JPS6241725A - Production of lens of refractive index distribution type - Google Patents

Production of lens of refractive index distribution type

Info

Publication number
JPS6241725A
JPS6241725A JP17656885A JP17656885A JPS6241725A JP S6241725 A JPS6241725 A JP S6241725A JP 17656885 A JP17656885 A JP 17656885A JP 17656885 A JP17656885 A JP 17656885A JP S6241725 A JPS6241725 A JP S6241725A
Authority
JP
Japan
Prior art keywords
porous
gel
lens
glass
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17656885A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Mizuguchi
博義 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17656885A priority Critical patent/JPS6241725A/en
Publication of JPS6241725A publication Critical patent/JPS6241725A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To produce lens of refractive index distribution type simply in a short time, by diffusing heterogeneously a metallic ion having high electron polarizability into part of the surface of porous gel obtained by hydrolyzing a metallic alkoxide and heat-treating the gel at high temperature. CONSTITUTION:A metallic alkoxide such as Si(OCH3)4, etc., is hydrolyzed to give the flat porous gel 2'. This porous gel 2' is used as a base material, optionally heat-treated to give porous glass, which is provided with the mask 4 having the diffusion holes 5 at a lens-forming part. Then, in the diffusion holes 5, a solution of metallic ion having high electron polarizability, such as Tl, Cs, etc., is brought into contact with the gel 2'. Properly the contact time is usually about 0.5-5hr. Consequently, the diffusion layer 3 of the metallic ion is formed, the gel 2' is heat-treated at about 1,100-1,300 deg.C and the non-porous glass layer 2 is made to give the lens 1 of refractive index distribution type.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、屈折率分布型レンズの製造法に関する。さ
らに詳しくは、光ガイド、光通信システムの周辺光素子
、光学分析器や複写礪の光学系等の種々の分野に有用な
屈折率分布型レンズの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for manufacturing a gradient index lens. More specifically, the present invention relates to a method for manufacturing a gradient index lens useful in various fields such as light guides, peripheral light elements for optical communication systems, optical systems for optical analyzers and copying machines.

(ロ)従来の技術 透明媒質中の屈折率を変化させることによりレンズ作用
を付与させたいわゆる屈折率分布型レンズは、通常の光
学レンズに比して、平板状でレンズ作用を付与できる、
端面上に結像できる、結像特性を自由に選択できる、レ
ンズのアレイ化やマトリックス化が容易である等の種々
の利点を備えており、光通信分野において最近ことに注
目されている。
(B) Conventional technology A so-called gradient index lens, which imparts a lens effect by changing the refractive index in a transparent medium, can impart a lens effect in a flat plate shape, compared to ordinary optical lenses.
It has various advantages such as being able to form an image on the end face, being able to freely select the imaging characteristics, and being easily formed into an array or matrix of lenses, and has recently been attracting attention in the field of optical communications.

これらのうち、ガラス素材を用いた屈折率分布型レンズ
は、通常、■ガラス基体の一部を所定の溶融塩と接触さ
じて拡散によりイオン交換を行ないそれにより電子分極
率の大きな金属イオン(例えばタリウムやセシウム)を
ガラス基体内に不均一分布させて屈折率を変化させる方
法(イオン交換法)や、■ガラス基体を分相処理及び酸
処理して多孔質化し、これに電子分極率の大きな金属元
素の溶液を一部に接触させて含浸し濃度分布を形成し、
次いで乾燥、高温加熱処理等を行なって透明なガラス体
に変換する方法(モレキュラースタッフインク法〉で作
製されており、ことにイオン交換法■で得られたレンズ
はセルフォックレンズとして知られている。
Among these, graded index lenses using glass materials usually involve (1) bringing a part of the glass substrate into contact with a predetermined molten salt to perform ion exchange through diffusion, which results in metal ions with high electronic polarizability (e.g. There is a method (ion exchange method) in which the refractive index is changed by nonuniformly distributing thallium or cesium) in the glass substrate; A solution of a metal element is brought into contact with a part of the metal element to impregnate it and form a concentration distribution.
It is then produced using a method (Molecular Stuff Ink Method) in which it is converted into a transparent glass body by drying, high-temperature heat treatment, etc. Lenses obtained using the ion exchange method are known as Selfoc lenses. .

(ハ)発明が解決しようとする問題点 しかしながら、上記イオン交換法■では、イオンの拡散
や交換に極めて長時間(例えばマスクされたガラス基体
を溶融塩中に数日間浸漬)を要し、さらに長時間行なっ
てもイオン拡散に限界がありせいぜい直径5mm程度の
レンズしか1りることができなかった。一方、モレキュ
ラースタッフィング法では、ガラス基体の多孔質化が複
雑でかつ長時間を要しく例えば、分相処理に2日間、酸
処理に20日間程度必要)また、取板いも複雑でかつ特
殊な設備を必要としする問題点があった。
(c) Problems to be solved by the invention However, in the above ion exchange method (iv), it takes an extremely long time for ion diffusion and exchange (for example, immersing a masked glass substrate in molten salt for several days); Even if it was carried out for a long time, there was a limit to ion diffusion, and at most only one lens with a diameter of about 5 mm could be formed. On the other hand, in the molecular stuffing method, making the glass substrate porous is complicated and takes a long time (for example, it takes 2 days for phase separation treatment and 20 days for acid treatment).Moreover, the mounting process is complicated and special equipment is required. There was a problem that required .

この発明は、かかる状況に鑑みなされたものであり、こ
とに簡便にかつ短時間で屈折率分布型レンズが得られ、
しかもレンズ口径の大型化も容易に行なうことができる
製造方法を提供しようとするものである。
This invention was made in view of the above situation, and it is possible to obtain a gradient index lens particularly easily and in a short time.
Moreover, it is an object of the present invention to provide a manufacturing method that can easily increase the lens aperture.

(ニ)問題点を解決するための手段及び作用かくしてこ
の発明によれば、金属アルコキシドの加水分解によりj
qられる多孔質ゲルを基体とし、この表面の一部に電子
分極率の大きな金属イオンの溶液を所定時間接触させて
該金属イオンを多孔質ゲル内に不均一拡散させ、次いで
この多孔質ゲルを高温加熱処理し【屈折率分布型レンズ
を(りることを特徴とする屈折重分イF型レンズの製造
法が提供される。
(d) Means and operation for solving the problems Thus, according to the present invention, j
A solution of metal ions with high electronic polarizability is brought into contact with a part of the surface of the porous gel for a predetermined period of time to diffuse the metal ions unevenly into the porous gel, and then this porous gel is Provided is a method for manufacturing a refractive index F-type lens, which is characterized by subjecting it to high-temperature heat treatment to form a gradient index lens.

この発明は、金属アルコキシドを用いた溶液法によるガ
ラス製造において中間的に生成するゲル、すなわち加水
分解により得られるいわゆる多孔質ゲルを基材とし、こ
れに電子分極率の大きな金属イオンを溶液状態で接触さ
せることにより、この金属イオンが多孔質ゲル内で極め
て短時間で拡散及びイオン交換する事実、並びにこれを
焼結した無孔の酸化物ガラスが、拡散部分に対応(〕て
レンズ作用を示す事実に基づく。
This invention uses a so-called porous gel obtained by hydrolysis, which is an intermediate gel produced during glass manufacturing using a metal alkoxide solution method, as a base material, and metal ions with high electronic polarizability are added to this gel in a solution state. The fact that this metal ion diffuses and exchanges ions within the porous gel in an extremely short time when brought into contact with it, and the non-porous oxide glass that is sintered with this metal ion corresponds to the diffusion part and exhibits a lens effect. Based on facts.

金属アルコキシドからの多孔質ゲルは加水分解により比
較的簡便に得ることができ、さらに拡散やイオン交換は
上記のごとく迅速に行なわれることとなる。従って、こ
の発明の方法によれば、簡便にかつ短時間で所望の屈折
率分布型レンズを得ることができる。
Porous gels from metal alkoxides can be obtained relatively easily by hydrolysis, and furthermore, diffusion and ion exchange can be carried out rapidly as described above. Therefore, according to the method of the present invention, a desired gradient index lens can be obtained simply and in a short time.

この発明に用いる金属アルコキシドとしては低級アルコ
キシ金属が適しており、Si  (OCH3)4S! 
 (OC2H5)4、AQ (OC3Hy )3、T!
   (OC3H7)  4  、 Na  OCH3
、B(OCzfゴ5)3等が挙げられ、これらのうち低
級アルコキシシランを用いるのが好適である。
As the metal alkoxide used in this invention, lower alkoxy metals are suitable, and Si (OCH3)4S!
(OC2H5)4, AQ (OC3Hy)3, T!
(OC3H7) 4, Na OCH3
, B(OCzfgo5)3, etc., and among these, lower alkoxysilanes are preferably used.

この発明に用いる多孔質ゲルは、上記金属アルコキシド
の溶液を加水分解条件に付すことにより得られ、通常、
金属アルコキシドを含水親水性有機溶媒に溶解すると共
に加水分解促進剤としての酸を少量添加し緩和な温度下
で乾燥条件に付して加水分解及び溶媒の揮散を進めるこ
とにより1りられる。含水親水性有機溶媒としては含水
メタノール、含水エタノール等の水を含む揮発性有機溶
媒を用いるのが適当である。また少量添加する酸として
は、塩酸、硝酸、弗化水素酸等の鉱酸類が適しており、
溶液のpHが2〜5程度に調整されるように少量添加す
れば充分である。乾燥条件は自然乾燥でもよいが通常5
0〜80℃程度加温下で徐々に行なうのが得られるゲル
の均一性の点で好ましい。
The porous gel used in this invention is obtained by subjecting a solution of the metal alkoxide to hydrolysis conditions, and usually
It is obtained by dissolving a metal alkoxide in a water-containing hydrophilic organic solvent, adding a small amount of acid as a hydrolysis accelerator, and subjecting it to drying conditions at mild temperatures to promote hydrolysis and volatilization of the solvent. As the water-containing hydrophilic organic solvent, it is appropriate to use a volatile organic solvent containing water such as water-containing methanol and water-containing ethanol. In addition, mineral acids such as hydrochloric acid, nitric acid, and hydrofluoric acid are suitable as acids to be added in small amounts.
It is sufficient to add a small amount so that the pH of the solution is adjusted to about 2 to 5. Drying conditions may be natural drying, but usually 5
It is preferable to carry out the heating gradually at a temperature of about 0 to 80°C from the viewpoint of uniformity of the gel obtained.

乾燥条件を制御することにより通常、150〜240時
間で所望の多孔質ゲルが得られる。
By controlling the drying conditions, a desired porous gel can usually be obtained in 150 to 240 hours.

上記多孔質ゲルは次いで電子分極率の大きな金属イオン
の溶液と接触処理され、これは通常、該溶液中に浸漬す
ることにより行なわれる。この際、従来のイオン交換法
と同様に意図するレンズ形成部位の中心部付近にのみス
ポット的に上記溶液が接触するように、多孔質ゲル表面
に適当なマスキングを行なうことを要する。かかるマス
キングは通常、金属蒸着で行なわれる。かかる接触スポ
ットを1つの多孔質ゲルに多数形成させることによリア
レイ状やマトリックス状の屈折率分布型レンズを簡便に
得ることが可能である。
The porous gel is then contacted with a solution of highly electronically polarizable metal ions, usually by immersion in the solution. At this time, as in the conventional ion exchange method, it is necessary to perform appropriate masking on the surface of the porous gel so that the solution comes into spot contact only in the vicinity of the center of the intended lens formation site. Such masking is typically performed with metal vapor deposition. By forming a large number of such contact spots in one porous gel, it is possible to easily obtain a gradient index lens in the form of a rear array or matrix.

上記、電子分極率の大きな金属イオンとしてはタリウム
イオンやセシウムイオンが適しているが、これと同程度
の電子分極率を有する他のイオンも適用可能である。こ
れらの溶液としてはこの金属イオンの易溶性塩の溶液を
用いるのが適しており、通常、水溶液の形態で用いられ
る。なお、接触時の上記溶液は常温でもよいが加熱状態
で接触させるのが迅速な金属イオンの拡散や交換の点で
好ましい。この溶液と接触した部位から多孔質ゲル中に
−F記金金属イオン侵入及び拡散すると共に、そこで多
孔質ゲルを構成する金属水酸化物の水酸基にJ3ける水
素原子と部分的にイオン交換されて意図する濃度勾配を
有する金属イオンの不均一な拡散層が接触部位を中心と
して迅速に形成されることとなる。この際、接触時間を
調整することにより、拡散層の広がりを制御することが
でき、意図するレンズ口径が得られるように所定時間接
触を行なえばよい。通常、0.2〜5時間程度の接触で
充分だが、さらに長時間接触をおこなうことにより従来
のセルフォックレンズの口径限界以上のものが容易に作
製可能である。
Although thallium ions and cesium ions are suitable as the above-mentioned metal ions having large electronic polarizabilities, other ions having similar electronic polarizabilities are also applicable. As these solutions, it is suitable to use solutions of easily soluble salts of this metal ion, and they are usually used in the form of an aqueous solution. Note that the solution at the time of contact may be at room temperature, but it is preferable to contact in a heated state from the viewpoint of rapid diffusion and exchange of metal ions. -F metal ions enter and diffuse into the porous gel from the parts that come into contact with this solution, and there, they are partially ion-exchanged with hydrogen atoms in the hydroxyl groups of the metal hydroxides that make up the porous gel. A non-uniform diffusion layer of metal ions with the intended concentration gradient will rapidly form around the contact site. At this time, the spread of the diffusion layer can be controlled by adjusting the contact time, and the contact may be carried out for a predetermined time so as to obtain the intended lens aperture. Normally, contact for about 0.2 to 5 hours is sufficient, but by contacting for an even longer period of time, it is possible to easily produce lenses that exceed the aperture limit of conventional SELFOC lenses.

上記のごとく金属イオンの不均一拡散層を有する多孔質
ゲルを高温加熱処理することにより該拡散層を含め該ゲ
ルが無孔の酸化物ガラスに変換され、所望の屈折率分布
型レンズが得られることとなる。この際の高温加熱処理
は通常1100〜1300℃の高温下で2〜10時間程
度行なうのが適しており、均質性の点で徐々に上記温度
迄昇温しで処理を行なうのが好ましい なお、電子分極率の大きな金属イオンの接触処理を行な
う前に、上記基体の多孔質ゲルを予め加熱処理して多孔
質ガラスに変換した後、上記と同様に処理づ−ることに
より従来に比して簡便に屈折率分布型レンズを製造する
こともできる。従って、この発明は金属アルコキシドの
加水分解により得られる多孔質ゲルを熱処理して多孔質
ガラスとし、これを基体どしてこの表面の一部に電子分
極率の大きな金属イオンの溶液を所定時間接触させて該
金属イオンを多孔質ガラス内に不均一拡散させ、次いで
この多孔質ガラスを高温加熱処理して屈折率分布型レン
ズを得ることを特徴とする屈折率分布型レンズの製造法
をも提供するものである。この際、多孔質ゲルの多孔質
ガラスへの変換は200〜800℃の温度下で2〜20
時間程度行なうのが適している。20時間を越えると多
孔性が失なわれて金属イオンの拡散性が阻害され好まし
くない。
As described above, by subjecting a porous gel having a non-uniform diffusion layer of metal ions to high-temperature heat treatment, the gel including the diffusion layer is converted into a non-porous oxide glass, and a desired gradient index lens can be obtained. That will happen. The high temperature heat treatment at this time is usually carried out at a high temperature of 1100 to 1300°C for about 2 to 10 hours, and from the viewpoint of homogeneity, it is preferable to carry out the treatment by gradually increasing the temperature to the above temperature. Before the contact treatment with metal ions having a large electronic polarizability, the porous gel of the substrate is previously heat-treated to convert it into porous glass, and then treated in the same manner as above, which results in a higher It is also possible to easily manufacture a gradient index lens. Therefore, this invention heat-treats a porous gel obtained by hydrolysis of a metal alkoxide to form a porous glass, and then uses this as a substrate and contacts a part of its surface with a solution of metal ions having high electronic polarizability for a predetermined period of time. The present invention also provides a method for manufacturing a gradient index lens, characterized in that the metal ions are diffused non-uniformly into porous glass, and then the porous glass is heat-treated at a high temperature to obtain a gradient index lens. It is something to do. At this time, the conversion of porous gel to porous glass takes place at a temperature of 200 to 800°C.
It is appropriate to do this for about an hour. If it exceeds 20 hours, the porosity will be lost and the diffusion of metal ions will be inhibited, which is not preferable.

なお、上記多孔質ゲルや多孔質ガラスの形状は用途に応
じて任意に決定すればよいが、例えば円柱状体を用い、
半径方向に二乗分布近似で屈折率が変化するよう調整す
れば、従来のセルフォックレンズ相当品を簡便に得るこ
とができる。
Note that the shape of the porous gel or porous glass may be arbitrarily determined depending on the application, but for example, using a cylindrical body,
By adjusting the refractive index so that it changes in the radial direction by approximating a square distribution, it is possible to easily obtain a product equivalent to a conventional SELFOC lens.

(ホ)実流例 実施例1 ケイ酸エチルs i  (OC2t−1s > 4 1
00zf、エタノール5011、水100 x!及び塩
酸1011を混合し、80℃で2時間還流して均一なケ
イ酸エチルの溶液を得た。この溶液をポリスチロール製
容器り60×55X10mm)に入れ、この容器の上部
に口径1mmの気孔を5つあけ70℃下に保持してケイ
酸エチルの加水分解と乾燥を徐々に行ない、7日後に2
5x22× 6mmの平板状の乾燥多孔質ゲルを1がた
(e) Actual flow example Example 1 Ethyl silicate s i (OC2t-1s > 4 1
00zf, ethanol 5011, water 100x! and hydrochloric acid 1011 were mixed and refluxed at 80° C. for 2 hours to obtain a uniform solution of ethyl silicate. This solution was placed in a polystyrene container (60 x 55 x 10 mm), and five pores with a diameter of 1 mm were made in the upper part of the container and kept at 70°C to gradually hydrolyze the ethyl silicate and dry it for 7 days. later 2
A 5 x 22 x 6 mm flat plate of dried porous gel was prepared in one piece.

この平板状ゲルの表面にアルミニウムを蒸着することに
より、5mmピッチで直径0 、5 mmの拡散孔を6
[IJイHするマスクを第1図のように形成し、この面
を硝酸タリウム水溶液(TρNO310(+/水100
ffZ>中に 100℃下で0.5時間浸漬して、タリ
ウムイオンを上記6個の孔を通じてゲル内に拡散させて
イオン交換法 多孔質ゲル、(4)は拡散孔(51を有するマスクを示
すものである。
By depositing aluminum on the surface of this flat gel, six diffusion holes with a diameter of 0.5 mm were created at a pitch of 5 mm.
[A mask for IJIH is formed as shown in Figure 1, and this surface is coated with an aqueous thallium nitrate solution (TρNO310 (+/100% water).
ffZ> for 0.5 hours at 100°C to diffuse thallium ions into the gel through the six pores to form an ion-exchange porous gel. (4) is a mask with diffusion holes (51). It shows.

次いで、フッ素エツチングによりマスクを除去し、70
℃下で 1日間乾燥させ、600℃まで50℃/時間で
背部させ、600℃で5時間保持しさらに900℃まで
50℃/時間で昇温しヘリウム雰囲気中で1100℃ま
で50℃/時間の背部下、高温加熱処理することにより
、多孔質ゲルが無孔の酸化物ガラスに変換され第2図に
示すごときこの発明の屈折率分布型平面レンズ(1)を
得た。図中(2は無孔のガラス層、(3)はタリウム元
素の拡散層をそれぞれ示すものである。
The mask was then removed by fluorine etching and
℃ for 1 day, heated to 600℃ at 50℃/hour, held at 600℃ for 5 hours, further heated to 900℃ at 50℃/hour, and heated to 1100℃ at 50℃/hour in helium atmosphere. By heating the lower part of the back at a high temperature, the porous gel was converted into a non-porous oxide glass, and a gradient index flat lens (1) of the present invention as shown in FIG. 2 was obtained. In the figure, (2) shows a non-porous glass layer, and (3) shows a diffusion layer of thallium element.

この平面レンズは透明性は良好なものであり、6つの拡
散層相当部において、レンズロ径約1.3mmの平=凸
しンズ作用をそれぞれ示すものであつIこ 。
This flat lens has good transparency and exhibits a plano-convex lens action with a lens diameter of approximately 1.3 mm in the six diffusion layer portions.

実施例2 実施例1と同様にして作製したケイ酸エチルの加水分解
物からなる多孔質ゲルを予め熱処理して多孔質ガラスに
変換させた。この熱処理は、50℃/時間で600℃ま
で昇温し、600℃下で5時間保持することにより行な
った。
Example 2 A porous gel made of a hydrolyzate of ethyl silicate prepared in the same manner as in Example 1 was previously heat-treated to convert it into porous glass. This heat treatment was carried out by raising the temperature to 600°C at a rate of 50°C/hour and holding it at 600°C for 5 hours.

このよ・うにして得られた平板状の多孔質ガラスを基体
とし、この−面に実施例1と同様にマスクを形成さけ、
硝酸タリウム水溶液(TQNo。
Using the flat porous glass obtained in this way as a substrate, a mask was formed on this surface in the same manner as in Example 1,
Thallium nitrate aqueous solution (TQNo.

10g/水100yf)中に 100℃下1時間役漬し
てクリラムイオンを各拡散孔を通じて多孔質ガラス内に
拡散させた。
The glass was soaked in 10 g/100 yf of water at 100° C. for 1 hour to diffuse Kurilam ions into the porous glass through each diffusion hole.

次いで、この多孔質ガラスを、実施例1と同じ加熱条件
で熱処理して焼結及び無孔化することにより第2図と同
様な平面レンズを得た。この平面レンズの特性は実施例
1と同様に良好なものであり、レンズ口径は約1.1m
1Tlであった。
Next, this porous glass was heat-treated under the same heating conditions as in Example 1 to sinter it and make it non-porous, thereby obtaining a flat lens similar to that shown in FIG. 2. The characteristics of this plane lens are good as in Example 1, and the lens diameter is approximately 1.1 m.
It was 1 Tl.

(ホ)発明の効果 この発明の方法によれば、電子分極率の大きな金属イオ
ンの拡散を迅速に行なうことができ、さらに基体の作製
も比較的簡便に行なうことができる。従って、従来のイ
オン交換法やモレキコラースタッフインク法に比して取
扱いが簡便でより短時間で所望の屈折率分布型レンズを
得ることができる。そして多孔質ゲルを基体とした際に
は、ことに金属イオンの拡散を迅速に行なうことができ
ると共に予備加熱処理をとくに必要としないため極めて
有利である。
(e) Effects of the Invention According to the method of the invention, metal ions having a large electronic polarizability can be rapidly diffused, and the substrate can also be produced relatively easily. Therefore, compared to the conventional ion exchange method or the Molecki Collar Stuff Ink method, handling is simpler and a desired graded index lens can be obtained in a shorter time. When a porous gel is used as a substrate, it is extremely advantageous because metal ions can be rapidly diffused and no preheating treatment is particularly required.

また、拡散を短時間で行なえるため、従来に比して大口
径のレンズを作製することも可能である。
Furthermore, since diffusion can be performed in a short time, it is also possible to manufacture lenses with larger diameters than conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の屈折率分布型レンズの製造法の一
工程を示す斜視図、第2図はこの発明の方法によって得
られた屈折率分布型平面レンズの一例を示す構成説明図
である。 (1)・・・・・・屈折率分布型平面レンズ、(2)・
・・・・・無孔のガラス層、 (3)・・・・・・タリウム元素の拡散層、(4)・・
・・・・マスク、  (5)・・・・・・拡散孔。 第 1 図
FIG. 1 is a perspective view showing one step of the method for producing a gradient index lens according to the present invention, and FIG. 2 is an explanatory diagram showing an example of the structure of a gradient index flat lens obtained by the method of the invention. be. (1)・・・Gradient index flat lens, (2)・
... Non-porous glass layer, (3) ... Diffusion layer of thallium element, (4) ...
...Mask, (5) ...Diffusion hole. Figure 1

Claims (1)

【特許請求の範囲】 1、金属アルコキシドの加水分解により得られる多孔質
ゲルを基体とし、この表面の一部に電子分極率の大きな
金属イオンの溶液を所定時間接触させて該金属イオンを
多孔質ゲル内に不均一拡散させ、次いでこの多孔質ゲル
を高温加熱処理して屈折率分布型レンズを得ることを特
徴とする屈折率分布型レンズの製造法。 2、電子分極率の大きな金属イオンがタリウム又はセシ
ウムイオンである特許請求の範囲第1項記載の製造法。 3、金属アルコキシドの加水分解により得られる多孔質
ゲルを熱処理して多孔質ガラスとし、これを基体として
この表面の一部に電子分極率の大きな金属イオンの溶液
を所定時間接触させて該金属イオンを多孔質ガラス内に
不均一拡散させ、次いでこの多孔質ガラスを高温加熱処
理して屈折率分布型レンズを得ることを特徴とする屈折
率分布型レンズの製造法。 4、電子分極率の大きな金属イオンがタリウム又はセシ
ウムイオンである特許請求の範囲第3項記載の製造法。
[Claims] 1. A porous gel obtained by hydrolysis of a metal alkoxide is used as a base, and a part of the surface of the gel is brought into contact with a solution of metal ions having a high electronic polarizability for a predetermined period of time to make the metal ions porous. 1. A method for producing a gradient index lens, which comprises unevenly diffusing the porous gel into a gel, and then subjecting the porous gel to high temperature heat treatment to obtain a gradient index lens. 2. The manufacturing method according to claim 1, wherein the metal ion having a large electronic polarizability is thallium or cesium ion. 3. A porous gel obtained by hydrolysis of a metal alkoxide is heat-treated to form porous glass, and a part of the surface of the glass is brought into contact with a solution of metal ions having a high electronic polarizability for a predetermined period of time to remove the metal ions. 1. A method for producing a gradient index lens, which comprises non-uniformly diffusing the porous glass into a porous glass, and then subjecting the porous glass to a high temperature heat treatment to obtain a gradient index lens. 4. The manufacturing method according to claim 3, wherein the metal ion having a large electronic polarizability is thallium or cesium ion.
JP17656885A 1985-08-10 1985-08-10 Production of lens of refractive index distribution type Pending JPS6241725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17656885A JPS6241725A (en) 1985-08-10 1985-08-10 Production of lens of refractive index distribution type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17656885A JPS6241725A (en) 1985-08-10 1985-08-10 Production of lens of refractive index distribution type

Publications (1)

Publication Number Publication Date
JPS6241725A true JPS6241725A (en) 1987-02-23

Family

ID=16015836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17656885A Pending JPS6241725A (en) 1985-08-10 1985-08-10 Production of lens of refractive index distribution type

Country Status (1)

Country Link
JP (1) JPS6241725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074080A1 (en) 2010-11-30 2012-06-07 Canon Kabushiki Kaisha Method of manufacturing porous glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074080A1 (en) 2010-11-30 2012-06-07 Canon Kabushiki Kaisha Method of manufacturing porous glass

Similar Documents

Publication Publication Date Title
JP3249905B2 (en) Aerosol process for fabrication of planar waveguide
CN1269769A (en) Monolithic glass light shaping diffuser and method for its producing
US5069700A (en) method of manufacturing gradient-index glass
JPS61106425A (en) Preparation of optical element
EP0390566B1 (en) Method of producing silica glas having refractive index distribution
JPS6241725A (en) Production of lens of refractive index distribution type
US5439495A (en) Solution doping of sol gel bodies to make graded index glass articles
JPS6259537A (en) Production of refractive index distribution lens
JP3209533B2 (en) Method of manufacturing refractive index distribution type optical element
JPH054839A (en) Method for preparing thin film by sol-gel method
JPH04240134A (en) Production of distributed index lens
JPS6112034A (en) Formation of silicon oxide film on silicon substrate surface
JPS60176934A (en) Production of glass
JPS6033512A (en) Production of optical element
JPS6051622A (en) Preparation of cylindrical lens array
JPH04160020A (en) Production of thin film
JPH05306126A (en) Distributed index optical element and its production
JPH04209721A (en) Production of lens of refractive index distribution type
JPH07140306A (en) Production of microlens
JP2861029B2 (en) Manufacturing method of optical waveguide
JPS6081031A (en) Manufacture of optical element
RU1716756C (en) Method for luminescence coating production
JPH09301775A (en) Production of ceramics
JPH03223124A (en) Production of active element-doped optical waveguide
JPH08271747A (en) Production of substrate type optical waveguide