JPS62128948A - Method for binding pores of porous glass - Google Patents

Method for binding pores of porous glass

Info

Publication number
JPS62128948A
JPS62128948A JP26791485A JP26791485A JPS62128948A JP S62128948 A JPS62128948 A JP S62128948A JP 26791485 A JP26791485 A JP 26791485A JP 26791485 A JP26791485 A JP 26791485A JP S62128948 A JPS62128948 A JP S62128948A
Authority
JP
Japan
Prior art keywords
porous glass
pores
glass
pore
silicon compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26791485A
Other languages
Japanese (ja)
Inventor
Kyo Miura
三浦 協
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26791485A priority Critical patent/JPS62128948A/en
Priority to US06/807,971 priority patent/US4670033A/en
Priority to GB8530575A priority patent/GB2169595B/en
Priority to FR858518505A priority patent/FR2574778B1/en
Publication of JPS62128948A publication Critical patent/JPS62128948A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively bind the pores without deteriorating the function provided to porous glass by impregnating the pores of the porous glass with a silicon compd. having a specified coupling group and decomposing the silicon compd. in the pores. CONSTITUTION:The porous glass is dipped in vacuum in the soln. of a silicon compd. (tetraisocyanate silane, etc.) having a coupling group shown by the formula, and the inside of the pore is impregnated with the silicon compd. The silicon compd. reacts spontaneously with the silanol group mainly present on the pore surface and the water remaining in the pore, and a precursor capable of forming a three-dimensional glass network structure is formed. Then after most of the unreacted silicon compd. is removed, the substituted silanol group is reactivated into a silanol group by oxidation or hydrolysis. By further repeating the process, a three-dimensional network structure body is formed, and the pores are bound.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、多孔性ガラスの細孔を塞ぐ紡孔処理方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for spinning holes in porous glass.

〈従来の技術〉 多孔性ガラスに機能性を賦与する試みとして、各種の物
質を細孔内に吸蔵させる方法が提案されているが、多孔
性ガラスの細孔を残したまま利用する場合を除き、その
賦与した機能を恒久化する場合には、紡孔処理を施すの
が一般的である。
<Prior art> In an attempt to impart functionality to porous glass, methods have been proposed in which various substances are occluded within the pores, but this method does not work unless the pores of the porous glass are used as they are. In order to make the function imparted permanent, it is common to perform a hole-spinning treatment.

従来、多孔性ガラスの紡孔処理方法としては。Conventionally, the method for spinning holes in porous glass is as follows.

電気炉等による高温焼成によるのが一般的であり、この
処理方法が有力である事は公知である。
It is common to use high-temperature firing in an electric furnace or the like, and it is well known that this treatment method is effective.

〈発明が解決しようとする問題点〉 しかし、この場合、賦与された機能が紡孔処理に要する
高温加熱によって、機能低下、或は機能消失等の不都合
を起こす場合が多く、高温加熱による紡孔処理が多孔性
ガラスの高機能化を著しく妨げる原因となっていた。ま
た、従来の処理方法では、処理前後で多孔性ガラスの形
状が犬きく変化するという問題があった。
<Problems to be Solved by the Invention> However, in this case, the provided function often causes problems such as functional deterioration or function loss due to the high temperature heating required for the spinning process. This treatment has been a major hindrance to improving the functionality of porous glass. Further, in the conventional treatment method, there was a problem in that the shape of the porous glass changed drastically before and after the treatment.

未発明は、従来の高温加熱による紡孔処理方法のかかる
欠点を解消し、殊に高温加熱による紡孔処理が適用し難
い場合に、多孔性ガラスの細孔を有効に塞ぐ方法を提供
することにある。
It is an object of the present invention to provide a method for solving the drawbacks of conventional pore-spinning treatment methods using high-temperature heating, and effectively closing the pores of porous glass, especially when it is difficult to apply pore-spinning treatment using high-temperature heating. It is in.

く問題点を解決するための手段〉 本発明の多孔性ガラスの紡孔処理方法は多孔性ガラスの
細孔内に、−5i−NCO結合を持つ■ ケイ素化合物を含浸し、前記細孔内で41ノ記ケイ素化
合物を分解させ、前記細孔を結孔する工程を有するもの
である。
Means for Solving the Problems〉 The method for spinning porous glass of the present invention impregnates the pores of porous glass with a silicon compound having a -5i-NCO bond, and The method includes a step of decomposing the silicon compound described in No. 41 and forming the pores.

〈発明を実施するのに好適な態様〉 本発明の紡孔処理方法は、予め各種の機能性賦与物質を
細孔内に吸蔵させた多孔性ガラスに対して、先ず一5t
−NCO結合を持つケイ素化合物をその細孔内に含浸さ
せる。
<Preferred embodiments for carrying out the invention> In the pore-spinning treatment method of the present invention, first, 15 tons of porous glass in which various functional imparting substances have been occluded in the pores is prepared.
A silicon compound having a -NCO bond is impregnated into the pores.

次いで、多孔質ガラス中に含浸させたケイ素化合物を細
孔内に於いて分解させ、細孔内に三次元的に拡がったガ
ラス構造体(以下、三次元的ガラス網目構造)を形成し
て紡孔処理する。
Next, the silicon compound impregnated into the porous glass is decomposed within the pores to form a glass structure that extends three-dimensionally within the pores (hereinafter referred to as a three-dimensional glass network structure) and is then spun. Treat the holes.

仁# このケイ素化合物を細孔内に含浸させるには。Jin # To impregnate the pores with this silicon compound.

一般的には、真空下に含浸させるのがよい。Generally, impregnation is preferably carried out under vacuum.

本発明の紡孔処理方法を施す多孔性ガラスの一例として
、シリカ骨格から成り、多くの貫通細孔を有する多孔性
ガラスを挙げて本発明を更に詳細に説明する。
The present invention will be described in more detail by citing a porous glass that is composed of a silica skeleton and has many through pores as an example of a porous glass to which the pore-spinning method of the present invention is applied.

上記の多孔性ガラスは、所望の組成をもつホウケイ酸ガ
ラスを熱処理して、ホウ酸ナトリウム相とシリカ相に分
相させた後、これを酸処理し、酸に可溶なホウ酸ナトリ
ウム相を溶出させることにより形成される。該多孔性ガ
ラスの細孔径、細孔容積、比表面積等は分相時の条件(
S処理時間、熱処理温度、雰囲気等)また酸溶出時の条
件(反応温度1反応時間、酸の種類等)により制御出来
る。
The above-mentioned porous glass is produced by heat-treating borosilicate glass having a desired composition to separate the phases into a sodium borate phase and a silica phase, and then treating this with an acid to create an acid-soluble sodium borate phase. Formed by elution. The pore diameter, pore volume, specific surface area, etc. of the porous glass depend on the conditions at the time of phase separation (
(S treatment time, heat treatment temperature, atmosphere, etc.) and acid elution conditions (reaction temperature, reaction time, type of acid, etc.).

また、多孔性ガラスは適当なアルキルシリケート(St
 (OR) 4)  (但し、Rは有機の基を示す)を
水中、或は含水アルコール中で加水分解を行なうことに
より場合によっては微粉末シリカを分散させた溶液を用
いても良いし、また微粉末シリカと上記シリカゾルを混
合しても良く、この様にしてシリカゾルを作った後、こ
のシリカゾルをゲル化させ、所望の形状とし乾燥させて
から加熱焼成して形成される。該多孔性ガラスの細孔径
、細孔容積、比表面積等は、ゲル化の条件、乾燥条件加
熱焼成条件により制御出来る。
In addition, the porous glass is made of a suitable alkyl silicate (St
(OR) 4) (However, R represents an organic group) may be hydrolyzed in water or hydrous alcohol to optionally use a solution in which finely powdered silica is dispersed, or Finely powdered silica and the silica sol may be mixed, and after the silica sol is prepared in this manner, the silica sol is gelled, shaped into a desired shape, dried, and then heated and fired. The pore diameter, pore volume, specific surface area, etc. of the porous glass can be controlled by gelling conditions, drying conditions, heating and firing conditions.

該多孔性ガラスの細孔表面に主として存在する官能基は
シラノール基(−3i−OH)であり、多孔性ガラスに
機能を賦与する場合や本発明の紡孔処理方法の場合には
、この官能基が重要な役割を演する。
The functional group mainly present on the pore surface of the porous glass is a silanol group (-3i-OH), and this functional group is base plays an important role.

該多孔性ガラスに含浸させる一Si−NCO結合を持つ
ケイ素化合物は、多孔性ガラスの細孔表面上のシラノー
ル基と反応し、三次元的ガラス網目構造を形成し得る前
駆体を生成する。その反応は下記の式(1)または式(
2)に示す如く進行する。
A silicon compound having one Si-NCO bond that is impregnated into the porous glass reacts with the silanol groups on the pore surfaces of the porous glass to produce a precursor capable of forming a three-dimensional glass network. The reaction is expressed by the following formula (1) or (
The process proceeds as shown in 2).

式(1)の反応形式で また、−5i−NCO結合を持つケイ素化合物は、多孔
性ガラスの細孔中に残存せる極<微量の水分とも反応し
、シラノールを生じ、更に重合してシリカを形成する。
In the reaction format of formula (1), the silicon compound having a -5i-NCO bond also reacts with a very small amount of water remaining in the pores of the porous glass, producing silanol, which further polymerizes to form silica. Form.

この反応はかなり速くかつ副生物は、C02とNH3で
あり、共にガス状であまりシラノールとは相互作用を有
しない点で好ましいものである。
This reaction is preferable because it is fairly fast and the by-products are C02 and NH3, both of which are gaseous and do not interact much with the silanol.

かかる−5i−NCO結合をもつケイ素化合物としては
例えば、トリメチルシリルイソシアネート。
An example of a silicon compound having such a -5i-NCO bond is trimethylsilyl isocyanate.

ジメチルシリルジイソシアネート、メチルシリルトリイ
ンシアネート、ビニルシリルトリイソシアネート、フェ
ニルトリイソシアネート等の有機ケイ素化合物類の他、
テトライソシアネートシラン、エトキシシラントリイソ
シアネート。
In addition to organosilicon compounds such as dimethylsilyl diisocyanate, methylsilyl triisocyanate, vinylsilyl triisocyanate, and phenyl triisocyanate,
Tetraisocyanate silane, ethoxysilane triisocyanate.

メトキシシラントリインシアネート等のテトライソシア
ネートやアルコキシシラントリイソシアネート類がある
。用途に応じてそれらの縮合物も使用可能であり、多孔
性ガラスに賦与した機能を妨げない物を選択して使用す
る。これらのケイ素化合物は、必要に応じて稀釈して使
用する。
There are tetraisocyanates such as methoxysilane triisocyanate and alkoxysilane triisocyanates. Condensates of these can also be used depending on the purpose, and those that do not interfere with the functions imparted to the porous glass are selected and used. These silicon compounds are used after being diluted as necessary.

上記ケイ素化合物は細孔表面に主として存在するシラノ
ール基や細孔中に残存せる水分と反応し、三次元的ガラ
ス網目wi造を形成し得る前駆体を生成するが、細孔が
紡孔処理されるまで反応を促進する為には例えば酸化処
理あるいは加水分解処理等の後処理を施す事が好ましい
The above-mentioned silicon compound reacts with the silanol groups mainly present on the pore surface and the water remaining in the pore, producing a precursor capable of forming a three-dimensional glass network structure. In order to accelerate the reaction until the reaction is complete, it is preferable to perform a post-treatment such as oxidation treatment or hydrolysis treatment.

例えば、有機ケイ素化合物類を使用した場合には、自機
基を酸化的に除去する酸化処理を施してケイ素を酸化し
てやる必要がある。
For example, when organosilicon compounds are used, it is necessary to oxidize the silicon by performing an oxidation treatment to oxidatively remove the self-organic group.

またテトライソシアネートやアルコキシシラントリイン
シアネート類を使用した場合には、加水分解処理を施し
てケイ素を酸化してやる必要がある。
Furthermore, when tetraisocyanate or alkoxysilane triincyanate is used, it is necessary to perform a hydrolysis treatment to oxidize silicon.

この様子を式(3)〜(5)に示す。This situation is shown in equations (3) to (5).

低温プロセスの観点からは式(4)、(5)が好ましい
Formulas (4) and (5) are preferred from the viewpoint of low-temperature processes.

多孔性ガラスの細孔の所望の箇所のみを紡孔処理するに
は、公知のフォトリソグラフィーのプロセスを適用する
ことによっても可能である。
It is also possible to apply a known photolithography process to perform the spinning treatment only on desired locations of the pores of the porous glass.

例えば、フォトレジストや光硬化性樹脂等の感光材料を
多孔性ガラスの所望の部分に施し。
For example, a photosensitive material such as a photoresist or a photocurable resin is applied to a desired portion of porous glass.

フォトリソグラフィーのプロセスを用いて、多孔性カラ
スの表面或は内部に所望のパターンを形成し、レジスト
部をマスクとして所望の部分のみを紡孔処理する事も出
来る。
It is also possible to form a desired pattern on the surface or inside of the porous glass using a photolithography process, and to perform the pore-spinning process only on the desired portion using the resist portion as a mask.

本発明の多孔性ガラスの紡孔処理方法のプロセスは、(
1)〜(5)の様なバッチプロセスが利用出来る。
The process of the method for spinning porous glass of the present invention is (
Batch processes such as 1) to (5) can be used.

「 (1) −51−NC0結合をもつケイ素化合物を多孔
性署 ガラスの細孔内に含浸させる。
(1) A silicon compound having a -51-NC0 bond is impregnated into the pores of porous glass.

(2)自発的分解反応により、シラノール基を置換シラ
ノール基に換え、前記細孔内にガラス網目構造の形成を
進行させる。
(2) A spontaneous decomposition reaction converts the silanol groups into substituted silanol groups, thereby promoting the formation of a glass network structure within the pores.

(3)未反応の前記ケイ素化合物を大部分除去する。(3) Most of the unreacted silicon compounds are removed.

(4)酸化成は加水分解により、置換シラノール基をシ
ラノール基に再活性化する。
(4) The oxidation reactivates substituted silanol groups to silanol groups by hydrolysis.

(5)上記の(1)〜(4)を繰り返す。(5) Repeat steps (1) to (4) above.

〈発明の効果〉 本発明の多孔性ガラスの紡孔処理方法は高温加熱処理を
要しないで多孔性ガラスに賦与した機能を低下或いは機
能消失等の不都合を起こすことなく高い効率で多孔性ガ
ラスの細孔を塞ぐことができる。また、本発明の方法に
よれば。
<Effects of the Invention> The method for spinning porous glass according to the present invention does not require high-temperature heat treatment, and can produce porous glass with high efficiency without reducing the functions imparted to the porous glass or causing inconveniences such as loss of functions. Pores can be blocked. Also according to the method of the invention.

処理前後で多孔性ガラスの形状が変化することがなく、
大変好ましい。
The shape of porous glass does not change before and after treatment,
Very desirable.

実施例−1 多孔性ガラスを減圧下(0,01Torr)に置き、1
0%テトライソシアネートシランのインペンタン溶液に
浸漬し、1時間放置した後、Ailのイソペンタンとテ
トライソシアネートシランを減圧下に冷却した。大気圧
(RH=50%)に戻し、1時間放置した。この操作を
数回繰り返した。
Example-1 Porous glass was placed under reduced pressure (0.01 Torr) and 1
After being immersed in a solution of 0% tetraisocyanate silane in inpentane and left for 1 hour, the isopentane and tetraisocyanate silane in Ail were cooled under reduced pressure. The pressure was returned to atmospheric pressure (RH=50%) and left for 1 hour. This operation was repeated several times.

その結果、仕込み時に多孔性ガラスの細孔径分布が56
〜60人の範囲だったものが、殆んど10Å以下となっ
た。
As a result, the pore size distribution of porous glass at the time of preparation was 56
The number of cases that used to be in the range of ~60 people has now become almost 10 Å or less.

実施例−2 多孔性ガラス(厚さ1mm)を減圧下(0,1〜O,0
ITorr)で8時間真空乾燥した後。
Example-2 Porous glass (thickness 1 mm) was heated under reduced pressure (0,1 to O,0
After vacuum drying for 8 hours at ITorr).

該ガラス品を以下iこ示す組成の光硬化性の組成物Aに
入れ16時間含浸し、その後ガラス品を取り出し、その
表面から組成物Aを拭払した。
The glass article was placed in a photocurable composition A having the composition shown below and impregnated for 16 hours, and then the glass article was taken out and the composition A was wiped off from its surface.

組成物Aの組成; シクロへキシルアクリレ−)     30重量部ネオ
ペンチルグリコールジアクリレート40重量部2.2ビ
ス(4−アクリロキシ エトキシフェニル)プロパン30重量!ベンゾインイソ
プロピルエーテル 11X量部次に、このガラス品を超
高圧水銀灯(250W)から成る紫外線光線によって1
0秒間露光し、光をガラス品の厚さ方向に通過させ、紫
外線が照射されたガラス品の部分にある光硬化性の組成
物を硬化させた。アセトンで現像、リンス後硬化樹脂パ
ターンを賦与された多孔性ガラスを減圧下(0,01T
o r r) ニ置き、10%テトライソシアネートシ
ランのインペンタン溶液に浸清し、1時間数1δした後
、過剰のインペンタンとテトライソシアネートシランを
減圧下に除去した。この多孔性ガラスを大気圧(RH=
80%)に戻し、1時間放置した。この操作を数回繰り
返した後、ガラス品を電気炉中で700℃に加熱する事
により硬化樹脂パターンを除去した。冷却後、ガラス品
を酢酸コノヘルドを6重量%含む水溶液に2時間浸漬し
た後、1100°Cで焼結した。その結果硬化樹脂パタ
ーン部のみ青色に着色したガラスが得られた。透明ガラ
ス部の線幅の制御性は良く、収縮率は率1%以下であっ
た。
Composition of composition A; cyclohexyl acrylate) 30 parts by weight neopentyl glycol diacrylate 40 parts by weight 2.2 bis(4-acryloxyethoxyphenyl)propane 30 parts by weight! 11 parts of benzoin isopropyl ether The glass article was then exposed to ultraviolet light from an ultra-high pressure mercury lamp (250 W).
Exposure was performed for 0 seconds, and the light was passed through the thickness of the glass article to cure the photocurable composition in the portion of the glass article that was irradiated with ultraviolet light. After developing and rinsing with acetone, the porous glass provided with the cured resin pattern was developed under reduced pressure (0.01T).
o r r) After 2 hours, the sample was soaked in a solution of 10% tetraisocyanate silane in impentane, and after 1 hour of several δ, excess impentane and tetraisocyanate silane were removed under reduced pressure. This porous glass is heated to atmospheric pressure (RH=
80%) and left for 1 hour. After repeating this operation several times, the cured resin pattern was removed by heating the glass article to 700° C. in an electric furnace. After cooling, the glass article was immersed in an aqueous solution containing 6% by weight of acetic acid Conoheld for 2 hours, and then sintered at 1100°C. As a result, a glass was obtained in which only the cured resin pattern portion was colored blue. The controllability of the line width of the transparent glass part was good, and the shrinkage rate was 1% or less.

Claims (1)

【特許請求の範囲】[Claims] 多孔性ガラスの細孔中に、−Si−NCO結合を持つケ
イ素化合物を含浸し、前記細孔内で前記ケイ素化合物を
分解させ、前記細孔を結孔する工程を有する多孔性ガラ
スの結孔処理方法。
Porous glass comprising the step of impregnating a silicon compound having a -Si-NCO bond into the pores of the porous glass, decomposing the silicon compound within the pores, and forming the pores. Processing method.
JP26791485A 1984-12-13 1985-11-28 Method for binding pores of porous glass Pending JPS62128948A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26791485A JPS62128948A (en) 1985-11-28 1985-11-28 Method for binding pores of porous glass
US06/807,971 US4670033A (en) 1984-12-13 1985-12-12 Method of consolidating fine pores of porous glass
GB8530575A GB2169595B (en) 1984-12-13 1985-12-12 Method of establishing a glass material in fine pores of porous glass.
FR858518505A FR2574778B1 (en) 1984-12-13 1985-12-13 PROCESS FOR CONSOLIDATING THE THIN PORES OF A POROUS GLASS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26791485A JPS62128948A (en) 1985-11-28 1985-11-28 Method for binding pores of porous glass

Publications (1)

Publication Number Publication Date
JPS62128948A true JPS62128948A (en) 1987-06-11

Family

ID=17451373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26791485A Pending JPS62128948A (en) 1984-12-13 1985-11-28 Method for binding pores of porous glass

Country Status (1)

Country Link
JP (1) JPS62128948A (en)

Similar Documents

Publication Publication Date Title
JP5916825B2 (en) Uneven layer and imprinting method for producing uneven layer
US3969543A (en) Method of providing a patterned layer of silicon-containing oxide on a substrate
JP3488965B2 (en) Method for producing independent membrane by sol-gel method
JP2001506372A (en) Hybrid organic-inorganic planar optical waveguide device
MY126083A (en) Process film for use in producing cermaic green sheet and method for producing the film
US2974062A (en) Epoxy-glass fiber systems and method for improving the bonding relation therebetween
US5932498A (en) Magnet and method for manufacturing a magnet
JPS62128948A (en) Method for binding pores of porous glass
US4670033A (en) Method of consolidating fine pores of porous glass
CN109179373A (en) A kind of anti-oxidation carbon aerogel material and preparation method thereof
DE1545095A1 (en) Luminous mixture as well as method and device for its production
US20050272599A1 (en) Mold release layer
WO1997024223A2 (en) Methods and compositions for forming silica, germanosilicate and metal silicate films, patterns and multilayers
WO2003024894A1 (en) Method for producing high purity low dielectric constant ceramic and hybrid ceramic films
CN1359032A (en) Photoinduction SiO2 gel preparation and microfine pattern making method thereof
US6319551B1 (en) Methods and compositions for forming silica, germanosilicate and metal silicate films, patterns and multilayers
JPS60254132A (en) Pattern forming material
JP2861029B2 (en) Manufacturing method of optical waveguide
JPS6433029A (en) Quartz glass doped with europium and production thereof
JPH1111983A (en) Production of water-repellent glass coating
JPH0456134A (en) Manufacture of sio2 film using spin-on-glass method and coating agent thereof
JPS56100447A (en) Lamination structure body
JP4607342B2 (en) Metal ion selective adsorption material and metal ion removal method
KR970042438A (en) Oxidation coating solution of carbon / carbon composites and coating method
JPH06293535A (en) Coating liquid for forming silica based coating film and production thereof