JP2000085025A - Production of optical thin film, and optical thin film - Google Patents

Production of optical thin film, and optical thin film

Info

Publication number
JP2000085025A
JP2000085025A JP10255075A JP25507598A JP2000085025A JP 2000085025 A JP2000085025 A JP 2000085025A JP 10255075 A JP10255075 A JP 10255075A JP 25507598 A JP25507598 A JP 25507598A JP 2000085025 A JP2000085025 A JP 2000085025A
Authority
JP
Japan
Prior art keywords
thin film
optical thin
film
liquid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10255075A
Other languages
Japanese (ja)
Inventor
Takeshi Murata
剛 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10255075A priority Critical patent/JP2000085025A/en
Publication of JP2000085025A publication Critical patent/JP2000085025A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To widen the selectivity of a substrate shape and to obtain an optical thin film of uniform quality and thickness easily by a method in which optical thin film material sol is applied on a substrate, after a gel film being deposited, the temperature and pressure of liquid for immersion are brought into a critical state or above to vaporize the liquid, and unnecessary components in the gel film are removed. SOLUTION: A double-convex fluorite lens is set in a holder, immersed in a SiO2 sol solution, pulled up at a constant speed, and a SiO2 gel film is formed. The lens with the SiO2 gel film formed is transferred quickly together with the holder into the chamber 7 of a critical drier, the chamber 7 is sealed, a valve 13b is opened, liquid carbon dioxide which was heated in advance is introduced from a liquid tank 5 into the chamber 7. Next, the temperature and pressure of the chamber are brought into the critical temperature and critical pressure of carbon dioxide or above, the liquid carbon dioxide from which unnecessary components are eluted is released into a separator 9 held at a critical point or below, the sequence of operations is repeated five times, and the SiO2 gel film is dried completely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学部品、特に照射
エネルギー密度の高いレーザー等のための光学部品に用
いられる反射防止膜や反射膜等の光学薄膜およびその光
学薄膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical component, particularly an optical thin film such as an antireflection film or a reflection film used for an optical component for a laser or the like having a high irradiation energy density, and a method for producing the optical thin film.

【0002】[0002]

【従来の技術】現在、ほとんどすべての光学素子には反
射防止膜、反射増加膜等の光学薄膜が形成されている。
光学薄膜を作製する方法としては、真空蒸着法、スパッ
タリング法、イオンプレーティング法、CVD法等が目
的とする光学薄膜の特性に応じて広く利用されている。
これらの方法は一般的に減圧下あるいは密閉系内で成膜
を行うため、装置が大がかりなものになるという問題点
がある。これらの方法に対し、近年湿式にて薄膜を形成
するユニークな方法としてゾル−ゲル法が用いられるよ
うになってきた。ゾル−ゲル法の特徴として以下のよう
なものが挙げられる。 1)ゲル状態を経るので多孔質の膜が得られる。さら
に、焼成を行うことにより緻密化も可能である。 2)焼成温度が通常のセラミックスの焼成などに比べ数
百〜千℃も低い。 3)原料の精製が容易であるため、高純度の膜を形成す
ることができる。 4)原料を低粘度の液体状態で混合するため均質性に優
れ、複合酸化物等の調製に有利である。また、化学量論
性の高い化合物膜が得られる。 5)装置が簡便で済み、大面積の基板や複雑な形状の基
板への成膜に適している。また、両面同時成膜あるいは
部分成膜が可能である。
2. Description of the Related Art At present, almost all optical elements are formed with optical thin films such as an antireflection film and a reflection enhancement film.
As a method for producing an optical thin film, a vacuum evaporation method, a sputtering method, an ion plating method, a CVD method, and the like are widely used according to the characteristics of the optical thin film intended.
Since these methods generally form a film under reduced pressure or in a closed system, there is a problem that the apparatus becomes large-scale. In contrast to these methods, a sol-gel method has recently been used as a unique method of forming a thin film by a wet method. The characteristics of the sol-gel method include the following. 1) A porous film can be obtained because of the gel state. Further, densification can be performed by firing. 2) The firing temperature is several hundred to 1,000 ° C. lower than that of ordinary ceramics. 3) Since the raw material can be easily purified, a high-purity film can be formed. 4) Since the raw materials are mixed in a low-viscosity liquid state, they are excellent in homogeneity, and are advantageous for preparing composite oxides and the like. Further, a compound film having high stoichiometry can be obtained. 5) The apparatus is simple and suitable for forming a film on a large area substrate or a substrate having a complicated shape. Further, simultaneous film formation on both sides or partial film formation is possible.

【0003】ゾル−ゲル法による成膜の出発原料として
は、金属ハライド、金属オキシハライド、金属有機化合
物が用いられるが、その中でも金属アルコキシドを用い
る場合が最も多い。その理由としてハライドなどの不揮
発性成分を除去する必要がないこと、加水分解・縮重合
過程の制御が容易であることなどが挙げられる。金属ア
ルコキシドではアルコキシル基の種類を変えることによ
り加水分解の反応速度を制御することができる。例え
ば、アルキル基が長いほど、また枝分かれが多いほど、
立体障害により加水分解に対する安定性が増す。この性
質を利用することにより、複合酸化物を調製する際に問
題となる、種類の異なる金属アルコキシドの加水分解速
度の違いの影響を解消することができる。一般に、金属
アルコキシドは水との親和性に欠けるので、均一に混合
するには共通溶媒の使用が必要となる。また、反応性の
高い金属アルコキシドに直接水を添加すると、局所的に
加水分解が起こって沈殿が生ずるので、これを防ぐため
に希釈の必要があるなどの理由により、金属アルコキシ
ドおよび水の両方を、それぞれアルコール等の共通溶媒
で希釈することがしばしば行われる。
As starting materials for film formation by the sol-gel method, metal halides, metal oxyhalides, and metal organic compounds are used. Among them, metal alkoxides are most often used. The reasons are that there is no need to remove nonvolatile components such as halides, and that the hydrolysis / condensation polymerization process can be easily controlled. In metal alkoxides, the rate of hydrolysis reaction can be controlled by changing the type of alkoxyl group. For example, the longer the alkyl group and the more branches,
Steric hindrance increases stability against hydrolysis. By utilizing this property, it is possible to eliminate the influence of the difference in the hydrolysis rate of different metal alkoxides, which is a problem when preparing a composite oxide. Generally, metal alkoxides lack an affinity for water, so that a uniform solvent requires the use of a common solvent. In addition, when water is directly added to a highly reactive metal alkoxide, local hydrolysis occurs and precipitation occurs.For this reason, it is necessary to dilute the metal alkoxide and water to prevent this. Each of them is often diluted with a common solvent such as alcohol.

【0004】基板表面にゾルを堆積させる方法として
は、(1)ゾルを噴霧するスプレー法、(2)回転する
基板にゾルを滴下し遠心力で拡げるスピンコート法、
(3)基板をゾルに浸漬し引き上げるディップコート法
などが用いられる。このような特徴的な工程により形成
されるゾル−ゲル膜は、近年高レーザー耐久性光学薄膜
の形成法として注目されるようになった。これは主にゾ
ル−ゲル膜が多孔質であることによるものである。光に
よる光学薄膜の損傷は光のエネルギーを膜物質が吸収
し、吸収されたエネルギーが熱エネルギーに変換される
ことにより生ずるといわれているが、多孔質の膜は急激
な熱膨張や高温によるプラズマの発生といった衝撃に対
して応力を発生しにくく、緻密な膜に比べ高いレーザー
耐久性を示す。
The sol is deposited on the substrate surface by (1) a spray method of spraying the sol, (2) a spin coating method of dropping the sol onto a rotating substrate and spreading the sol by centrifugal force.
(3) A dip coating method in which a substrate is immersed in a sol and pulled up is used. The sol-gel film formed by such a characteristic process has recently attracted attention as a method for forming an optical thin film having high laser durability. This is mainly because the sol-gel film is porous. It is said that the damage of the optical thin film by light is caused by the absorption of light energy by the film material and the absorbed energy is converted into heat energy. It hardly generates stress against impact such as generation of laser, and shows higher laser durability than a dense film.

【0005】[0005]

【発明が解決しようとする課題】ゾル−ゲル法は、湿式
法であるために必ずゾルを乾燥させる工程を経なければ
ならないが、この際ゾルの大きな体積変化が生じ乾燥後
のゲルの密度や膜厚の不均一、あるいは亀裂の原因とな
ってしまうことがある。これは、膜に含まれる溶媒に表
面張力があるためで、溶媒の蒸発による体積の減少に伴
い膜を構成する物質の分子鎖は表面張力により収縮す
る。このような現象は基板の形状や乾燥環境により影響
を受けやすく、基板形状の選択の自由度を制限するばか
りでなく、成膜環境の厳密な制御を必要とした。
Since the sol-gel method is a wet method, it must necessarily undergo a step of drying the sol. At this time, a large change in volume of the sol occurs, and the density and the density of the gel after drying are increased. This may cause uneven film thickness or cracks. This is because the solvent contained in the film has a surface tension, and the molecular chain of the substance constituting the film contracts due to the surface tension as the volume decreases due to the evaporation of the solvent. Such a phenomenon is easily affected by the shape of the substrate and the drying environment, and not only limits the degree of freedom in selecting the shape of the substrate, but also requires strict control of the film forming environment.

【0006】また、ゾル−ゲル法により形成された光学
薄膜は多孔質であるために、熱処理(ベイキング)を行
わない場合は、水やアルコール、アルコキシド等の物質
(以下、不要成分という)が多く吸着されており、使用
光源波長によっては吸収による膜損失が発生する場合が
ある。膜損失が大きいと入射光のエネルギー吸収により
膜の光耐久性が低下するため、これら吸着成分を除去す
るためのベーキングが必要となる。しかし、ベーキング
を行うには膜に急激な収縮が生じないよう、予めゆっく
りと乾燥させなくてはならず、しかも専用の加熱設備を
必要とするという問題があった。
[0006] Further, since the optical thin film formed by the sol-gel method is porous, if heat treatment (baking) is not performed, many substances such as water, alcohol, alkoxide and the like (hereinafter referred to as unnecessary components) are often present. It is adsorbed, and a film loss due to absorption may occur depending on the wavelength of the light source used. If the film loss is large, the light durability of the film is reduced due to the energy absorption of the incident light, so that baking for removing these adsorbed components is required. However, in order to carry out baking, there is a problem that the film must be dried slowly in advance so as not to cause rapid shrinkage of the film, and a special heating facility is required.

【0007】そこで、本発明は従来の問題点を解決する
ためになされたものであり、ゾル−ゲル法を用いて光学
薄膜を形成する場合に、基板形状の選択性を広げるとと
もに不要成分が少なく、容易に均一な膜質・膜厚の光学
薄膜を形成する方法を提供することを目的とする。
Accordingly, the present invention has been made to solve the conventional problems, and when an optical thin film is formed by using a sol-gel method, the selectivity of the substrate shape is increased and unnecessary components are reduced. It is an object of the present invention to provide a method for easily forming an optical thin film having a uniform film quality and thickness.

【0008】[0008]

【課題を解決するための手段】本発明は「基板上に光学
薄膜材料ゾルを塗布し、ゲル膜を堆積させた後、液体に
浸漬し、前記液体の温度及び圧力を臨界状態以上にして
前記液体を気化乾燥させると同時にゲル膜中の不要成分
を除去することを特徴とする光学薄膜の製造方法(請求
項1)」を提供する。
According to the present invention, there is provided an optical thin film material sol coated on a substrate, a gel film is deposited, and then immersed in a liquid. A method for producing an optical thin film (claim 1), comprising removing unnecessary components in a gel film while evaporating and drying a liquid.

【0009】また、本発明は「少なくとも、請求項1記
載の光学薄膜の製造方法により製造された光学薄膜を有
することを特徴とする光学薄膜(請求項2)」を提供す
る。また、本発明は「前記光学薄膜が100nm〜30
0nmの波長範囲用であることを特徴とする請求項2記
載の光学薄膜(請求項3)」を提供する。
The present invention also provides "an optical thin film characterized by having at least an optical thin film manufactured by the method for manufacturing an optical thin film according to claim 1 (claim 2)". In addition, the present invention provides a method wherein “the optical thin film has a thickness of
An optical thin film according to claim 2 (claim 3) for use in a wavelength range of 0 nm is provided.

【0010】[0010]

【発明の実施の形態】本発明にかかる実施形態の光学薄
膜の製造方法は、基板上に光学薄膜材料ゾルを塗布し、
ゲル膜を堆積させた後、液体に浸漬し、液体の温度及び
圧力を臨界状態以上にして液体を気化、乾燥するという
ものである。光学基板としては、光学ガラス、プラスチ
ックレンズ等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION A method for manufacturing an optical thin film according to an embodiment of the present invention comprises applying an optical thin film material sol onto a substrate,
After depositing the gel film, the gel film is immersed in a liquid, the temperature and pressure of the liquid are set to critical levels or more, and the liquid is vaporized and dried. Examples of the optical substrate include optical glass and plastic lenses.

【0011】光学薄膜材料ゾルとしては、従来技術に記
載した金属ハライド、金属オキシハラシド、金属アルコ
キシド、金属有機化合物のゾルが挙げられる。屈折率調
整のために上記ゾルの中に複合酸化物を入れても良い。
臨界状態とは、臨界温度において気体を加圧していく
と、圧力(p)−体積(v)曲線が変曲点を示し、(∂p
/∂v)T=0、(∂2p/∂2v)T=0(Tは温度)となる
点で、気体が連続的に液体に変化する状態をいい、その
時の圧力を臨界圧、体積を臨界体積という。臨界点以上
の温度・圧力条件(超臨界状態)に比較的容易に到達で
きるのは二酸化炭素とフロンガスである。したがってゲ
ル膜が形成された光学基板を液体二酸化炭素又はフロン
(液体)に浸漬させると、ゲル膜中の水分やアルコール
が液体二酸化炭素又はフロン(液体)に拡散し同時に二
酸化炭素又はフロン(液体)が浸透する。この状態で温
度及び圧力を臨界点以上にしてゆっくり気化させて乾燥
することにより、ゲル膜の変形を防ぐことができる。
Examples of the optical thin film material sol include sols of metal halides, metal oxyhalides, metal alkoxides, and metal organic compounds described in the prior art. A composite oxide may be added to the sol for adjusting the refractive index.
The critical state means that when a gas is pressurized at a critical temperature, the pressure (p) -volume (v) curve shows an inflection point, and (∂p
/ ∂v) T = 0, ( ∂ 2 p / ∂ 2 v) T = 0 (T is a point at which the temperature), means a state in which the gas is changed continuously liquid, the critical pressure of the pressure at that time, The volume is called the critical volume. Carbon dioxide and Freon gas can relatively easily reach the temperature and pressure conditions (supercritical state) above the critical point. Therefore, when the optical substrate on which the gel film is formed is immersed in liquid carbon dioxide or chlorofluorocarbon (liquid), the water or alcohol in the gel film diffuses into liquid carbon dioxide or chlorofluorocarbon (liquid) and simultaneously carbon dioxide or chlorofluorocarbon (liquid). Penetrates. In this state, the temperature and pressure are raised to the critical point or more, and the mixture is slowly vaporized and dried, whereby the deformation of the gel film can be prevented.

【0012】以下に、より詳細に超臨界洗浄・乾燥の過
程を図1及び図3を用いて説明する。図1は、本発明の
実施形態にかかる光学薄膜の製造方法で用いる超臨界洗
浄・乾燥装置の概略断面図である。図1に示す超臨界洗
浄・乾燥装置は、バルブ13aを備えた液体タンク5
と、内部の温度を制御する加熱機構8及びチャンバー7
内の圧力を測定する圧力計6を備えたチャンバー7と、
セパレータ9とを有し、液体タンク5とチャンバー7
は、バルブ13b及び予備加熱機構10を備えた導入管
11により結合され、チャンバー7とセパレーター9
は、バルブ13dを備えた排出管12により結合されて
いる。
Hereinafter, the process of supercritical cleaning and drying will be described in more detail with reference to FIGS. FIG. 1 is a schematic sectional view of a supercritical cleaning / drying apparatus used in the method for manufacturing an optical thin film according to the embodiment of the present invention. The supercritical cleaning / drying apparatus shown in FIG. 1 includes a liquid tank 5 having a valve 13a.
And a heating mechanism 8 and a chamber 7 for controlling the internal temperature
A chamber 7 having a pressure gauge 6 for measuring the pressure in the chamber,
A liquid tank 5 and a chamber 7
Are connected by an inlet tube 11 provided with a valve 13b and a preheating mechanism 10, and the chamber 7 and the separator 9
Are connected by a discharge pipe 12 provided with a valve 13d.

【0013】図3は、二酸化炭素の相図及び二酸化炭素
を用いた超臨界洗浄・乾燥のモデル図である。二酸化炭
素は温度及び圧力の関係から固体、液体、気体の状態を
とるが、温度:31.4℃以上、圧力:39.5kg/
cm2以上の領域では超臨界流体となり、液体と気体と
の区別がなくなる。この超臨界状態へ移行する温度及び
圧力を臨界点という(図中×印)。通常の乾燥は、図3
中に示した点線a→cのプロセスで行なわれるのに対
し、超臨界乾燥は点線a→b→cの過程で行われる。即
ち、超臨界洗浄・乾燥装置のチャンバー内に部材が静置
されている場合、通常の水による洗浄では部材は、洗浄
後、大気圧の状態で100℃以上まで加熱され、乾燥さ
せられる。
FIG. 3 is a phase diagram of carbon dioxide and a model diagram of supercritical cleaning and drying using carbon dioxide. Carbon dioxide takes a solid, liquid, or gas state due to the relationship between temperature and pressure, but has a temperature of 31.4 ° C. or more and a pressure of 39.5 kg /.
In a region of cm 2 or more, the fluid becomes a supercritical fluid, and there is no distinction between a liquid and a gas. The temperature and pressure at which the transition to the supercritical state is referred to as a critical point (x in the figure). Normal drying is shown in FIG.
Supercritical drying is performed in the process of dotted lines a → b → c, while the process is performed in the process of dotted lines a → c shown therein. That is, when the member is left standing in the chamber of the supercritical cleaning / drying apparatus, the member is heated to 100 ° C. or more at atmospheric pressure and then dried in normal water washing.

【0014】これに対して、二酸化炭素による超臨界洗
浄では、図1に示す超臨界洗浄・乾燥装置を用いて説明
すると、まず、チャンバー7内に高圧の液体二酸化炭素
5が導入され、チャンバー7内の気密状態を保ったまま
臨界温度以上まで加熱される。そうすると密閉されたチ
ャンバー7内では二酸化炭素の蒸気圧の上昇に伴いチャ
ンバー内圧も上昇し、臨界温度・臨界圧力を越えて超臨
界状態となる。
On the other hand, in the supercritical cleaning using carbon dioxide, using a supercritical cleaning / drying apparatus shown in FIG. 1, first, high-pressure liquid carbon dioxide 5 is introduced into the chamber 7, It is heated above the critical temperature while maintaining the airtight state inside. Then, in the closed chamber 7, the internal pressure of the chamber also increases with the increase of the vapor pressure of carbon dioxide, and exceeds the critical temperature and critical pressure to be in a supercritical state.

【0015】不要成分の抽出時間を十分とった後、チャ
ンバー7内から徐々に二酸化炭素を放出すると、チャン
バー7内の温度はそのままで圧力のみ低下していくた
め、不要成分は二酸化炭素と共にチャンバー7から放出
され気化・拡散してしまう。放出過程で二酸化炭素は超
臨界流体から気/液界面を形成することなく連続的に気
体に変化するため、被乾燥物は表面張力の影響を受ける
ことなく乾燥することになる。
When the carbon dioxide is gradually released from the interior of the chamber 7 after a sufficient extraction time of the unnecessary components, the pressure in the chamber 7 is reduced while the temperature in the chamber 7 remains unchanged. And is vaporized and diffused. In the release process, carbon dioxide is continuously changed from a supercritical fluid to a gas without forming a gas / liquid interface, and thus the object to be dried is dried without being affected by surface tension.

【0016】以下、実施形態の光学薄膜の製造方法の手
順を示す。実施形態では超臨界流体として、安価で超臨
界状態が容易に得られる二酸化炭素を用いた。図2は、
実施形態の光学薄膜の製造方法に用いるディップコート
装置である。まず、曲率半径R=100の両凸蛍石レン
ズ1(屈折率1.628)を用意し、ディップコート装
置の専用ホルダー2にセットし、Si(OC2H54:H
2O:C25OH:HCl=1:6:10.5:0.06の割合
で混合したSiO2ゾル溶液3に浸漬し、一定速度で引
き上げSiO2ゲル膜を形成した。
The procedure of the method for manufacturing an optical thin film according to the embodiment will be described below. In the embodiment, carbon dioxide that is inexpensive and easily obtains a supercritical state is used as the supercritical fluid. FIG.
It is a dip coater used for the manufacturing method of the optical thin film of an embodiment. First, a biconvex fluorite lens 1 (refractive index: 1.628) having a radius of curvature R = 100 is prepared and set in a dedicated holder 2 of a dip coater, and Si (OC 2 H 5 ) 4 : H
It was immersed in a SiO 2 sol solution 3 mixed at a ratio of 2 O: C 2 H 5 OH: HCl = 1: 6: 10.5: 0.06 and pulled up at a constant speed to form a SiO 2 gel film.

【0017】次に、SiO2ゲル膜が形成されたレンズ
1をホルダー2ごと速やかに図1の臨界乾燥装置のチャ
ンバー7内に移し、チャンバー7内を密閉状態にした。
導入管11に設けられたバルブ13bを開いて、液体タ
ンク5から液体二酸化炭素をチャンバー7内に導入し
た。導入管11にはプレヒーター10が設けられている
ので、液体二酸化炭素はチャンバー7に入る前に、プレ
ヒーター10により加熱される。
Next, the lens 1 on which the SiO 2 gel film was formed was immediately transferred together with the holder 2 into the chamber 7 of the critical drying apparatus shown in FIG. 1, and the inside of the chamber 7 was sealed.
The valve 13 b provided on the introduction pipe 11 was opened, and liquid carbon dioxide was introduced from the liquid tank 5 into the chamber 7. Since the introduction pipe 11 is provided with the preheater 10, the liquid carbon dioxide is heated by the preheater 10 before entering the chamber 7.

【0018】次に、チャンバー内温度を加熱機構8によ
り二酸化炭素の臨界温度31.4℃以上とし、圧力を臨
界圧力39.5kg/cm2以上になるようにした後20
分間保持した。その後、不要成分が溶出した液体二酸化
炭素を臨界点以下に保ったセパレータ9内に放出した。
セパレータ9内の二酸化炭素は最終的に大気に放出さ
れ、不揮発成分がセパレータ9内に残った。再びチャン
バー内に超臨界流体とした二酸化炭素を注入し、一定時
間保持した後二酸化炭素をセパレータ9内に放出し、こ
の一連の操作を5回繰り返した。
Next, the temperature in the chamber is raised to a critical temperature of carbon dioxide of 31.4 ° C. or higher by the heating mechanism 8 and the pressure is raised to a critical pressure of 39.5 kg / cm 2 or higher.
Hold for minutes. Thereafter, the liquid carbon dioxide from which the unnecessary components were eluted was discharged into the separator 9 kept below the critical point.
Carbon dioxide in the separator 9 was finally released to the atmosphere, and non-volatile components remained in the separator 9. Carbon dioxide as a supercritical fluid was again injected into the chamber, and after maintaining for a certain period of time, carbon dioxide was released into the separator 9. This series of operations was repeated five times.

【0019】最後の二酸化炭素注入後、超臨界状態であ
る二酸化炭素を徐々に気化させていき、SiO2ゲル膜
を完全に乾燥させた。乾燥試料はチャンバーより取り出
し、光学特性の評価を行った。このようにして作製され
たSiO2ゲル膜は、屈折率は1.28と蛍石基板
(1.628)に比べて十分小さく、単層膜でありなが
ら185nm〜200nmの波長範囲において一面当た
りの残存反射率は約0.2%であり、十分な反射防止効
果を有することがわかった。
After the last carbon dioxide injection, carbon dioxide in a supercritical state was gradually vaporized, and the SiO 2 gel film was completely dried. The dried sample was taken out of the chamber, and the optical characteristics were evaluated. The SiO 2 gel film thus manufactured has a refractive index of 1.28, which is sufficiently smaller than that of the fluorite substrate (1.628), and is a single-layer film, but has a per-surface in a wavelength range of 185 nm to 200 nm. The residual reflectivity was about 0.2%, which proved to have a sufficient antireflection effect.

【0020】膜厚の制御は、ゾルの粘度を適切に調整す
ることにより、任意な膜を作製することができる。ま
た、不要な有機不純物が十分除去されているので、膜の
吸収損失が少ないことが確認された。波長193nm、
パルス幅50pmのArFエキシマレーザーを用いた光
耐久性試験では、照射回数1×107でのレーザー損傷
しきい値は900mJであり、レーザー耐久性にも優れ
ていた。
The thickness of the film can be controlled by adjusting the viscosity of the sol appropriately to produce an arbitrary film. In addition, since unnecessary organic impurities were sufficiently removed, it was confirmed that the absorption loss of the film was small. Wavelength 193 nm,
In a light durability test using an ArF excimer laser having a pulse width of 50 pm, the laser damage threshold value at the irradiation frequency of 1 × 10 7 was 900 mJ, and the laser durability was excellent.

【0021】なお、本発明にかかる光学薄膜は193n
mのArFエキシマレーザー用に限らず、100nm〜
300nmの波長範囲に存在するレーザー用の光学薄膜
として使用できる。
The optical thin film according to the present invention has a thickness of 193n.
m not only for ArF excimer laser
It can be used as an optical thin film for a laser existing in a wavelength range of 300 nm.

【0022】[0022]

【発明の効果】以上説明した通り、本発明に係る光学薄
膜の製造方法においては、従来のゾル−ゲル法による光
学薄膜の製造方法の乾燥段階で生じていた基板の面方向
における2次元的なゲルの乾燥速度の違いや、膜の深さ
方向の乾燥速度の違いにより生じる膜の密度や膜厚の不
均一性を解消し、曲率の大きなレンズや複雑な形状の基
板への成膜を可能としただけでなく、液体中にて乾燥を
行うことにより重力によるゲルや溶媒の移動により生ず
る膜の不均一性をも改善することが可能となった。
As described above, in the method of manufacturing an optical thin film according to the present invention, the two-dimensional optical film manufacturing method according to the conventional sol-gel method has a two-dimensional structure in the plane direction of the substrate, which has occurred in the drying stage. Eliminates non-uniformity in film density and thickness caused by differences in gel drying speed and differences in film depth drying speed, enabling film formation on lenses with large curvatures or substrates with complex shapes In addition to the above, drying in a liquid makes it possible to improve the non-uniformity of the film caused by the movement of the gel or the solvent due to gravity.

【0023】また、従来乾燥工程とは別に行われていた
不要成分除去のための洗浄工程を乾燥工程と同時に行う
ことを可能とし、従来よりも少ない設備と時間で光耐久
性の高い光学薄膜を作製することを可能とした。さら
に、従来のゾルーゲル法では、乾燥に伴い溶媒の表面張
力により膜の緻密化が進行するのに対して、本発明の光
学薄膜の製造方法によれば、溶媒の表面張力がなくなる
ため、乾燥段階での膜の緻密化が進行せず、低密度、多
孔質、低屈折率の光学薄膜の形成が可能となる。
Further, it is possible to perform a washing step for removing unnecessary components, which has been performed separately from the conventional drying step, at the same time as the drying step, so that an optical thin film having high light durability can be manufactured with less equipment and time than before. It is possible to manufacture. Furthermore, in the conventional sol-gel method, the film is densified due to the surface tension of the solvent accompanying drying, whereas according to the method for producing an optical thin film of the present invention, the surface tension of the solvent is eliminated, so the drying step Does not progress, and it is possible to form an optical thin film having a low density, a porous structure and a low refractive index.

【0024】また、本発明の光学薄膜の製造方法によれ
ば、ゲル膜の気化乾燥と同時に不要成分の除去を行うこ
とができるので、少ない設備と時間で所望(低吸収、光
耐久性)の光学薄膜を製作することができる。
Further, according to the method for producing an optical thin film of the present invention, unnecessary components can be removed simultaneously with vaporization and drying of the gel film, so that the desired (low absorption, light durability) can be obtained with a small amount of equipment and time. Optical thin films can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の光学薄膜の製造方法に用い
る超臨界洗浄・乾燥装置の概略断面図である。
FIG. 1 is a schematic sectional view of a supercritical cleaning / drying apparatus used in a method for producing an optical thin film according to an embodiment of the present invention.

【図2】本発明の実施形態の光学薄膜の製造方法に用い
るディップコート装置の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a dip coating apparatus used in the method for manufacturing an optical thin film according to the embodiment of the present invention.

【図3】二酸化炭素の相図及び二酸化炭素を用いた超臨
界洗浄・乾燥モデル図である。
FIG. 3 is a phase diagram of carbon dioxide and a model diagram of supercritical cleaning and drying using carbon dioxide.

【符号の説明】[Explanation of symbols]

1・・・レンズ 2・・・ホルダー 3・・・ゲル溶液 4・・・引き上げ機 5・・・液体二酸化炭素 6・・・圧力計 7・・・チャンバー 8・・・加熱機構 9・・・セパレーター 10・・・予備加熱機構 11・・・導入管 12・・・排出管 13a、13b、13c、13d・・・バルブ 14・・・液体タンク DESCRIPTION OF SYMBOLS 1 ... Lens 2 ... Holder 3 ... Gel solution 4 ... Pulling-up machine 5 ... Liquid carbon dioxide 6 ... Pressure gauge 7 ... Chamber 8 ... Heating mechanism 9 ... Separator 10 Preliminary heating mechanism 11 Inlet pipe 12 Outlet pipe 13a, 13b, 13c, 13d Valve 14 Liquid tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に光学薄膜材料ゾルを塗布し、ゲル
膜を堆積させた後、液体に浸漬し、前記液体の温度及び
圧力を臨界状態以上にして前記液体を気化乾燥させると
同時にゲル膜中の不要成分を除去することを特徴とする
光学薄膜の製造方法。
An optical thin film material sol is coated on a substrate, a gel film is deposited, and then immersed in a liquid, and the temperature and pressure of the liquid are raised to critical levels or more, and the liquid is vaporized and dried. A method for producing an optical thin film, comprising removing unnecessary components from a film.
【請求項2】少なくとも、請求項1記載の光学薄膜の製
造方法により製造された光学薄膜を有することを特徴と
する光学薄膜。
2. An optical thin film having at least an optical thin film manufactured by the method for manufacturing an optical thin film according to claim 1.
【請求項3】前記光学薄膜が100nm〜300nmの
波長範囲用であることを特徴とする請求項2記載の光学
薄膜。
3. The optical thin film according to claim 2, wherein said optical thin film is used for a wavelength range of 100 nm to 300 nm.
JP10255075A 1998-09-09 1998-09-09 Production of optical thin film, and optical thin film Pending JP2000085025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10255075A JP2000085025A (en) 1998-09-09 1998-09-09 Production of optical thin film, and optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10255075A JP2000085025A (en) 1998-09-09 1998-09-09 Production of optical thin film, and optical thin film

Publications (1)

Publication Number Publication Date
JP2000085025A true JP2000085025A (en) 2000-03-28

Family

ID=17273795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10255075A Pending JP2000085025A (en) 1998-09-09 1998-09-09 Production of optical thin film, and optical thin film

Country Status (1)

Country Link
JP (1) JP2000085025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081666A1 (en) * 2003-03-11 2004-09-23 University Of North Carolina At Chapel Hill Immersion lithography methods using carbon dioxide
JP2005221911A (en) * 2004-02-09 2005-08-18 Pentax Corp Optical element having reflection preventing film
WO2013132751A1 (en) * 2012-03-08 2013-09-12 セイコーエプソン株式会社 Optical element and optical element manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081666A1 (en) * 2003-03-11 2004-09-23 University Of North Carolina At Chapel Hill Immersion lithography methods using carbon dioxide
US7029832B2 (en) 2003-03-11 2006-04-18 Samsung Electronics Co., Ltd. Immersion lithography methods using carbon dioxide
JP2005221911A (en) * 2004-02-09 2005-08-18 Pentax Corp Optical element having reflection preventing film
JP4495476B2 (en) * 2004-02-09 2010-07-07 Hoya株式会社 Method for manufacturing optical element having antireflection film
WO2013132751A1 (en) * 2012-03-08 2013-09-12 セイコーエプソン株式会社 Optical element and optical element manufacturing method
JP2013186348A (en) * 2012-03-08 2013-09-19 Hoya Lense Manufacturing Philippine Inc Optical element and optical element manufacturing method
US9535262B2 (en) 2012-03-08 2017-01-03 Ehs Lens Philippines, Inc. Optical member and method of manufacturing optical member

Similar Documents

Publication Publication Date Title
JP3159780B2 (en) Anti-reflective coating layer
AU737747B2 (en) An inorganic polymer material based on tantalum oxide, notably with a high refractive index, mechanically resistant to abrasion, its method of manufacture, and optical material including this material
US5853800A (en) Material for and method of preparing water-repellent coatings on optical substrates
US3953652A (en) Process for coating glass onto polymeric substrates
WO1992002467A1 (en) A method of making sol-gel monoliths
Du Min et al. Striation‐Free, Spin‐Coated Sol‐Gel Optical Films
WO2022007555A1 (en) Super-hydrophobic membrane layer, preparation method therefor, and product thereof
JP5279344B2 (en) Optical element manufacturing method
JPH01132770A (en) Composition for titanium-containing oxide film and formation of said film
KR20200027957A (en) Method for preparing a textured glass substrate coated with an anti-reflective sol-gel-type coating
Langlet et al. Glass and ceramic thin films deposited by an ultrasonically assisted sol-gel technique
JP2000266904A (en) Optical product and manufacture thereof
JP2000085025A (en) Production of optical thin film, and optical thin film
EP0486393A1 (en) Sol-gel deposition process for thin layers by ultrasonic spraying
JPH10221502A (en) Manufacture of optical thin film and optical thin film
US7507437B2 (en) Method of wet coating for applying anti-reflective film to substrate
US5897925A (en) Fog-resistant microporous SiOH films and the method of manufacturing the same
TW201318992A (en) Method for producing high transmission glass coatings
CN1059276C (en) Preparation of antireflecting silicon dioxide film
US6391515B1 (en) Manufacturing process for preparing sol-gel optical waveguides
US20070259127A1 (en) Method for densifying sol-gel films to form microlens structures
JPH04168277A (en) Thin film forming device and formation of thin film
TWI834975B (en) Superhydrophobic film layer and preparation methods and products thereof
US2482684A (en) Solutions of tetraalkylsilicates
JP4868432B2 (en) Method for producing mesoporous silica structure, mesoporous silica structure, and liquid crystal element having the same