JPH02259607A - Production of optical waveguide - Google Patents
Production of optical waveguideInfo
- Publication number
- JPH02259607A JPH02259607A JP1078301A JP7830189A JPH02259607A JP H02259607 A JPH02259607 A JP H02259607A JP 1078301 A JP1078301 A JP 1078301A JP 7830189 A JP7830189 A JP 7830189A JP H02259607 A JPH02259607 A JP H02259607A
- Authority
- JP
- Japan
- Prior art keywords
- dopant
- glass
- pores
- porous glass
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 239000002019 doping agent Substances 0.000 claims abstract description 45
- 239000011148 porous material Substances 0.000 claims abstract description 35
- 239000011521 glass Substances 0.000 claims abstract description 28
- 239000005373 porous glass Substances 0.000 claims abstract description 26
- 238000001179 sorption measurement Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 8
- 238000003795 desorption Methods 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 16
- 229920000642 polymer Polymers 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 2
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 239000007792 gaseous phase Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- -1 + and Tl+ Chemical class 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は光導波路の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an optical waveguide.
[従来の技術]
ガラス内部の限られた領域に、屈折率を変化させる物質
を拡散現象を用いて導入して、光の導波制御を行い、三
次元(埋込み型)光導波路をはじめとする光機能デバイ
スを実現する技術として、従来いくつかのものが提案さ
れている。[Prior art] A substance that changes the refractive index is introduced into a limited area inside the glass using a diffusion phenomenon to control the waveguide of light, creating three-dimensional (embedded) optical waveguides and other devices. Several techniques have been proposed in the past as techniques for realizing optical functional devices.
第一は、イオン交換法と呼ばれているもので、交換可能
なイオン成分を含む多成分ガラスを、屈折率を上昇もし
くは下降させるイオンを含む溶融塩中に浸漬し、イオン
交換(拡散)を行うことによって屈折率分布を実現する
ものである(E、 0kuda et at、 App
lied 0ptics、 23.1747(1984
)) oこの場合、埋込み型と言われるガラス内部の限
られた領域が屈折率の極大をとるようなガラス体を作成
するためには、イオン交換の前に、ガラス基板表面を金
属の蒸着等によりマスクし、イオンの拡散領域を制限す
ることが行われる(L Oikawa etat、El
ectron、Lett、、 17(3)、452(1
981))。The first method is called the ion exchange method, in which a multicomponent glass containing exchangeable ionic components is immersed in a molten salt containing ions that increase or decrease the refractive index, and ion exchange (diffusion) is performed. By doing this, a refractive index distribution is realized (E, 0kuda et at, App
Lied 0ptics, 23.1747 (1984
)) o In this case, in order to create a so-called embedded type glass body in which a limited area inside the glass has the maximum refractive index, the surface of the glass substrate must be coated with metal vapor deposition, etc. before ion exchange. masking and limiting the ion diffusion region (L Oikawa etat, El
ectron, Lett, 17(3), 452(1
981)).
第二は、分子スタッフィング法と呼ばれているもので、
基板として多孔質ガラスを用い、ドーパントとしてCs
+やTl+等の一価イオンを含む水溶液に浸漬し、゛細
孔中にイオンを拡散(スタッフィング)させる。 その
後、適当な溶媒中に浸漬し、一部イオンを溶出(アンス
タッフィング)させることによって望む屈折率分布を形
成後、細孔中にイオンを析出させて分布を固定し、焼成
、無孔化する(浅原、セラミックス、 21.425
(1986))。この方法には、ドーパントとして、イ
オン以外の物質、例えば金属アルコキシドなどの酸化物
の前駆体の形で導入するものも含めることができる。The second method is called the molecular stuffing method.
Porous glass was used as the substrate, and Cs was used as the dopant.
It is immersed in an aqueous solution containing monovalent ions such as + and Tl+, and the ions are diffused (stuffed) into the pores. After that, it is immersed in a suitable solvent and some of the ions are eluted (unstuffed) to form the desired refractive index distribution, then the ions are precipitated into the pores to fix the distribution, and then fired to make it non-porous. (Asahara, Ceramics, 21.425
(1986)). The method may also include introducing substances other than ions as dopants, for example in the form of oxide precursors such as metal alkoxides.
この場合、埋込み型のガラス体を作成するために、多孔
質ガラス内部の細孔を光重合性の低分子化合物によって
位置選択的に閉塞して、イオンや酸化物前駆体の拡散領
域を制限することが行われている(特開昭61−232
248 >。In this case, in order to create an embedded glass body, the pores inside the porous glass are regioselectively blocked with a photopolymerizable low-molecular compound to limit the diffusion area of ions and oxide precursors. (Japanese Unexamined Patent Publication No. 61-232)
248>.
[発明が解決しようとする問題点]
第一のイオン交換法は、屈折率分布を滑らかな理想に近
い放物線状に形成することができる等の長所を有する。[Problems to be Solved by the Invention] The first ion exchange method has advantages such as being able to form the refractive index distribution into a smooth parabolic shape close to the ideal.
しかし、固相中のイオンの拡散速度が小さいために加
熱などの操作が不可欠であり、それでもなお、必要な分
布を得るのに数時間を必要とする。また、基板表面のみ
のマスクを行っているために、横方向すなわち厚さ方向
に直角な方向への拡散の影響もある。拡散時間の短縮の
ための手法として、また、内部への埋込み促進のための
手法として、電界印加法が試みられているが、基板を箱
型に成形する必要があるなど、複雑な装置と手間を要す
るという欠点がある。また、この方法は移動度の大きい
一価イオンに限られ、価数の高いイオンには適用できな
い。さらに、光ファイバーとの整合性を考慮すると、多
成分ガラスは吸収が大きく、整合性が悪い。However, operations such as heating are necessary due to the slow diffusion rate of ions in the solid phase, and even then, several hours are required to obtain the required distribution. Furthermore, since only the surface of the substrate is masked, there is also the influence of diffusion in the lateral direction, that is, in the direction perpendicular to the thickness direction. An electric field application method has been attempted as a method to shorten the diffusion time and promote embedding inside, but it requires complicated equipment and time, such as the need to mold the substrate into a box shape. The disadvantage is that it requires Furthermore, this method is limited to monovalent ions with high mobility and cannot be applied to highly charged ions. Furthermore, when considering compatibility with optical fibers, multi-component glass has high absorption and poor compatibility.
第二の分子スタッフィング法は、多孔質ガラス細孔中の
液相中におけるイオンまたは酸化物前駆体の拡散を利用
するもので、イオン交換法に比べてそれらの拡散速度が
大きいため、室温付近で比較的短時間で、広い範囲に屈
折率分布を形成することが可能であり、また、細孔の位
置選択的な閉塞と組合せれば、数十μmのオーダーで拡
散を制御するすることも可能である。しかし、細孔中へ
導入する物質として望ましい、多価金属のアルコキシド
や塩化物などの酸化物前駆体(多くは常温で液体)は、
一般に反応性が高く、液相のままでのハンドリングは困
難である。また、酸化による固定は、焼結中に熱分解を
利用して行われる場合が多いが、加熱時には細孔中から
の揮散などが生じるため、屈折率分布の制御は非常に困
難であった。The second molecular stuffing method utilizes the diffusion of ions or oxide precursors in the liquid phase in the pores of porous glass, and because their diffusion rate is higher than in the ion exchange method, It is possible to form a refractive index distribution over a wide range in a relatively short time, and when combined with position-selective occlusion of pores, it is also possible to control diffusion on the order of tens of micrometers. It is. However, oxide precursors such as polyvalent metal alkoxides and chlorides (most of which are liquid at room temperature) are desirable as substances to be introduced into the pores.
Generally, they have high reactivity and are difficult to handle while still in the liquid phase. Further, fixation by oxidation is often carried out by utilizing thermal decomposition during sintering, but since volatilization from the pores occurs during heating, it has been extremely difficult to control the refractive index distribution.
[問題点を解決するための手段]
以上の問題点を解決するために、本発明では、あらかじ
め多孔質ガラス中の細孔を光重合性化合物の重合物で位
置選択的に閉塞し、横方向の拡散を制限する。その後、
ドーパント物質蒸気の多孔質ガラス細孔表面への多分子
層吸着を利用して、気相中で、多孔質ガラスにドーピン
グを行う。[Means for Solving the Problems] In order to solve the above problems, in the present invention, the pores in the porous glass are regioselectively blocked in advance with a polymer of a photopolymerizable compound, and the pores in the lateral direction are limit the spread of after that,
Porous glass is doped in the gas phase by utilizing multilayer adsorption of dopant substance vapor onto the surface of porous glass pores.
ドーピングに際しては、平衡吸着量がドーパント圧に依
存する性質を用いて、まず、閉塞されていない細孔全体
を、希望する最大屈折率を与えるドーパント量に対応す
る平衡圧の下でドーピングする。そして、この平衡圧よ
りも低いドーパント分圧の雰囲気に放置してドーパント
を部分的に脱着させることで、ガラス周辺部のみのドー
パント濃度を低下させ、ガラス内部に極大を持つドーパ
ント濃度分布を形成させる。During doping, taking advantage of the property that the equilibrium adsorption amount depends on the dopant pressure, first, the entire unblocked pores are doped under an equilibrium pressure corresponding to the dopant amount that provides the desired maximum refractive index. Then, by leaving the dopant in an atmosphere with a dopant partial pressure lower than this equilibrium pressure and partially desorbing the dopant, the dopant concentration only in the peripheral area of the glass is reduced, forming a dopant concentration distribution with a maximum inside the glass. .
こうして得られたドーパント分布を酸化物の形で細孔内
部に固定する操作を行い、さらに焼結、無孔化を行うこ
とにより、ガラス内部に望みの光導波部分を形成する。By fixing the dopant distribution obtained in this way inside the pores in the form of oxides, and then sintering and making the glass pore-free, a desired optical waveguide portion is formed inside the glass.
本発明を用いれば、三次元(埋込み型)光導波路を簡単
な装置と操作により容易に作製することができる。By using the present invention, a three-dimensional (embedded) optical waveguide can be easily manufactured using a simple device and operation.
細孔の位置選択的な閉塞により横方向のドーパント気体
の拡散を制御するため、この閉塞を微細に行えば、横方
向についてはこれと同程度に微細な、ドーピングされた
部分とされない部分からなるドーパントのパターンを形
成することが可能である。この場合に、フォトマスクを
使って露光を行えば、数十μmのオーダーでの微細なパ
ターンの形成も可能である。The lateral diffusion of the dopant gas is controlled by position-selective occlusion of the pores, so if this occlusion is carried out minutely, the lateral direction will consist of equally fine doped and non-doped sections. It is possible to form a pattern of dopants. In this case, if exposure is performed using a photomask, it is possible to form a fine pattern on the order of several tens of micrometers.
光重合性化合物は、多孔質ガラスの細孔内部に短時間で
均一に充填でき、容易に光重合され、さらに、その重合
体が加熱により簡単に分解除去される物質であれば、特
に制限されるものではなく一般的な光重合性低分子が使
用できる。例示するならば、アクリル酸、メタクリル酸
、スチレンやそれらの誘導体などの有機低分子が特に扱
い易く、便利である。また、光重合時に光の吸収効率を
高めて、パターンのきれをよくし、露光時間を短縮する
ために、光開始剤、光増感剤等と呼ばれる光分解性の化
合物を、光重合性化合物に少量加えるとよい。Photopolymerizable compounds are particularly restricted as long as they can be uniformly filled into the pores of porous glass in a short time, are easily photopolymerized, and the polymer is easily decomposed and removed by heating. It is possible to use general photopolymerizable low molecules instead of those used in conventional photopolymerizable polymers. For example, organic low molecules such as acrylic acid, methacrylic acid, styrene, and derivatives thereof are particularly easy to handle and convenient. In addition, in order to increase light absorption efficiency during photopolymerization, improve pattern clarity, and shorten exposure time, photodegradable compounds called photoinitiators, photosensitizers, etc. are added to photopolymerizable compounds. It is good to add a small amount to.
ドーパント量は、雰囲気中のドーパント圧力と温度で定
まる平衡吸着量で制御できるため、この平衡吸着量で屈
折率差の最大値を制御することが可能となる。ただし、
ドーパントは、希望する屈折率差を生じさせるのに必要
な吸着量が得られるだけの蒸気圧を持つ化合物である必
要がある。代表的なドーパント物質として、金属のハロ
ゲン化物、アルコキシド、水素化物、カルボニル化合物
等を挙げることができるが、もちろんこれらに限定され
るものではない。また、これらの気体の混合物を用いる
ことや、適当な気体、HeやN2等で希釈することも考
えられる。Since the amount of dopant can be controlled by the equilibrium adsorption amount determined by the dopant pressure and temperature in the atmosphere, it is possible to control the maximum value of the refractive index difference with this equilibrium adsorption amount. however,
The dopant must be a compound with a vapor pressure sufficient to provide the amount of adsorption necessary to produce the desired refractive index difference. Typical dopant substances include metal halides, alkoxides, hydrides, carbonyl compounds, etc., but are of course not limited to these. It is also conceivable to use a mixture of these gases or to dilute with a suitable gas such as He or N2.
平衡吸着圧力よりも低いドーパント圧の雰囲気に多孔質
ガラスを放置し、ガラス表面を通して表面付近のドーパ
ントを部分的に脱着させるためには、例えば、真空ポン
プでドーパント圧力を所定値まで減圧にする、他の気体
で置換する、等の方法が使用できる。ドーパントの濃度
分布は、ガラス内部での拡散と、表面からの脱着の速度
との兼ね合いで決定されるので、脱着時の圧力と放置時
間を適当に選ぶことによって二乗分布等を形成すること
もできる。また、細孔がすべてドーパントで占められる
ような限界までのドーピングを行えば、細孔内部におけ
るドーパントは、いわば液相状態となり、気相脱着時の
特に初期には、多孔質ガラス内部に気液界面を形成しつ
つ蒸発することになる。そのため、蒸発途中で脱着を終
了すれば、限界までドーピングしない場合と比較して、
気液界面に基く、より急峻な屈折率分布を形成させるこ
とも可能である。In order to leave the porous glass in an atmosphere with a dopant pressure lower than the equilibrium adsorption pressure and partially desorb the dopant near the surface through the glass surface, for example, the dopant pressure is reduced to a predetermined value using a vacuum pump. Methods such as replacing with another gas can be used. The dopant concentration distribution is determined by the balance between the diffusion inside the glass and the speed of desorption from the surface, so it is possible to form a square distribution etc. by appropriately selecting the pressure and standing time during desorption. . In addition, if doping is carried out to the limit where the pores are all occupied by the dopant, the dopant inside the pores will be in a so-called liquid phase state, and especially in the early stage of vapor phase desorption, the dopant will be in a gas-liquid state inside the porous glass. It evaporates while forming an interface. Therefore, if desorption is completed during evaporation, compared to not doping to the limit,
It is also possible to form a steeper refractive index distribution based on the gas-liquid interface.
以上のドーパントの吸着および脱着における速度は、気
相におけるドーピングであるために、極めて高速であり
、ガラス内部に速やかにドーパント濃度の極大を示す領
域を形成させることができる。The rate at which the dopant is adsorbed and desorbed is extremely high because it is doped in the gas phase, and a region exhibiting a maximum dopant concentration can be quickly formed inside the glass.
気相ドーピング法では、多孔質ガラスの乾燥と脱着を含
めたドーピングとを真空ライン中で行うことにより、拡
散を阻害する細孔内の吸着水を除去する工程とドーピン
グによる分布形成とを全く同一のライン上で、一連の操
作として行うことが可能である。その際、反応性の高い
各種のドーパントを、外部に放散することなく安定して
、安全に使用することができる。In the vapor phase doping method, doping, including drying and desorption of porous glass, is performed in a vacuum line, so that the process of removing adsorbed water in pores that inhibits diffusion and the formation of distribution by doping are completely the same. can be performed as a series of operations on the line. At this time, various highly reactive dopants can be stably and safely used without being diffused to the outside.
細孔中のドーパント分布の固定には、加水分解や気体酸
素による酸化等を用いればよい。前者の場合には、多孔
質ガラスを水中浸漬したり、水蒸気の形で真空ライン中
に導入するなどの方法が可能であり、いずれも極めて容
易に実行できる。この時、形成された分布が乱されない
ために、ドーパントの加水分解速度は大きいものほど好
都合であり、温水中で加水分解を行うなど、速度を大き
くする様々な手法をとることが可能である。Hydrolysis, oxidation with gaseous oxygen, or the like may be used to fix the dopant distribution in the pores. In the former case, methods such as immersing the porous glass in water or introducing it into a vacuum line in the form of water vapor are possible, and both methods are extremely easy to implement. At this time, since the formed distribution is not disturbed, the higher the hydrolysis rate of the dopant is, the more advantageous it is, and it is possible to use various methods to increase the rate, such as performing hydrolysis in warm water.
[実施例] 以下、実施例を参考にして説明する。[Example] The following description will be made with reference to examples.
実施例1
かさ密度1.7g/cm”、比表面積400m37g1
厚さ1mmの平板状多孔質ガラスを、真空中で150℃
に1時間加熱して、吸着水を除去した後室温に戻しく第
1図(a)) 、1mo 1%の2−エトキシ−2−フ
ェニルアセトフェノンを含むアクリル酸メチル(MA)
中に5時間浸漬した(同(b))。このガラスを取り出
して、空気中で、金属クロムでできたパターンを持つガ
ラス製の、フォトマスクを乗せて、紫外線露光を行い、
マスクのパターンで遮光された以外の領域のMAを光重
合させた(同(C))。その後、真空中、室温で30分
間放置、さらに100℃で30分間放置して、パターン
で遮光されていた領域の未重合のMAを除去した(同(
d))。以上により、細孔の部分的閉塞を行った。Example 1 Bulk density 1.7g/cm", specific surface area 400m37g1
A flat porous glass with a thickness of 1 mm was heated at 150°C in a vacuum.
Figure 1 (a)) was heated for 1 hour to remove adsorbed water and then returned to room temperature.
It was immersed in the liquid for 5 hours ((b)). This glass is taken out, placed in the air with a glass photomask with a pattern made of metallic chrome, and exposed to ultraviolet light.
The MA in areas other than those shielded by the mask pattern was photopolymerized ((C)). Thereafter, unpolymerized MA was removed from the light-shielded area by the pattern by leaving it in a vacuum at room temperature for 30 minutes, and then at 100°C for 30 minutes.
d)). Through the above steps, the pores were partially blocked.
このガラスを真空ラインに入れ、ライン全体を真空にし
た後、四塩化ゲルマニウム(GeC1<)蒸気を導入し
、平衡になるまで細孔中に吸着させた(同(e))。そ
のときの最終平衡圧は、40torrであり、平衡にな
るまで約2時間を要した。次に、系を真空に引き、多孔
質ガラスの周りの雰囲気をほぼ0torrとし、吸着し
たGeC1,の一部をガラス表面を通して5分間脱着さ
せた(同(f))。This glass was placed in a vacuum line, and after the entire line was evacuated, germanium tetrachloride (GeC1<) vapor was introduced and adsorbed into the pores until equilibrium was reached ((e)). The final equilibrium pressure at that time was 40 torr, and it took about 2 hours to reach equilibrium. Next, the system was evacuated to bring the atmosphere around the porous glass to approximately 0 torr, and a portion of the adsorbed GeC1 was allowed to desorb through the glass surface for 5 minutes ((f)).
この多孔質ガラスを真空ラインより取り出し、25℃の
純水中に4時間浸漬してGe Cl 4の加水分解を行
い、GeO2として固定させた(同(g))。 そして
、水中より取り出し、室温で乾燥後(同(h))、電気
炉で1000℃に加熱した。この加熱により、光重合し
て細孔を閉塞していたMAを分解、蒸発させ(同(i)
)、さらに高温により細孔を無孔化した(同(j))。This porous glass was taken out from the vacuum line and immersed in pure water at 25° C. for 4 hours to hydrolyze Ge Cl 4 and fix it as GeO 2 ((g)). Then, it was taken out of the water, dried at room temperature ((h)), and then heated to 1000°C in an electric furnace. This heating decomposes and evaporates the MA that had photopolymerized and blocked the pores (see (i)
), and the pores were made non-porous by further heating (same (j)).
こうして得られたサンプルの断面を観察するとガラス内
部にG e O2による高屈折率の領域が形成されてい
た。When observing the cross section of the sample thus obtained, it was found that a region with a high refractive index due to G e O 2 was formed inside the glass.
比較例1
細孔の部分的閉塞とドーパントの脱着とを行わず、他を
すべて実施例1と同様にして、GeC2を含むガラスを
作製した。Comparative Example 1 A glass containing GeC2 was produced in the same manner as in Example 1 except that partial pore closure and dopant desorption were not performed.
得られたサンプルの断面を観察すると、全体にほぼ均一
に屈折率が増加しており、ガラスは光学的に均一であっ
た。When the cross section of the obtained sample was observed, the refractive index increased almost uniformly throughout the sample, and the glass was optically uniform.
[発明の効果コ
本発明によれば、拡散領域を微細に制御した多孔質ガラ
ス中の細孔に、気相でドーパントを吸着させることによ
り、極めて容易に、しかも高い精度で、ガラス内部に高
屈折率の領域を形成することができる。そのため、三次
元光導波路等を容易に作製することが可能であり、オプ
トエレクトロニクス分野における各種の応用が期待され
る。[Effects of the Invention] According to the present invention, by adsorbing a dopant in the gas phase into the pores in a porous glass whose diffusion region is finely controlled, high-density particles can be easily and precisely added to the interior of the glass. A region of refractive index can be formed. Therefore, it is possible to easily produce three-dimensional optical waveguides, etc., and various applications in the field of optoelectronics are expected.
第1図は、実施例1の各工程におけるガラス断面を示す
。
1 ・・・ 多孔質ガラス
2 ・・・ 光重合性低分子を含浸させた多孔質ガラス
3 ・・・ フォトマスク
4 ・・・ 紫外線による低分子の重合領域5 ・・・
未重合の低分子を除去した領域6 ・・・ ドーパン
トを気相ドーピングにより吸着させた領域
? ・・・ 表面近傍のドーパントを脱着させた部分
8 ・・・ 加水分解等によりドーパントを固定したと
ころ
(表面近傍には特に水等が浸入)
9 ・・・ 水等を除去したところ
10 ・・・ 熱分解により重合物を除去したところ
11 ・・・ 加熱により無孔化したガラス特許出願人
三菱瓦斯化学株式会社
代理人 弁理士 小 堀 貞 文
(a)
[一一一
第1図FIG. 1 shows a cross section of the glass in each step of Example 1. 1 ... Porous glass 2 ... Porous glass impregnated with photopolymerizable low molecules 3 ... Photomask 4 ... Polymerization region of low molecules by ultraviolet rays 5 ...
Region 6 from which unpolymerized low molecules are removed...A region from which dopants are adsorbed by vapor phase doping? ... Part 8 where the dopant near the surface has been desorbed... Part 8 where the dopant has been fixed by hydrolysis etc. (particularly water has entered near the surface) 9 ... Part where water etc. has been removed 10... When the polymer was removed by thermal decomposition 11... Glass made non-porous by heating Patent applicant Mitsubishi Gas Chemical Co., Ltd. Representative Patent attorney Sadafumi Kobori (a) [111 Figure 1
Claims (1)
り閉塞する工程、(2)該多孔質ガラスの閉塞されてい
ない細孔中にドーパントを導入および固定する工程、(
3)該重合性化合物を分解除去する工程、及び(4)該
多孔質ガラスを焼成無孔化する工程を含む光導波路の製
造方法において、該多孔質ガラス中に含浸した重合性低
分子化合物を位置選択的に光重合させて該多孔質ガラス
中の細孔の一部を閉塞し、閉塞されていない細孔中にド
ーパントを吸着平衡になるまで気相で導入し、さらに減
圧脱着によりガラス周辺部の該ドーパント濃度を低下さ
せた後、該ドーパントを細孔内に固定することを特徴と
する光導波路の製造方法。(1) a step of blocking some of the pores in the porous glass with a polymerizable compound; (2) a step of introducing and fixing a dopant into the unblocked pores of the porous glass;
3) a step of decomposing and removing the polymerizable compound; and (4) a step of baking the porous glass to make it non-porous. Some of the pores in the porous glass are blocked by regioselective photopolymerization, and the dopant is introduced in the gas phase into the unblocked pores until an adsorption equilibrium is reached, and then the surrounding area of the glass is removed by vacuum desorption. A method for manufacturing an optical waveguide, comprising: lowering the concentration of the dopant in the pores, and then fixing the dopant in the pores.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1078301A JP2861029B2 (en) | 1989-03-31 | 1989-03-31 | Manufacturing method of optical waveguide |
DE90303374T DE69003979T2 (en) | 1989-03-31 | 1990-03-29 | Process for the production of silica glass with a refractive index distribution. |
EP90303374A EP0390566B1 (en) | 1989-03-31 | 1990-03-29 | Method of producing silica glas having refractive index distribution |
US07/692,457 US5160358A (en) | 1989-03-31 | 1991-04-17 | Process for producing silica glass plate having controlled refractive index distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1078301A JP2861029B2 (en) | 1989-03-31 | 1989-03-31 | Manufacturing method of optical waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02259607A true JPH02259607A (en) | 1990-10-22 |
JP2861029B2 JP2861029B2 (en) | 1999-02-24 |
Family
ID=13658100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1078301A Expired - Lifetime JP2861029B2 (en) | 1989-03-31 | 1989-03-31 | Manufacturing method of optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2861029B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57139708A (en) * | 1981-02-23 | 1982-08-28 | Nippon Telegr & Teleph Corp <Ntt> | Production of optical waveguide |
JPS61156007A (en) * | 1984-12-27 | 1986-07-15 | Nippon Telegr & Teleph Corp <Ntt> | Production of optical waveguide |
-
1989
- 1989-03-31 JP JP1078301A patent/JP2861029B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57139708A (en) * | 1981-02-23 | 1982-08-28 | Nippon Telegr & Teleph Corp <Ntt> | Production of optical waveguide |
JPS61156007A (en) * | 1984-12-27 | 1986-07-15 | Nippon Telegr & Teleph Corp <Ntt> | Production of optical waveguide |
Also Published As
Publication number | Publication date |
---|---|
JP2861029B2 (en) | 1999-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930701352A (en) | Process for preparing sol-gel monolith | |
JP2003176108A (en) | Method of producing porous material carrying metallic hyperfine particle | |
WO2011162403A1 (en) | Mesoporous silica film, structural body having mesoporous silica film, antireflection film, optical member, and methods of producing the same | |
CN110651226A (en) | Nanoimprint lithography method and patterned substrate obtained thereby | |
JPS6065712A (en) | Formation of silicon oxide coating film | |
EP0390566B1 (en) | Method of producing silica glas having refractive index distribution | |
JP5027980B2 (en) | Method for depositing fluorinated silica thin film | |
JPH02259607A (en) | Production of optical waveguide | |
US4670033A (en) | Method of consolidating fine pores of porous glass | |
JP3702904B2 (en) | Method for producing synthetic quartz glass | |
WO2003024894A1 (en) | Method for producing high purity low dielectric constant ceramic and hybrid ceramic films | |
Koone et al. | Diffusion of solvents and cations in porous sol-gel glass | |
JPH02217331A (en) | Preparation of optical fiber | |
JPH02258637A (en) | Production of quartz glass having refractive index distribution | |
JPS58217441A (en) | Manufacture of base material for optical fiber | |
JPH04260608A (en) | Production of optical element with refractive index distribution type | |
Mendoza et al. | Photolithographic imaging of planar optical waveguides and integrated optic devices onto porous silicate glasses and silica sol-gels | |
JPH0350140A (en) | Production of distributed-refractive-index lens | |
McCarthy et al. | Control of dopant adsorption from aqueous solution into nanoporous sol-gel films | |
JPS62128948A (en) | Method for binding pores of porous glass | |
JP2000085025A (en) | Production of optical thin film, and optical thin film | |
CN104843987A (en) | Preparation method of quartz rod uniformly doped with powder ions | |
JPH0425212B2 (en) | ||
JPS6241725A (en) | Production of lens of refractive index distribution type | |
JPS6065708A (en) | Formation of coating film of metal oxide |