の反射防止膜の
表面に疎水性基を有する末端シラノール有機シラン化合
物を反応させたことを特徴とする反射防止性を有する光
学物品。
1. A surface layer film provided on a synthetic resin base material is obtained by reacting a terminal silanol organosilane compound having a hydrophobic group on the surface of a single-layer or multilayer antireflection film mainly composed of SiO 2. An optical article having antireflection property.
【請求項2】 反射防止性を有する光学物品が合成樹脂
製レンズまたはハードコート層を有する合成樹脂製レン
ズであることを特徴とする請求項1記載の反射防止性を
有する光学物品。
2. The optical article having antireflection properties according to claim 1, wherein the optical article having antireflection properties is a synthetic resin lens or a synthetic resin lens having a hard coat layer.
【請求項3】 合成樹脂製レンズが眼鏡用レンズである
ことを特徴とする請求項2記載の反射防止性を有する光
学物品。
3. The optical article having antireflection properties according to claim 2, wherein the synthetic resin lens is an eyeglass lens.
【請求項4】 基材の表面に、表層膜が主としてSiO
2である無機物からなる単層または多層の反射防止膜を
設け、その表面に真空中あるいは大気中で気体の疎水性
基を有する末端シラノール有機シラン化合物を反応させ
たことを特徴とする反射防止性を有する光学物品の表面
改質方法。
4. The surface layer film is mainly composed of SiO 2 on the surface of the base material.
The monolayer or multilayer antireflection film consisting of 2. The term inorganic is provided, the anti-reflection properties, characterized in that is reacted terminal silanol organic silane compound having a hydrophobic group of gases in vacuum or in the atmosphere on the surface A method for modifying the surface of an optical article having the following.
JP5016505A 1993-02-03 1993-02-03 Antireflective optical article and its surface reforming method Pending JPH0682603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5016505A JPH0682603A (en) 1993-02-03 1993-02-03 Antireflective optical article and its surface reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5016505A JPH0682603A (en) 1993-02-03 1993-02-03 Antireflective optical article and its surface reforming method

Publications (1)

Publication Number Publication Date
JPH0682603A true JPH0682603A (en) 1994-03-25

Family

ID=11918137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5016505A Pending JPH0682603A (en) 1993-02-03 1993-02-03 Antireflective optical article and its surface reforming method

Country Status (1)

Country Link
JP (1) JPH0682603A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851674A (en) * 1997-07-30 1998-12-22 Minnesota Mining And Manufacturing Company Antisoiling coatings for antireflective surfaces and methods of preparation
WO2000002233A2 (en) * 1998-07-07 2000-01-13 Alliedsignal Inc. Simplified process for producing nanoporous silica
US6277485B1 (en) 1998-01-27 2001-08-21 3M Innovative Properties Company Antisoiling coatings for antireflective surfaces and methods of preparation
GB2424382A (en) * 2005-02-25 2006-09-27 Asahi Chemical Ind Antireflective coatings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226382A (en) * 1975-08-22 1977-02-26 Bosch Gmbh Robert Process for forming protective layer on surface of optical reflector
JPS58172245A (en) * 1982-04-02 1983-10-11 Asahi Glass Co Ltd Surface treating agent for glass
JPS5939714A (en) * 1982-08-31 1984-03-05 Matsumoto Seiyaku Kogyo Kk Formation of silicon oxide coat
JPS61130902A (en) * 1984-11-30 1986-06-18 Asahi Glass Co Ltd Plastic lens with antireflective film and capable of easy removal of stain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226382A (en) * 1975-08-22 1977-02-26 Bosch Gmbh Robert Process for forming protective layer on surface of optical reflector
JPS58172245A (en) * 1982-04-02 1983-10-11 Asahi Glass Co Ltd Surface treating agent for glass
JPS5939714A (en) * 1982-08-31 1984-03-05 Matsumoto Seiyaku Kogyo Kk Formation of silicon oxide coat
JPS61130902A (en) * 1984-11-30 1986-06-18 Asahi Glass Co Ltd Plastic lens with antireflective film and capable of easy removal of stain

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851674A (en) * 1997-07-30 1998-12-22 Minnesota Mining And Manufacturing Company Antisoiling coatings for antireflective surfaces and methods of preparation
US6277485B1 (en) 1998-01-27 2001-08-21 3M Innovative Properties Company Antisoiling coatings for antireflective surfaces and methods of preparation
WO2000002233A2 (en) * 1998-07-07 2000-01-13 Alliedsignal Inc. Simplified process for producing nanoporous silica
WO2000002233A3 (en) * 1998-07-07 2003-04-17 Allied Signal Inc Simplified process for producing nanoporous silica
GB2424382A (en) * 2005-02-25 2006-09-27 Asahi Chemical Ind Antireflective coatings

Similar Documents

Publication Publication Date Title
CA2099892C (en) Coating compositions
JP2001512170A (en) Antifouling coating layer for antireflection surface and preparation method
FR2598520A1 (en) Inorganic protective film
EP0675087A1 (en) Composition for a non-wettable coating
CN1429865A (en) Hybrid film, antireflection film, optical product containing the hybrid film and method for recovering defrost performance of the hybrid film
JPH08313705A (en) Anti-clouding article and its production
JP2782707B2 (en) Optical article manufacturing method
JPH0682603A (en) Antireflective optical article and its surface reforming method
JP2590310B2 (en) Method for producing optical article having inorganic coating film
JP3120371B2 (en) Optical article manufacturing method
JPH0726062B2 (en) Surface treatment agent for inorganic coated film
JPH1026703A (en) Lens subjected to water-repellency treatment
JP2622541B2 (en) Optical article manufacturing method
JPH0688902A (en) Optical article having inorganic coating film and modifying method for its surface
JPH09127303A (en) Antifogging product having antireflection performance and its production
JP2812121B2 (en) Optical article manufacturing method
JPH09255941A (en) Water-repellent treatment and preparation thereof
JPH0682605A (en) Optical article having inorganic coating film and its surface reforming method
JP4687009B2 (en) Anti-fogging article and manufacturing method thereof
JPH05341108A (en) Method for reforming surface of inorganic coat film
JPS62178902A (en) Surface reforming method for inorganic coating film
JPH09311201A (en) Production of optical article
JP2655036B2 (en) Optical article manufacturing method
JPH07113683B2 (en) Optical article having inorganic coating film and method for producing the same
JP4509776B2 (en) Method for producing surface-modified inorganic substrate and substrate obtained