JPH02259427A - Heating element type apparatus for measuring flow rate - Google Patents
Heating element type apparatus for measuring flow rateInfo
- Publication number
- JPH02259427A JPH02259427A JP1078255A JP7825589A JPH02259427A JP H02259427 A JPH02259427 A JP H02259427A JP 1078255 A JP1078255 A JP 1078255A JP 7825589 A JP7825589 A JP 7825589A JP H02259427 A JPH02259427 A JP H02259427A
- Authority
- JP
- Japan
- Prior art keywords
- output
- circuit
- voltage
- resistor
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 29
- 238000001514 detection method Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 4
- 230000004044 response Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 230000001052 transient effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004890 malting Methods 0.000 description 1
- 238000012889 quartic function Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は自動車等の内燃機関に吸入される空気量を測定
する加熱素子型流量測定装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heating element type flow measuring device for measuring the amount of air taken into an internal combustion engine of an automobile or the like.
一般に内燃機関に吸入される空気量を測定するものとし
て、圧力を測定する圧力センサ方式、吸入される空気の
動圧を受けるベーンの角度を測定するベーン方式、吸入
される空気によって冷却される加熱抵抗の供給電気量を
測定する加熱素子方式等が実用されている。Generally, methods for measuring the amount of air taken into an internal combustion engine include a pressure sensor method that measures pressure, a vane method that measures the angle of the vane that receives the dynamic pressure of the intake air, and a heating method that measures the angle of the vane that receives the dynamic pressure of the intake air. A heating element method that measures the amount of electricity supplied to a resistor is in practical use.
そして、応答性が良い、小型である、EGR等の影響を
受けないといった理由から加熱素子方式がその需要を伸
ばしてきている。Demand for the heating element method is increasing because it has good responsiveness, is compact, and is not affected by EGR, etc.
そして、このような加熱素子方式としては特開昭57−
22563号公報に示されているようなものが代表的な
ものとして知られている。As such a heating element system, Japanese Patent Application Laid-open No. 57-
The one shown in Japanese Patent No. 22563 is known as a typical example.
ところで、上述した従来技術において吸入される空気量
に対する出力特性が非線形特性である。By the way, in the prior art described above, the output characteristic with respect to the amount of air taken in is a nonlinear characteristic.
このため空気量の平均値と出力の平均値が必ずしも一致
せず測定精度が低いという問題点があった。For this reason, there was a problem in that the average value of the air amount and the average value of the output did not necessarily match, resulting in low measurement accuracy.
この問題点は測定装置の出力電圧値である電流検出抵抗
の電圧によって応答特性が異なることに起因しているこ
とが判明した。It has been found that this problem is caused by the fact that the response characteristics differ depending on the voltage of the current detection resistor, which is the output voltage value of the measuring device.
したがって、測定精度を高めるためには吸入される空気
量の変化に対する出力電圧値の変化速度が出力電圧値の
大きさの影響を受けるのを少なくすれば良いことがわか
る。Therefore, it can be seen that in order to improve the measurement accuracy, it is necessary to reduce the influence of the magnitude of the output voltage value on the rate of change of the output voltage value with respect to the change in the amount of air taken in.
(課題を解決するための手段〕
本発明においては加熱抵抗体の温度を制御する温度制御
回路の入出力特性に非直線性を持たせ、その信号増幅率
を出力電圧が大きくなるに従い小さくするようにしたも
のである。(Means for Solving the Problems) In the present invention, the input/output characteristics of the temperature control circuit that controls the temperature of the heating resistor are made to have nonlinearity, and the signal amplification factor is made smaller as the output voltage becomes larger. This is what I did.
本発明においては、出力電圧の増加に従い信号増幅率を
小さくするので加熱抵抗体の抵抗値変化に対する出力電
圧の変化率を小さくすることができるので出力電圧の変
化に対する応答速度を平均化することができる。In the present invention, since the signal amplification factor is reduced as the output voltage increases, the rate of change in the output voltage with respect to a change in the resistance value of the heating resistor can be reduced, so that the response speed to changes in the output voltage can be averaged. can.
以下、本発明の一実施例を図面に基づき説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図において、参照番号1は内燃機関の吸入空気導入
通路に配置された白金等の温度依存特性を有した加熱抵
抗体で、この加熱抵抗体1は直列接続された電流検出抵
抗体2とで分圧回路を構成している。In FIG. 1, reference number 1 is a heating resistor made of platinum or the like having temperature-dependent characteristics and placed in the intake air introduction passage of an internal combustion engine.This heating resistor 1 is connected in series with a current detection resistor 2. constitutes a voltage divider circuit.
分圧回路の分圧出力V2(これはいわゆる出力電圧とな
ってマイクロコンピュータ等の演算装置へ送られる。)
は定温度制御回路3に送られ、この定温度制御回路3の
制御電圧Vlは更に加熱抵抗体1へ帰還制御される。The divided voltage output V2 of the voltage dividing circuit (this becomes a so-called output voltage and is sent to an arithmetic device such as a microcomputer).
is sent to the constant temperature control circuit 3, and the control voltage Vl of this constant temperature control circuit 3 is further feedback-controlled to the heating resistor 1.
そして、分圧出力v2は加熱抵抗体1の抵抗値RHが一
定の時に制御電圧Vtと比例関係を保つようになる。Then, the divided voltage output v2 maintains a proportional relationship with the control voltage Vt when the resistance value RH of the heating resistor 1 is constant.
したがって、加熱抵抗体1の抵抗値R)lを一定に保つ
ためには定温度制御回路3の特性が直流増幅器4の特性
に近いものである必要がある。Therefore, in order to keep the resistance value R)l of the heating resistor 1 constant, the characteristics of the constant temperature control circuit 3 need to be close to those of the DC amplifier 4.
ここで、電圧Vosはオフセット電圧と言われるもので
、測定装置の過渡特性を決定するための要素である。Here, the voltage Vos is called an offset voltage and is an element for determining the transient characteristics of the measuring device.
そして、定温度制御回路3の入出力特性が直線的な特性
である時、加熱抵抗体1の抵抗値RHの変化量に対する
定温度制御回路3の制御電圧v1の変化は分圧出力v2
の大きさにより変化するようになり、これは分圧出力■
2が大きい稲麦化率が大きくなる。When the input/output characteristic of the constant temperature control circuit 3 is a linear characteristic, the change in the control voltage v1 of the constant temperature control circuit 3 with respect to the amount of change in the resistance value RH of the heating resistor 1 is the divided voltage output v2
It changes depending on the size of the voltage, and this is the partial pressure output ■
2 is large, the rice malting rate becomes large.
すなわち、加熱抵抗体1の抵抗値RHの変化に対する定
温度制御回路3の制御電圧v1の変化率はオフセット電
圧Vosと分圧出力V2によって決まり、分圧出力v2
が大きい程その変化率が大きくなる。That is, the rate of change in the control voltage v1 of the constant temperature control circuit 3 with respect to the change in the resistance value RH of the heating resistor 1 is determined by the offset voltage Vos and the divided voltage output V2.
The larger the value, the greater the rate of change.
第2図は定温度制御回路3の入出力特性が線形な時の動
作特性で、分圧出力Vzの増大に伴い加熱抵抗体1の抵
抗値変化に対する動作点の移動、すなわち測定装置の出
力電圧である分圧出力V2の変化が大きくなっているこ
とが理解できる。Figure 2 shows the operating characteristics when the input/output characteristics of the constant temperature control circuit 3 are linear, and the operating point moves with respect to the resistance value change of the heating resistor 1 as the divided voltage output Vz increases, that is, the output voltage of the measuring device It can be seen that the change in the divided voltage output V2 becomes large.
一方、本発明の実施例によれば分圧出力v2は掛算回路
5に入力され、その出力は直流増幅器4の反転端子に入
力される。On the other hand, according to the embodiment of the present invention, the divided voltage output v2 is input to the multiplication circuit 5, and its output is input to the inverting terminal of the DC amplifier 4.
この掛算回路5は定温度制御回路3の入出力特性に非直
線性を持たせる機能を有しており、具体的には掛算回路
5の出力を直流増幅器4の特性から減らすことにより定
温度制御回路3の入出力特性の二次導関数を常に負とす
るように作用する。This multiplier circuit 5 has a function of imparting non-linearity to the input/output characteristics of the constant temperature control circuit 3, and specifically controls the constant temperature by reducing the output of the multiplier circuit 5 from the characteristics of the DC amplifier 4. It acts so that the second derivative of the input/output characteristics of the circuit 3 is always negative.
すなわち、入力である分圧出力v2の値の増加に伴い定
温度制御回路3の増幅率を小さくするものである。That is, the amplification factor of the constant temperature control circuit 3 is decreased as the value of the input divided voltage output v2 increases.
第3図は定温度制御回路3の入出力特性にその二次導関
数が常に負である時の測定装置の動作特性であり、分圧
出力v2が増大した場合の加熱抵抗体1の抵抗値RHの
変化に対する制御電圧v1の変化率の増加を少なくでき
ることが理解される。Figure 3 shows the operating characteristics of the measuring device when the second derivative of the input/output characteristics of the constant temperature control circuit 3 is always negative, and the resistance value of the heating resistor 1 when the partial pressure output v2 increases. It is understood that the increase in the rate of change of the control voltage v1 with respect to a change in RH can be reduced.
第4図は本発明の他の実施例であり、第1図に示す掛算
回路5を2段にしたものである。FIG. 4 shows another embodiment of the present invention, in which the multiplication circuit 5 shown in FIG. 1 is made into two stages.
第4図において、掛算回路5Aと掛算回路5Bが直列に
設けられ、掛算回路5Bの出力は直流増幅器4の反転端
子に入力されている。In FIG. 4, a multiplication circuit 5A and a multiplication circuit 5B are provided in series, and the output of the multiplication circuit 5B is input to the inverting terminal of the DC amplifier 4.
したがって、2個の掛算回路5A、5Bによって四次関
数の出力が発生され、定温度制御回路3の入出力特性に
非直線性を与えることができる。Therefore, the output of the quartic function is generated by the two multiplier circuits 5A and 5B, and nonlinearity can be imparted to the input/output characteristics of the constant temperature control circuit 3.
第5図は本発明の他の実施例であり、分圧出力v2は指
数あるいは対数関数発生回路6へ入力されその出力は直
流増幅器4の反転端子に入力されている。FIG. 5 shows another embodiment of the present invention, in which the divided voltage output v2 is input to an exponential or logarithmic function generating circuit 6, and its output is input to the inverting terminal of the DC amplifier 4.
したがって、指数あるいは対数関数発生回路6によって
指数あるいは対数関数の出力が発生され、定温度制御回
路3の入出力特性に非直線性を与えることができる。Therefore, an exponential or logarithmic function output is generated by the exponential or logarithmic function generation circuit 6, and nonlinearity can be imparted to the input/output characteristics of the constant temperature control circuit 3.
このように1本発明は分圧出力■2の増加に伴って制御
電圧の変化率を小さくすることによって測定精度を向上
することができる。As described above, the present invention can improve measurement accuracy by reducing the rate of change in the control voltage as the divided voltage output (2) increases.
第6図は第1図の具体的回路構成を示す図である。FIG. 6 is a diagram showing a specific circuit configuration of FIG. 1.
第6図において、加熱抵抗体1は制御トランジスタ8に
よって通電が制御されるようになっており、制御トラン
ジスタ9は差動増幅器10の差動出力によって駆動され
る。そして、差動増幅器10の反転端子は加熱抵抗体1
と並列な直列抵抗7.8の接続点と接続されている。In FIG. 6, the heating resistor 1 is controlled to be energized by a control transistor 8, and the control transistor 9 is driven by the differential output of a differential amplifier 10. The inverting terminal of the differential amplifier 10 is connected to the heating resistor 1.
It is connected to the connection point of series resistor 7.8 in parallel with .
また分圧回路の接続部は差動増幅器11の非反転端子に
接続されている。尚抵抗8も接続されている。更に抵抗
2は差動増幅器11の反転端子に接続され、この反転端
子と差動増幅器11の出力端子の間に白金等からなる温
度検知抵抗12が接続されている。この温度検知抵抗1
2は吸入空気導入通路に設けられ、吸入空気温度の補償
を行っている。そして、差動増幅器11の出力端子は差
動増幅器10の非反転端子に接続されている。抵抗13
,14,15.16は調整抵抗である。Further, the connection portion of the voltage dividing circuit is connected to the non-inverting terminal of the differential amplifier 11. Note that a resistor 8 is also connected. Further, the resistor 2 is connected to the inverting terminal of the differential amplifier 11, and a temperature sensing resistor 12 made of platinum or the like is connected between this inverting terminal and the output terminal of the differential amplifier 11. This temperature detection resistor 1
2 is provided in the intake air introduction passage and compensates for the intake air temperature. The output terminal of the differential amplifier 11 is connected to the non-inverting terminal of the differential amplifier 10. resistance 13
, 14, 15, and 16 are adjustment resistors.
以上のような構成の定温度制御回路3は特公昭61−1
6026号公報で詳細にその作動が説明しであるのでこ
こでは省略する。The constant temperature control circuit 3 having the above configuration is manufactured by the Japanese Patent Publication Publication No. 61-1.
The operation is explained in detail in Japanese Patent No. 6026, so it is omitted here.
そして、掛算回路5は2個のトランジスタ17゜18お
よびダイオード19を主体として構成されており、各ト
ランジスタ17.18のベースにはダイオード19を介
して制御電圧■lが供給される。ま・た各トランジスタ
17.18のコレクタはそれぞれ差動増幅器11の各入
力端子に接続されている。The multiplication circuit 5 is mainly composed of two transistors 17 and 18 and a diode 19, and a control voltage 1 is supplied to the base of each transistor 17 and 18 through the diode 19. In addition, the collectors of each transistor 17 and 18 are connected to each input terminal of the differential amplifier 11, respectively.
したがって第1図で示したように、定温度制御回路の入
出力特性の二次導関数を常に負となるように作動する。Therefore, as shown in FIG. 1, the constant temperature control circuit is operated so that the second derivative of the input/output characteristics is always negative.
第7図は第5図の具体的構成を示す図で、対数関数発生
器6を示している。FIG. 7 is a diagram showing a specific configuration of FIG. 5, and shows the logarithmic function generator 6. In FIG.
対数関数発生器6は演算増幅器20、直列接続ダイオー
ド21.22を主体として構成されている。そして分圧
出力v2は演算増幅器2oの非反転端子に入力され、抵
抗2は反転端子に入力されている。そして、演算増幅器
20の出力端子と反転端子の間には直列接続ダイオード
21.22が接続されている。更に出力端子は抵抗23
を介して差動増幅器11の非反転端子に接続されている
。The logarithmic function generator 6 mainly includes an operational amplifier 20 and series-connected diodes 21 and 22. The divided voltage output v2 is input to the non-inverting terminal of the operational amplifier 2o, and the resistor 2 is input to the inverting terminal. Series-connected diodes 21 and 22 are connected between the output terminal and the inverting terminal of the operational amplifier 20. Furthermore, the output terminal is resistor 23
It is connected to the non-inverting terminal of the differential amplifier 11 via.
尚24は調整抵抗である。Note that 24 is an adjustment resistor.
したがって、この実施例も第5図と同様に定温度制御回
路3の入出力特性に非直線性を与えるこことができる。Therefore, in this embodiment as well, non-linearity can be imparted to the input/output characteristics of the constant temperature control circuit 3, as in FIG.
以上述べたように、本発明によれば空気量の平均値と出
力電圧の平均値が一致するようになり、測定精度を高め
ることができる。As described above, according to the present invention, the average value of the air amount and the average value of the output voltage match, and measurement accuracy can be improved.
第1図は本発明の一実施例になる加熱素子型流量測定装
置の構成図、第2図、第3図は定温度制御回路の入出力
特性図、第4図、第5図は本発明の他の実施例を示す構
成図、第6図は第1図の具体的回路図、第7図は第5図
の具体的回路図である。
1・・・加熱抵抗体、2・・・電流検出抵抗体、3・・
・定温度制御回路、4・・・直流増幅器、5・・・掛算
回路、6・・指数あるいは対数関数回路。
分圧出力■2
O5
分圧出力v2
第
図
第
図Figure 1 is a configuration diagram of a heating element type flow rate measuring device which is an embodiment of the present invention, Figures 2 and 3 are input/output characteristic diagrams of a constant temperature control circuit, and Figures 4 and 5 are diagrams of the present invention. FIG. 6 is a specific circuit diagram of FIG. 1, and FIG. 7 is a specific circuit diagram of FIG. 5. 1... Heating resistor, 2... Current detection resistor, 3...
- Constant temperature control circuit, 4... DC amplifier, 5... Multiplication circuit, 6... Exponential or logarithmic function circuit. Partial pressure output ■2 O5 Partial pressure output v2 Fig. Fig.
Claims (1)
制御出力(V_1)によつて加熱される加熱抵抗体(1
); (b)、前記加熱抵抗体と直列に接続され、その接続部
に分圧出力(V_2)を発生する電流検出抵抗体(2)
; (c)、前記分圧出力(V_2)に基づいて前記制御出
力(V_1)を発生し、しかも前記分圧出力(V_2)
と前記制御出力(V_1)の入出力関係がその2階微分
値が常に負になる ような回路で構成された温度制御回路 (3) とよりなる加熱素子型流量測定装置。 2、(a)、内燃機関の吸入空気導入通路に配置され、
制御出力(V_1)によつて加熱される加熱抵抗体(1
); (b)、前記加熱抵抗体と直列に接続され、その接続部
に分圧出力(V_2)を発生する電流検出抵抗体(2)
; (c)、前記分圧出力(V_2)に基づいて前記制御出
力を発生し、しかも前記分圧出力 (V_2)と前記制御出力(V_1)の入出力関係が、
前記制御出力(V_1)の変化率が低分圧出力側では高
分圧出力側に比べて大 きく、かつ前記分圧出力(V_2)の増加に応じて制御
出力(V_1)が増加するような非線形性を有するよう
な回路で構成され た温度制御回路(3) とよりなる加熱素子型流量測定装置。 3、請求項2において、前記温度制御回路は二次以上の
高次関数発生回路を備え、前記高次関数発生回路によつ
て前記分圧出力(V_2)と前記制御出力(V_1)の
入出力関係に非線形性を与えるように構成された加熱素
子型流量測定装置。 4、請求項2において、前記温度制御回路は少なくとも
前記分圧出力(V_2)が入力されて前記制御出力(V
_1)が出力される直流増幅器と、前記分圧出力(V_
2)が入力されて前記直流増幅器の制御出力(V_1)
を制御する高次関数発生回路とを備えている加熱素子型
流量測定装置。[Claims] 1.(a) Disposed in an intake air introduction passage of an internal combustion engine,
Heating resistor (1) heated by control output (V_1)
); (b), a current detection resistor (2) connected in series with the heating resistor and generating a divided voltage output (V_2) at its connection part;
(c) generating the control output (V_1) based on the divided voltage output (V_2);
and a temperature control circuit (3) constituted by a circuit in which the input-output relationship of the control output (V_1) is such that the second-order differential value thereof is always negative. 2. (a) disposed in the intake air introduction passage of the internal combustion engine;
Heating resistor (1) heated by control output (V_1)
); (b), a current detection resistor (2) connected in series with the heating resistor and generating a divided voltage output (V_2) at its connection part;
(c) The control output is generated based on the divided voltage output (V_2), and the input/output relationship between the divided voltage output (V_2) and the control output (V_1) is
Non-linearity in which the rate of change of the control output (V_1) is larger on the low partial voltage output side than on the high partial voltage output side, and the control output (V_1) increases as the partial voltage output (V_2) increases. A heating element type flow rate measuring device consisting of a temperature control circuit (3) composed of a circuit having characteristics. 3. In claim 2, the temperature control circuit includes a second-order or higher-order function generation circuit, and the input/output of the divided voltage output (V_2) and the control output (V_1) is performed by the high-order function generation circuit. A heating element flow measurement device configured to impart nonlinearity to the relationship. 4. In claim 2, the temperature control circuit receives at least the divided voltage output (V_2) and outputs the control output (V_2).
_1) is output from the DC amplifier, and the divided voltage output (V_
2) is input and the control output (V_1) of the DC amplifier is
A heating element type flow rate measurement device equipped with a high-order function generation circuit that controls.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1078255A JPH0715396B2 (en) | 1989-03-31 | 1989-03-31 | Heating element type flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1078255A JPH0715396B2 (en) | 1989-03-31 | 1989-03-31 | Heating element type flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02259427A true JPH02259427A (en) | 1990-10-22 |
JPH0715396B2 JPH0715396B2 (en) | 1995-02-22 |
Family
ID=13656889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1078255A Expired - Lifetime JPH0715396B2 (en) | 1989-03-31 | 1989-03-31 | Heating element type flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0715396B2 (en) |
-
1989
- 1989-03-31 JP JP1078255A patent/JPH0715396B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0715396B2 (en) | 1995-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20050047079A (en) | Variable resistance sensor with common reference leg | |
US4409828A (en) | Gas flow measuring device | |
EP0103212B2 (en) | Thermal flow meter | |
US4384484A (en) | Gas flow measuring device | |
US4437345A (en) | Gas flow measuring device | |
JPH02259427A (en) | Heating element type apparatus for measuring flow rate | |
US4637251A (en) | Symmetrical bridge circuit for measuring mass air flow | |
JP2000018989A (en) | Ratiometric output-type heating resistor-type air flowmeter | |
EP0542490A2 (en) | Hot wire flow rate measuring circuit | |
JPH07167697A (en) | Intake air flow rate detector for internal combustion engine | |
JPH05164583A (en) | Heat generating resistor type air flowmeter | |
JPS6013446B2 (en) | Gas flow measuring device | |
JPS586415A (en) | Thermal flow meter | |
JPS5827016A (en) | Device for controlling engine | |
JPH01100423A (en) | Operating condition detector for internal combustion engine | |
JPH0341072Y2 (en) | ||
JPH04331323A (en) | Mass flowsensor | |
JPH0411165Y2 (en) | ||
JPH07119525A (en) | Intake air flow rate detection device of internal combustion engine | |
JPH06117899A (en) | Air flow rate measuring instrument | |
JPH0143883B2 (en) | ||
JPH0718380B2 (en) | Internal combustion engine with air flow meter | |
JPH0449689Y2 (en) | ||
JPS6130717A (en) | Hot-wire type flow meter | |
JPH0635987B2 (en) | Flow velocity detector |