JPH078900A - Production of high water-repellent material - Google Patents

Production of high water-repellent material

Info

Publication number
JPH078900A
JPH078900A JP5150549A JP15054993A JPH078900A JP H078900 A JPH078900 A JP H078900A JP 5150549 A JP5150549 A JP 5150549A JP 15054993 A JP15054993 A JP 15054993A JP H078900 A JPH078900 A JP H078900A
Authority
JP
Japan
Prior art keywords
substrate
water
chemical
repellent material
water repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150549A
Other languages
Japanese (ja)
Inventor
Yosuke Tajima
陽介 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5150549A priority Critical patent/JPH078900A/en
Publication of JPH078900A publication Critical patent/JPH078900A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively execute the removal of water drops and the prevention of soiling on the surface of a substrate by applying a hydrolysate of a silane based compound expressed by a specific general formula on the surface of the substrate such as glass and drying by heating to firmly combine a water- repellent material with the surface of the substrate. CONSTITUTION:A film of the high water-repellent material is formed by applying the hydrolysate of the (trifluoromethyl) silane based compound expressed by the general formula, (F3C)m(CF2-n)nSiX4-n or (F3C)nSiX4-n, on the surface of the substrate such as metals, glasses or plastics. In the formula, each of (m) and (n) is integer 1-3, X is a halogen atom or a <=5C alhoxyl group. And when a substrate containing on metal oxide is used, an oxide layer of silicon or a metal is previously formed on the surface and the hydrolysate of the (trifluoromethyl) silane compound is applied thereon and dried by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はガラスやプラスチック
などの水滴除去、汚染防止処理に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing water drops from glass, plastics, etc., and for preventing contamination.

【0002】[0002]

【従来の技術】従来、金属やガラスやプラスチックなど
各種材料の水滴除去、汚染防止には、例えば、アルカリ
アルキルシリコネート水溶液を塗布する方法が、特公昭
53−18345号公報で提案されている。しかし、こ
れは塩基性のため、衛生上問題があり、しかも撥水効果
も充分ではない。さらに近年、アルカリ成分のないシリ
コーン系の化合物で、ケイ素原子にパーフルオロアルキ
ル基の結合した構造の組成物にすることで、撥水性だけ
でなく、撥油性や防汚性を発現させることが、特開平3
−265581、特開平4−89877、特開平4−1
32637などで提案されている。
2. Description of the Related Art Conventionally, for removing water droplets from various materials such as metal, glass and plastic and preventing contamination, for example, a method of applying an aqueous solution of alkali alkyl siliconate has been proposed in Japanese Patent Publication No. 53-18345. However, since it is basic, there is a problem in hygiene and the water repellent effect is not sufficient. Furthermore, in recent years, it has been possible to develop not only water repellency but also oil repellency and antifouling property by forming a composition having a structure in which a perfluoroalkyl group is bonded to a silicon atom with a silicone-based compound having no alkali component, JP-A-3
-265581, JP-A-4-89877, JP-A4-1
32637 and the like.

【0003】[0003]

【発明が解決しようとする課題】上に示した撥水剤群
を、その分子構造から模式的に表すと、次式の通りとな
る。
The water repellent group shown above is schematically represented by the following formula from its molecular structure.

【化1】 (式中、mは整数、rは1〜3の整数である。) ここで炭化水素鎖長は、合成の簡便性からC2 以上のも
のが用いられている。
[Chemical 1] (In the formula, m is an integer and r is an integer of 1 to 3. ) Here, a hydrocarbon chain length of C 2 or more is used for the sake of simplicity of synthesis.

【0004】またこれらは、Zismanらにより報告
(Journal of Physical Chem
istry,66,740(1962))されているように、
−CF2-CH2 −間で生ずる電気的反発をパーフルオロ
アルキル基末端の−CF3 基に及ばさないため、パーフ
ルオロアルキル鎖長を6以上としているのである。
These are also reported by Zisman et al. (Journal of Physical Chem).
Istry, 66, 740 (1962)),
The perfluoroalkyl chain length is 6 or more in order to prevent the electric repulsion generated between —CF 2 —CH 2 — from reaching the —CF 3 group at the end of the perfluoroalkyl group.

【0005】一般に撥水性の効果の大きさを表す指標と
して、上記文献等で臨界表面張力(γc )が提唱されて
いるが、このγc が小さいほど撥水性が高い。各官能基
のγc を比較すると、表1の通りであって、CF3 基を
表面に敷きつめることで、高度の撥水性が発現できるこ
とがわかる。(Interscience Pub.7
11(1962))
Generally, the critical surface tension (γ c ) is proposed in the above-mentioned documents as an index showing the magnitude of the effect of water repellency, and the smaller this γ c, the higher the water repellency. When γ c of each functional group is compared, it is as shown in Table 1, and it is understood that a high degree of water repellency can be exhibited by laying CF 3 groups on the surface. (Interscience Pub. 7
11 (1962))

【0006】[0006]

【表1】 [Table 1]

【0007】化1の模式図で示す従来例では、γc 値の
小さいCF3 基を長い側鎖の末端に配置しなければ、高
度の撥水化は実現できないので、その配向性を厳密に制
御する必要があるという問題がある。
In the conventional example shown in the schematic diagram of Chemical formula 1, a high degree of water repellency cannot be realized unless a CF 3 group having a small γ c value is arranged at the end of a long side chain. There is a problem that it needs to be controlled.

【0008】この発明の目的は、上記のような従来の問
題点を解消し、γc 値の小さいCF 3 基を撥水層の表面
に容易に配置し、しかもガラスやプラスチックのような
基材に強固に結合した高撥水性の材料を製造するもので
ある。
The object of the present invention is to solve the above-mentioned conventional problems.
Solve the problem, γcCF with small value 3The surface of the water repellent layer
Easy to place, and like glass or plastic
It manufactures highly water-repellent materials that are firmly bonded to the base material.
is there.

【0009】[0009]

【課題を解決するための手段】この発明は上述した目的
を達成するためになされたもので、基材表面に、一般式 (F3 C) m (CF3-n ) n Si X4-n 、または(F3
C)n SiX4-n (m及びnは1〜3の整数を示し、Xはハロゲン原子ま
たは炭素数5以下のアルコキシ基を表す。)で表される
シラン系化合物の加水分解物を塗布し、加熱乾燥して高
撥水性材料を製造するものである。さらに、プラスチッ
クのような金属酸化物を含まない基材に対しては、表面
にケイ素や金属の酸化物を被覆したのち、上記(トリフ
ルオロメチル)シラン系化合物の加水分解物を塗布し、
加熱乾燥するものである。
Means for Solving the Problems] The present invention has been made in order to achieve the object described above, the substrate surface, the general formula (F 3 C) m (CF 3-n) n Si X 4-n , Or (F 3
C) A hydrolyzate of a silane-based compound represented by n SiX 4-n (m and n represent integers of 1 to 3, and X represents a halogen atom or an alkoxy group having 5 or less carbon atoms) is applied. Then, it is dried by heating to produce a highly water repellent material. Furthermore, for a base material that does not contain a metal oxide such as plastic, after coating the surface with an oxide of silicon or a metal, a hydrolyzate of the above (trifluoromethyl) silane compound is applied,
It is heated and dried.

【0010】この発明の撥水剤として使用する(トリフ
ルオロメチル)シラン系化合物は、ケイ素原子に直接C
3 基が結合、もしくはC- H結合を含まない最短のC
F基を介して結合する構造をもつものである。また一
方、この化合物が膜を形成するために、化合物同志が結
合する加水分解基Xを必要とする。この加水分解基Xの
数を増やすと、膜の強度が向上するが、化合物分子の配
向性は悪化する。Xの数を減らすと、化合物分子の配向
性は向上するが、膜強度は低下する。
The (trifluoromethyl) silane compound used as the water repellent of the present invention has a C atom directly attached to the silicon atom.
The shortest C in which the F 3 group does not contain a bond or a C-H bond
It has a structure in which it is bonded via an F group. On the other hand, in order for this compound to form a film, a hydrolyzable group X to which the compounds bind to each other is required. Increasing the number of the hydrolyzable groups X improves the strength of the film, but deteriorates the orientation of the compound molecules. When the number of X is reduced, the orientation of the compound molecules is improved, but the film strength is reduced.

【0011】加水分解基Xは、加水分解の容易さからハ
ロゲン原子またはメトキシ、エトキシ等炭素数5以下の
アルコキシ基が好適である。加水分解基がハロゲン原子
の化合物を具体的に例示すると、次の通りである。
The hydrolyzable group X is preferably a halogen atom or an alkoxy group having 5 or less carbon atoms such as methoxy and ethoxy because it is easily hydrolyzed. Specific examples of the compound having a halogen atom as the hydrolysis group are as follows.

【化2】 [Chemical 2]

【化3】 [Chemical 3]

【化4】 [Chemical 4]

【化5】 [Chemical 5]

【化6】 [Chemical 6]

【化7】 [Chemical 7]

【化8】 [Chemical 8]

【化9】 [Chemical 9]

【化10】 [Chemical 10]

【化11】 [Chemical 11]

【0012】加水分解基がアルコキシ基の化合物を、次
に例示する。
Compounds in which the hydrolyzable group is an alkoxy group are exemplified below.

【化12】 [Chemical 12]

【化13】 [Chemical 13]

【化14】 [Chemical 14]

【化15】 [Chemical 15]

【化16】 [Chemical 16]

【化17】 [Chemical 17]

【化18】 [Chemical 18]

【化19】 [Chemical 19]

【化20】 [Chemical 20]

【化21】 [Chemical 21]

【0013】本発明で使用する(トリフルオロメチル)
シラン系化合物の中でも、特に反応性が高いクロル原子
を加水分解基に持ち、しかも疎水基の小さいトリクロロ
(トリフルオロメチル)シランF3 C- Si Cl3(CA
S Registry Number:109111-29-7 )
およびデクロロビス(トリフルオロメチル)シラン(F
3 C)2 Si Cl2(CAS Registry Num
ber:422-96-8)が好適である。これらの化合物はJ
ournal of Organometallic
Chemistry,316(1986)41〜50に記載の
ように、公知の方法で容易に合成することができるもの
である。
Used in the present invention (trifluoromethyl)
Among silane-based compounds, trichloro (trifluoromethyl) silane F 3 C-Si Cl 3 (CA having a highly reactive chloro atom as a hydrolyzing group and having a small hydrophobic group
S Registry Number: 109111-29-7)
And dechlorobis (trifluoromethyl) silane (F
3 C) 2 Si Cl 2 (CAS Registry Num
ber: 422-96-8) is preferred. These compounds are J
individual of Organometallic
As described in Chemistry, 316 (1986) 41-50, it can be easily synthesized by a known method.

【0014】次に、上記のような化合物に水を加え加水
分解する。そしてその加水分解物溶液を基材に塗布する
のであるが、ガラスのようにケイ素やアルカリ金属の酸
化物を含む基材については直接塗布することができる。
しかしプラスチックのような基材は金属酸化物を含まな
いので、その表面にケイ素や金属の酸化物層を形成した
上に、塗布しなければならない。
Next, water is added to the above compound to hydrolyze it. Then, the hydrolyzate solution is applied to the base material, but it can be applied directly to a base material containing silicon or an oxide of an alkali metal such as glass.
However, since a substrate such as plastic does not contain a metal oxide, a silicon or metal oxide layer must be formed on the surface of the substrate and then applied.

【0015】基材の形状については、平板状、レンズ状
曲面、エンボス様ランダムテクスチャー等形状に制限は
ない。しかし、基材の表面は、油脂成分やその他の汚れ
を除去するために、洗剤および純水で予め洗浄して置か
なければならない。基材がプラスチックのときは、プラ
スチックを侵さない有機溶剤を用いたり、プラズマ処理
を行うことも有効である。
The shape of the substrate is not limited to a flat plate shape, a lens-like curved surface, an embossed random texture, or the like. However, the surface of the base material must be washed beforehand with detergent and pure water to remove oil and fat components and other stains. When the base material is plastic, it is also effective to use an organic solvent that does not attack the plastic or perform plasma treatment.

【0016】プラスチックを基材とする場合、金属など
の酸化物層の形成方法としては、熱変形を生ずる恐れの
少ない、真空蒸着法、スパッタリング法、イオンプレー
ティング法等の物理的蒸着法、またはプラズマCVD等
の化学的蒸着法を採用すると好都合である。ここで使用
する酸化物としては、ケイ素、アルミニウム、マグネシ
ウム、ジルコニウム、チタン、スズ、インジウム、タン
グステン、亜鉛、ニッケル、タンタルなどの1種ないし
2種以上を含むものである。形成する金属などの酸化物
層は、1層であっても多層であってもよいが、高い密着
性を発現させるためには、最外層はケイ素酸化物Si O
x ( x=1〜2)で形成することが好ましい。
In the case of using plastic as a base material, as a method for forming an oxide layer of metal or the like, a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method or an ion plating method, which is less likely to cause thermal deformation, or It is convenient to employ a chemical vapor deposition method such as plasma CVD. The oxide used here contains one or more of silicon, aluminum, magnesium, zirconium, titanium, tin, indium, tungsten, zinc, nickel and tantalum. The oxide layer of a metal or the like to be formed may be a single layer or a multi-layer, but the silicon oxide SiO 2 is the outermost layer in order to exhibit high adhesion.
It is preferable to form with x (x = 1 to 2).

【0017】酸化物層の厚みについては、厚いほうが耐
擦傷性において優れるのであるが、例えば、真空蒸着法
でポリカーボネートに被覆する場合、薄すぎるとプラス
チック表面を完全にかつ均一に被覆することができず、
また厚すぎると被覆層間での割れや層間剥離が生じるの
で、ケイ素酸化物を使用した単独層では0.005〜5
0μm、多層構造の場合は0.01〜100μmの範囲
としている。
Regarding the thickness of the oxide layer, the thicker it is, the more excellent the scratch resistance is. However, for example, when the polycarbonate is coated by the vacuum deposition method, if it is too thin, the surface of the plastic can be completely and uniformly coated. No
Also, if it is too thick, cracks or delamination between coating layers occur, so 0.005-5% for a single layer using silicon oxide.
It is 0 μm, and in the case of a multilayer structure, it is in the range of 0.01 to 100 μm.

【0018】加水分解物溶液を基材に直接、または上記
の方法でケイ素や金属の酸化物層を形成した基材に塗布
する方法としては、単純な刷毛塗りはもとより、ディッ
ピング法、スピンコーティング法、スプレー法などを採
用することができる。このとき、加水分解物溶液を薄く
かつ均一に塗布するには、これを適宜溶媒(例えば、
水、エタノール、メタノール、ベンゼン、ヘキサン、ト
ルエン等)で希釈して使用する。
The method of applying the hydrolyzate solution directly to the substrate or to the substrate having the oxide layer of silicon or metal formed by the above-mentioned method includes simple brush coating, dipping method and spin coating method. , A spray method or the like can be adopted. At this time, in order to apply the hydrolyzate solution thinly and uniformly, this is appropriately solvent (for example,
Dilute with water, ethanol, methanol, benzene, hexane, toluene, etc.) before use.

【0019】加水分解物の塗膜厚みについては、単分子
膜以上であれば性能が発揮されると考えられるが、実用
的には0.1〜10μm程度に塗布する。塗膜の硬化お
よび基材と塗膜との結合を強化、促進するために乾燥固
定を行う。これは加熱乾燥や若干加熱しながらの減圧乾
燥によって行うが、塗布直後は多量の溶剤成分が残存し
ているため、乾燥工程に先立って風乾(例えばエタノー
ルを用いた場合、室温で1時間程度)を行うこともあ
る。
Regarding the coating film thickness of the hydrolyzate, it is considered that the performance will be exhibited if it is a monomolecular film or more, but practically it is applied to about 0.1 to 10 μm. Dry fixing is performed to strengthen and accelerate the curing of the coating film and the bond between the substrate and the coating film. This is performed by heat drying or reduced pressure drying with slight heating, but since a large amount of the solvent component remains immediately after coating, it is air dried (for example, when ethanol is used, it is about 1 hour at room temperature) before the drying step. May be done.

【0020】この加熱乾燥工程は、基材がプラスチック
などのように耐熱性に劣る場合には、その基材の耐熱温
度以下で実施しなければならない。例えば、ポリカーボ
ネートを基材に用いた場合110℃で10分程度の処理
を行うが、ポリエチレンの場合は40℃で少なくとも1
昼夜を要する。本発明で使用する加水分解物は、上記の
ような比較的低温において、充分固定できるものであ
り、この発明の特長でもある。
This heat-drying step must be carried out below the heat-resistant temperature of the substrate when the substrate is poor in heat resistance such as plastic. For example, when polycarbonate is used as the base material, the treatment is performed at 110 ° C. for about 10 minutes, but in the case of polyethylene, it is at least 1 at 40 ° C.
It takes day and night. The hydrolyzate used in the present invention can be sufficiently fixed at the relatively low temperature as described above, which is also a feature of the present invention.

【0021】[0021]

【作用】この発明で使用する化合物は、γc 値の小さい
−CF3 基のみが表面に出るようケイ素原子に結合して
いるため、疎水基の配向を特に考慮する必要がない。ま
た、この化合物同志が重縮合反応を起こし、塗膜の強度
を高め、この塗膜と基材に含まれるケイ素酸化物または
金属酸化物と反応して、強固に結合するものと考えられ
る。上記の作用の概念を次の化22で示す。
In the compound used in the present invention, only the --CF 3 group having a small γ c value is bonded to the silicon atom so that it appears on the surface, and therefore it is not necessary to consider the orientation of the hydrophobic group. It is also considered that the compounds cause a polycondensation reaction to increase the strength of the coating film, react with the coating film and the silicon oxide or metal oxide contained in the substrate, and firmly bond with each other. The concept of the above operation is shown in the following chemical formula 22.

【化22】 [Chemical formula 22]

【0022】(実施例1)スライドガラスを基材として
用い、先ずメタノールで洗浄し、ついで酸洗浄、蒸留水
洗浄処理を行った。一方、エタノール:水=90:10
の溶媒に、撥水剤としてF3 C- Si CL3を10wt%
溶解し、加水分解物溶液を作製した。この加水分解物溶
液に上記処理を施したガラスを浸漬し、60cm/分で引
き上げ、これを室温で10分間風乾した後、110℃で
1時間加熱処理して試験片を作製した。
Example 1 A slide glass was used as a substrate, first washed with methanol, and then washed with acid and washed with distilled water. On the other hand, ethanol: water = 90: 10
10% by weight of F 3 C-Si CL 3 as a water repellent in the solvent of
It melt | dissolved and produced the hydrolyzate solution. The glass treated as described above was dipped in this hydrolyzate solution, pulled up at 60 cm / min, air-dried at room temperature for 10 minutes, and then heat-treated at 110 ° C. for 1 hour to prepare a test piece.

【0023】(実施例2)撥水剤として(F3 C)2
i Cl2を使用した以外は、実施例1と同様に行った。 (実施例3)酢酸でpH2に調整したエタノール:水=
90:10の溶媒に、撥水剤としてF3 C- Si (OC
3)3 を10wt%溶解し、加水分解物溶液を作製し
た。それ以外は実施例1と同様に行った。
(Example 2) (F 3 C) 2 S as a water repellent
except for using i Cl 2 was performed in the same manner as in Example 1. (Example 3) Ethanol: water = pH 2 adjusted with acetic acid = water
90% solvent, F 3 C-Si (OC) as water repellent
10% by weight of H 3 ) 3 was dissolved to prepare a hydrolyzate solution. Other than that was performed like Example 1.

【0024】(比較例1)撥水剤として信越化学(株)
製KBM−7803(F3 C( CF2)7 CH2 CH2
i(OCH3)3 )を使用した他は、、実施例3と同様に行
った。 (比較例2)撥水剤として信越化学(株)製KBM−7
103(F3 C- CH2 CH2 Si(OCH3)3 )を使用
した他は、実施例3と同様に行った。
(Comparative Example 1) Shin-Etsu Chemical Co., Ltd. as a water repellent
Ltd. KBM-7803 (F 3 C ( CF 2) 7 CH 2 CH 2 S
Example 3 was repeated except that i (OCH 3 ) 3 ) was used. (Comparative Example 2) KBM-7 manufactured by Shin-Etsu Chemical Co., Ltd. as a water repellent
103 (F 3 C- CH 2 CH 2 Si (OCH 3) 3) other was used, was the same as in Example 3.

【0025】上記実施例および比較例で得た試験片の撥
水性を評価した。即ち、製膜処理したガラスを垂直に立
て、霧吹きで水を約3cc噴霧し、液滴がガラスに残れ
ば否(×)とし、液滴が自重で落下して残らなければ良
(◎)とした。その結果は表2に示す通りで、本発明の
実施例が撥水性において優れていることが分かった。
The water repellency of the test pieces obtained in the above Examples and Comparative Examples was evaluated. That is, the film-formed glass is set upright, and about 3 cc of water is sprayed with a mist, and if the droplet remains on the glass, it is judged as bad (x), and if the droplet falls by its own weight and does not remain (good). did. The results are shown in Table 2, and it was found that the examples of the present invention were excellent in water repellency.

【0026】[0026]

【表2】 [Table 2]

【0027】(実施例4)基材には幅40mm、長さ5
0mm、厚さ2mmのポリカーボネート板を使用した。
このポリカーボネート板の表面に、真空蒸着装置を用い
て金属酸化物層を形成した。この装置では、蒸発物質の
加熱は、日電アネルバ(株)製の2kW3連E型電子銃
(型名:980−7104)を使用した電子ビーム加熱
式である。まず、ポリカーボネート板を電子銃の上方3
0cmの位置に取り付けた後、1×10-5Torr以下
に排気し、電子ビーム加熱により高純度酸化ジルコニウ
ム蒸着用ペレットを加熱して、3×10-5〜5×10-5
Torrで40秒間処理し、0.03μmの酸化ジルコ
ニウム膜を形成した。さらに引き続き、1×10-5To
rr以下に排気し、電子ビーム加熱により特級の2酸化
ケイ素蒸着用ペレットを加熱して、3×10-5〜5×1
-5Torrで40秒間処理し、0.03μmの2酸化
ケイ素層を形成した。
(Example 4) The substrate has a width of 40 mm and a length of 5
A polycarbonate plate having a thickness of 0 mm and a thickness of 2 mm was used.
A metal oxide layer was formed on the surface of this polycarbonate plate using a vacuum vapor deposition device. In this apparatus, the evaporation material is heated by an electron beam heating method using a 2 kW triple E-type electron gun (model name: 980-7104) manufactured by Nichiden Anelva Co., Ltd. First, place the polycarbonate plate above the electron gun 3
After mounting at a position of 0 cm, the gas was evacuated to 1 × 10 −5 Torr or less, and the pellet for high-purity zirconium oxide vapor deposition was heated by electron beam heating to 3 × 10 −5 to 5 × 10 −5.
It was treated with Torr for 40 seconds to form a 0.03 μm zirconium oxide film. Further on, 1 × 10 -5 To
Evacuate below rr and heat the special grade silicon dioxide vapor deposition pellets by electron beam heating to 3 × 10 −5 to 5 × 1.
It was treated with 0 -5 Torr for 40 seconds to form a 0.03 μm silicon dioxide layer.

【0028】次に、エタノール:水=90:10の溶媒
に、撥水剤としてF3 C- Si CL3を10wt%溶解
し、加水分解物溶液を作製した。この加水分解物溶液に
上記処理を施したポリカーボネート板を浸漬し、60cm
/分で引き上げ、これを室温で10分間風乾した後、1
00℃で1時間加熱処理して試験片を作製した。
Next, 10 wt% of F 3 C-Si CL 3 as a water repellent was dissolved in a solvent of ethanol: water = 90: 10 to prepare a hydrolyzate solution. Immerse the above treated polycarbonate plate in this hydrolyzate solution and
/ Minute, and air-dry at room temperature for 10 minutes, then 1
A heat treatment was performed at 00 ° C. for 1 hour to prepare a test piece.

【0029】(実施例5)実施例4の金属酸化物層の第
2層をスパッタリング法で行った。即ち、実施例4で酸
化ジルコニウム層を施したポリカーボネート板を、スパ
ッタリング装置(日本真空技術(株)製、型式:SH−
100)に取り付け、ターゲットに2酸化チタンを用い
た。真空槽内を5×10-6Torrに減圧した後、高純
度のアルゴンガスを導入し、5×10-3Torrとして
高周波投入電力100Wで10分間スパッタリングを行
った。端部に設けた段差より触針法(スローン社製、型
式:Dektak3030)で2酸化チタン層の厚さを
測定すると、0.10μmであった。その他は実施例4
と同様に行った。
Example 5 The second layer of the metal oxide layer of Example 4 was sputtered. That is, the polycarbonate plate coated with the zirconium oxide layer in Example 4 was replaced with a sputtering device (manufactured by Nippon Vacuum Technology Co., Ltd., model: SH-).
100) and titanium dioxide was used as a target. After depressurizing the inside of the vacuum chamber to 5 × 10 −6 Torr, high-purity argon gas was introduced, and sputtering was performed at 5 × 10 −3 Torr with a high-frequency input power of 100 W for 10 minutes. When the thickness of the titanium dioxide layer was measured by a stylus method (manufactured by Sloan, model: Dektak3030) from the step provided at the end, it was 0.10 μm. Others are Example 4
I went the same way.

【0030】(実施例6)基材にポリメチルメタクリレ
ートを使用し、その他は実施例4と同様に行った。 (実施例7)撥水剤として(F3 C)2 Si Cl2を使用
した以外は、実施例4と同様に行った。 (実施例8)酢酸でpH2に調整したエタノール:水=
90:10の溶媒に、撥水剤としてF3 C- Si (OC
3)3 を10wt%溶解し、加水分解物溶液を作製し
た。それ以外は実施例4と同様に行った。
(Example 6) Polymethylmethacrylate was used as the substrate, and the other operations were performed in the same manner as in Example 4. Except for using (Example 7) as a water repellent agent (F 3 C) 2 Si Cl 2, was performed in the same manner as in Example 4. (Example 8) Ethanol: water = pH 2 adjusted with acetic acid = water
90% solvent, F 3 C-Si (OC) as water repellent
10% by weight of H 3 ) 3 was dissolved to prepare a hydrolyzate solution. Other than that was performed like Example 4.

【0031】(実施例9)酢酸でpH2に調整したエタ
ノール:水=90:10の溶媒に、撥水剤としてF3
- Si (OCH3)3 を10wt%溶解し、加水分解物溶
液を作製した。それ以外は実施例5と同様に行った。 (実施例10)酢酸でpH2に調整したエタノール:水
=90:10の溶媒に、撥水剤としてF3 C- Si (O
CH3)3 を10wt%溶解し、加水分解物溶液を作製し
た。それ以外は実施例6と同様に行った。
Example 9 In a solvent of ethanol: water = 90: 10 adjusted to pH 2 with acetic acid, F 3 C was used as a water repellent.
- Si a (OCH 3) 3 were dissolved 10 wt%, to prepare a hydrolyzate solution. Other than that was performed like Example 5. Ethanol was adjusted to pH2 (Example 10) acetic acid: water = 90: 10 solvent, as water repellents F 3 C-Si (O
10% by weight of CH 3 ) 3 was dissolved to prepare a hydrolyzate solution. Other than that was performed like Example 6.

【0032】(比較例3)基材に金属酸化物層の処理を
しないポリカーボネート板を使用した。一方、酢酸でp
H2に調整したエタノール:水=90:10の溶媒に、
撥水剤として信越化学(株)製KBM−7803(F3
C( CF2)7 CH2 CH2 Si(OCH3)3 )を10wt
%溶解し、その溶液に上記のポリカーボネート板を浸漬
し、60cm/分で引き上げ、これを室温で10分間風乾
した後、100℃で1時間加熱処理して試験片を作製し
た。
(Comparative Example 3) A polycarbonate plate not treated with a metal oxide layer was used as a substrate. On the other hand, p with acetic acid
In a solvent of ethanol: water = 90: 10 adjusted to H2,
As a water repellent, Shin-Etsu Chemical Co., Ltd. KBM-7803 (F 3
10 wt% of C (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 )
%, The above polycarbonate plate was immersed in the solution, pulled up at 60 cm / min, air-dried at room temperature for 10 minutes, and then heat-treated at 100 ° C. for 1 hour to prepare a test piece.

【0033】(比較例4)基材には、実施例4と同様な
方法で酸化物層を被覆したポリカーボネート板を使用
し、撥水処理は比較例3と同様に行った。
Comparative Example 4 A polycarbonate plate coated with an oxide layer in the same manner as in Example 4 was used as the substrate, and the water repellent treatment was performed in the same manner as in Comparative Example 3.

【0034】上記の実施例4〜10および比較例3〜4
で得られた試験片について、撥水性と塗膜の密着性とを
評価した。撥水性の評価方法は、実施例1〜3および比
較例1〜2の場合と同じである。塗膜の密着性について
は、JIS K 5400で定めたセロファンテープ剥
離試験により、剥離が生じた場合を否(×)とし、10
0/100残った場合を良(◎)とした。表3はその結
果を示したもので、撥水性、塗膜の密着性ともに実施例
が優れていることが分かる。
The above Examples 4 to 10 and Comparative Examples 3 to 4
The water repellency and the adhesiveness of the coating film were evaluated for the test piece obtained in 1. The evaluation method of water repellency is the same as in Examples 1 to 3 and Comparative Examples 1 and 2. Regarding the adhesion of the coating film, the case where peeling occurred was judged as bad (×) by the cellophane tape peeling test defined in JIS K 5400. 10
The case where 0/100 remained was rated as good (⊚). Table 3 shows the results, and it can be seen that the examples are excellent in both water repellency and adhesion of the coating film.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【発明の効果】本発明においては、実施例からも理解さ
れるとおり、分子配向等を調整することなく容易に高度
な撥水処理を施すことが可能となった。また、本発明の
方法では、比較的低い温度で撥水処理が可能であるの
で、耐熱温度の低いプラスチック等にも安心して適用で
き、しかも処理層の密着性が極めて高いという利点があ
る。従って、透明なガラスやプラスチックにこの撥水処
理を施したものは、車両用等の分野において有用な材料
と期待される。
According to the present invention, as understood from the examples, it becomes possible to easily carry out a high-level water repellent treatment without adjusting the molecular orientation and the like. Further, since the method of the present invention enables the water repellent treatment at a relatively low temperature, it can be applied to plastics having a low heat resistant temperature without anxiety and has an advantage that the adhesion of the treatment layer is extremely high. Therefore, transparent glass or plastic that has been subjected to this water repellent treatment is expected to be a useful material in the field of vehicles and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C03C 17/30 A C08J 7/04 S C09D 183/08 PMV ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C03C 17/30 A C08J 7/04 S C09D 183/08 PMV

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に、一般式 (F3 C) m (CF3-n ) n Si X4-n 、または(F3
C)n SiX4-n (m及びnは1〜3の整数を示し、Xはハロゲン原子ま
たは炭素数5以下のアルコキシ基を表す。)で表される
シラン系化合物の加水分解物を塗布し、加熱乾燥するこ
とを特徴とする高撥水性材料の製造方法。
To 1. A substrate surface, the general formula (F 3 C) m (CF 3-n) n Si X 4-n or (F 3,
C) A hydrolyzate of a silane-based compound represented by n SiX 4-n (m and n represent integers of 1 to 3, and X represents a halogen atom or an alkoxy group having 5 or less carbon atoms) is applied. A method for producing a highly water repellent material, which comprises heating and drying.
【請求項2】 請求項1記載の基材の表面がケイ素また
は金属の酸化物層とされていることを特徴とする高撥水
性材料の製造方法。
2. A method for producing a highly water repellent material, characterized in that the surface of the substrate according to claim 1 is an oxide layer of silicon or metal.
JP5150549A 1993-06-22 1993-06-22 Production of high water-repellent material Pending JPH078900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150549A JPH078900A (en) 1993-06-22 1993-06-22 Production of high water-repellent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150549A JPH078900A (en) 1993-06-22 1993-06-22 Production of high water-repellent material

Publications (1)

Publication Number Publication Date
JPH078900A true JPH078900A (en) 1995-01-13

Family

ID=15499307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150549A Pending JPH078900A (en) 1993-06-22 1993-06-22 Production of high water-repellent material

Country Status (1)

Country Link
JP (1) JPH078900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328538A (en) * 1994-06-15 1995-12-19 Matsushita Electric Ind Co Ltd Chemisorptive film glass, its production and cooking utensil having chemisorptive film glass
JPH1036706A (en) * 1996-04-02 1998-02-10 Saint Gobain Vitrage Composition for non wet coating, treatment of glass by the same composition and product obtained by the same treatment
JPH10221758A (en) * 1997-02-06 1998-08-21 Ishikawa Seisakusho:Kk Karaoke device
JP2018101658A (en) * 2016-12-19 2018-06-28 ローム株式会社 Sensor module and method of manufacturing sensor module
JP2020170171A (en) * 2014-09-30 2020-10-15 日本板硝子株式会社 Glass substrate with low reflection coating, method for manufacturing glass substrate with low reflection coating, and photo-electric conversion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328538A (en) * 1994-06-15 1995-12-19 Matsushita Electric Ind Co Ltd Chemisorptive film glass, its production and cooking utensil having chemisorptive film glass
JPH1036706A (en) * 1996-04-02 1998-02-10 Saint Gobain Vitrage Composition for non wet coating, treatment of glass by the same composition and product obtained by the same treatment
JPH10221758A (en) * 1997-02-06 1998-08-21 Ishikawa Seisakusho:Kk Karaoke device
JP2020170171A (en) * 2014-09-30 2020-10-15 日本板硝子株式会社 Glass substrate with low reflection coating, method for manufacturing glass substrate with low reflection coating, and photo-electric conversion device
JP2018101658A (en) * 2016-12-19 2018-06-28 ローム株式会社 Sensor module and method of manufacturing sensor module

Similar Documents

Publication Publication Date Title
EP1261557B1 (en) Transparent substrate coated with a polymer layer
JP4672095B2 (en) Method for manufacturing antireflection film
JP2008501557A5 (en)
JP3549440B2 (en) Composition for creating a water-repellent coating on an optical substrate
WO2015157880A1 (en) Coating method used for nano surface coating of irregularly-shaped metal
FR2654096A1 (en) VITRO-CERAMIC ARTICLE DECORATED USING ENAMEL AND PROCESS FOR ITS PRODUCTION.
JPH078900A (en) Production of high water-repellent material
JPH0225990B2 (en)
CN115093131B (en) Coated glass with heat insulation function and preparation method thereof
FR2953823A1 (en) HYDROPHOBIC SUBSTRATE COMPRISING A DOUBLE PRIMING
JPS6039090B2 (en) Method of forming transparent conductive film
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JP3570134B2 (en) Method for forming antifouling film and filter for display element
JP3579655B2 (en) Transparent substrate having antifouling hydrophobic coating and method for producing the same
KR102462034B1 (en) Agent for forming adhesive coating for aluminum oxide or aluminum substrate
JP3421077B2 (en) Method of forming functional thin film
CN113056536A (en) Flexible insulation articles and methods of making same
JPH0524887A (en) Glass of water-repellent treatment
JPH07294702A (en) Method for modifying optical element surface
JPH07140302A (en) Production of antireflection coating film
JP2794701B2 (en) Anti-reflective coating that prevents water burn
JPH10292151A (en) Optical element subjected to water-repellent treatment
JP2005179543A (en) Method for producing silica sol and method for forming hard film
JPH07230716A (en) Transparent conductor and its manufacture
JPH10293201A (en) Water repelling treatment optical element