JPH06117899A - Air flow rate measuring instrument - Google Patents

Air flow rate measuring instrument

Info

Publication number
JPH06117899A
JPH06117899A JP4268431A JP26843192A JPH06117899A JP H06117899 A JPH06117899 A JP H06117899A JP 4268431 A JP4268431 A JP 4268431A JP 26843192 A JP26843192 A JP 26843192A JP H06117899 A JPH06117899 A JP H06117899A
Authority
JP
Japan
Prior art keywords
resistor
air
temperature
air flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4268431A
Other languages
Japanese (ja)
Inventor
Tadao Suzuki
忠雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4268431A priority Critical patent/JPH06117899A/en
Publication of JPH06117899A publication Critical patent/JPH06117899A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To variably control an internal combustion engine so as to control the engine with high accuracy by providing such a circuit configuration that can simultaneously output the intake air flow rate and air temperature of the engine. CONSTITUTION:An exothermic resistor 2 and temperature sensitive resistor 5 which respectively detect air flow rates and air temperatures are installed to an air intake passage 6 and the resistor 2 is connected to a constant-current source A and reference resistor 3. The resistor 5 is connected to another constant-current source B4. Since the resistor 2 always receives a constant current from the current source A1 and generates heat, the heat radiating amount of the resistor 2 changes depending upon the amount of intake air 7 and the current value of the resistor 3 changes. Therefore, the output of the resistor 3 is outputted against the amount of the air 7 and a control unit 13 inputs the output as an air flow rate signal. On the other hand, a constant current which does not cause the resistor 5 to generate heat flows to the resistor 5 from the current source B4, the resistance of the resistor 5 changes depending upon the temperature of the air 7. Therefore. the output voltage of the resistor 5 becomes the temperature signal of the air 7 and is inputted to the unit 13. Thus, by driving the resistors 2 and 5 by means of different control circuits, the air flow rate signal and air temperature signal can be separately but simultaneously fetched.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気流温度信号を必要
とする内燃機関用の空気流量測定装置に関する。
FIELD OF THE INVENTION The present invention relates to an air flow measuring device for an internal combustion engine which requires an air flow temperature signal.

【0002】[0002]

【従来の技術】従来の熱式抵抗体を使用した空気流量測
定装置は、特開昭58−87420 号記載のように熱式抵抗体
と感温抵抗体とはブリッジ回路を構成していた。
2. Description of the Related Art In a conventional air flow rate measuring device using a thermal resistor, a thermal resistor and a temperature sensitive resistor constitute a bridge circuit as described in JP-A-58-87420.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、この
回路から直接吸気温信号を取り出すと、感温抵抗体は、
吸気温と空気流量の双方の影響を受けるため割算回路が
必要であつた。またブリッジ回路を構成するため感温抵
抗体は、低抵抗であり、温度変化に対する変化量が小さ
いという問題があった。そのため内燃機関の制御で吸気
温が必要な場合別個の吸気温センサーを内燃機関に設置
しなければならなかった。
In the above prior art, when the intake air temperature signal is directly taken out from this circuit, the temperature sensitive resistor is
A division circuit was necessary because it was affected by both intake air temperature and air flow rate. Moreover, since the temperature sensitive resistor has a low resistance because it constitutes a bridge circuit, there is a problem that the amount of change with respect to temperature change is small. Therefore, when the intake air temperature is required to control the internal combustion engine, a separate intake air temperature sensor must be installed in the internal combustion engine.

【0004】本発明の目的は、空気流量信号と吸入空気
の空気温信号を同時に、取り出せる制御回路を非ブリッ
ジ回路により構成し、一つの空気流量測定装置により、
内燃機関の制御によりバリエーションをもたせ、更に高
精度の制御を行うこと空気流量測定装置を提供すること
にある。
An object of the present invention is to configure a control circuit capable of taking out an air flow rate signal and an intake air temperature signal at the same time by a non-bridge circuit, and by one air flow rate measuring device,
It is an object of the present invention to provide an air flow rate measuring device that provides a variation by controlling an internal combustion engine and performs a highly accurate control.

【0005】[0005]

【課題を解決するための手段】上記目的は内燃機関に供
給される吸入空気量を空気通路内に設置した熱式抵抗体
で検出し、更に前記吸入空気の温度を空気通路内に設置
した感温抵抗体で検出する空気流量測定装置において、
前記吸入空気量と、前記空気温度を同時出力可能な回路
構成を有することによって達成される。
The above object is to detect the amount of intake air supplied to an internal combustion engine by means of a thermal resistor installed in the air passage, and to detect the temperature of the intake air in the air passage. In the air flow rate measuring device that detects with a temperature resistor,
This is achieved by having a circuit configuration capable of simultaneously outputting the intake air amount and the air temperature.

【0006】[0006]

【作用】熱式抵抗体による空気流量検出と、感温抵抗体
による吸気温検出回路を別回路にし、非ブリッジ回路化
を図ることにより空気流量信号と吸気温信号を個別に使
用できる。しかも1個の空気流量測定装置で測定可能で
ある。さらに感温抵抗体による吸気温検出信号は、空気
流量の影響をうけないため吸気温検出回路に使用する感
温抵抗体の抵抗値を自由に設定できる。
The air flow rate signal by the thermal resistor and the intake air temperature detection circuit by the temperature sensitive resistor are formed as separate circuits, and the air flow rate signal and the intake air temperature signal can be used individually by making them non-bridge circuits. Moreover, it is possible to measure with one air flow rate measuring device. Furthermore, since the intake air temperature detection signal from the temperature sensitive resistor is not affected by the air flow rate, the resistance value of the temperature sensitive resistor used in the intake temperature detecting circuit can be freely set.

【0007】[0007]

【実施例】以下、本発明の実施例を図1〜図2により説
明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0008】図1は、本発明である熱式抵抗体2,感温
抵抗体5を別々に設定した実施例である。内燃機関の吸
気通路6には、空気流量検出する熱式抵抗体2と空気温
度を検出する感温抵抗体5が設置されており、吸入空気
7に晒される熱式抵抗体2は、定電流源A1と基準抵抗
3に接続されている。定電流源A1から常に一定電流が
供給されて熱式抵抗体2を加熱する。吸入空気7の大き
さにより熱式抵抗体2からの放熱量が変化するため基準
抵抗3に流れる電流値が変化する。したがて基準抵抗3
の出力電圧は吸入空気7の大きさに対応して出力され
る。この基準抵抗3の出力電圧は、空気流量信号として
コネクタ12のターミナル9を介し制御ユニット13に
入力される。一方感温抵抗体5は、定電流源B4に接続
され感温抵抗体5が加熱されない程度の一定電流がなが
される。吸入空気7の温度により感温抵抗体5の抵抗値
が変化するため感温抵抗体5の出力電圧は吸入空気7の
温度信号となる。この温度信号は、コネクタ12のター
ミナル10を介し制御ユニット13に入力される。この
ように吸気通路6内に設置した熱式抵抗体2,感温抵抗
体5を各々、別々の制御回路により駆動することにより
空気流量信号と温度信号を別々に取り出せることが出来
る。尚、個々の制御回路は、制御ユニット13からコネ
クタ12のターミナル8,ターミナル11を介して電源
が供給される。更に、個々の制御回路は、一つの空気流
量測定装置として構成される。
FIG. 1 shows an embodiment in which the thermal resistor 2 and the temperature sensitive resistor 5 of the present invention are set separately. In the intake passage 6 of the internal combustion engine, a thermal resistor 2 for detecting the air flow rate and a temperature sensitive resistor 5 for detecting the air temperature are installed, and the thermal resistor 2 exposed to the intake air 7 has a constant current. It is connected to the source A1 and the reference resistor 3. A constant current is constantly supplied from the constant current source A1 to heat the thermal resistor 2. Since the amount of heat radiated from the thermal resistor 2 changes depending on the size of the intake air 7, the value of the current flowing through the reference resistor 3 changes. Therefore, the reference resistance 3
Is output corresponding to the size of the intake air 7. The output voltage of the reference resistor 3 is input to the control unit 13 via the terminal 9 of the connector 12 as an air flow rate signal. On the other hand, the temperature sensitive resistor 5 is connected to the constant current source B4, and a constant current is applied to the temperature sensitive resistor 5 so that the temperature sensitive resistor 5 is not heated. Since the resistance value of the temperature sensitive resistor 5 changes depending on the temperature of the intake air 7, the output voltage of the temperature sensitive resistor 5 becomes a temperature signal of the intake air 7. This temperature signal is input to the control unit 13 via the terminal 10 of the connector 12. In this way, the thermal type resistor 2 and the temperature sensitive resistor 5 installed in the intake passage 6 are driven by different control circuits, respectively, so that the air flow rate signal and the temperature signal can be taken out separately. Power is supplied to each control circuit from the control unit 13 via the terminals 8 and 11 of the connector 12. Furthermore, the individual control circuits are configured as one air flow measuring device.

【0009】以上の実施例によれば、一つの空気流量測
定装置から空気流量信号と温度信号が取り出せるので内
燃機関の制御によりバリエーションをもつことができ、
更に高精度の制御が可能になる効果がある。また、前記
した実施内容の中でも制御ユニット13内の演算機能に
より温度信号により空気流量信号の吸気温補正ができる
効果がある。
According to the above embodiment, since the air flow rate signal and the temperature signal can be taken out from one air flow rate measuring device, variations can be provided by controlling the internal combustion engine.
Further, there is an effect that high-precision control becomes possible. Further, among the above-mentioned contents of implementation, there is an effect that the intake temperature of the air flow rate signal can be corrected by the temperature signal by the calculation function in the control unit 13.

【0010】図2の実施例は図1の実施例にたいし、空
気流量検出回路に温度補正機能を付加したものである。
熱式抵抗体2は、空気流量測定装置の制御回路内に設け
た温度可変抵抗体15,基準抵抗3,抵抗体1,14に
よりブリッジ回路構成し、ブリッジ回路の平衡状態をオ
ペアンプ17で検出して、トランジスタ16により前記
熱式抵抗体に定電流を供給する回路構成としたものであ
る。内燃機関は、定常作動時、吸気通路6を流れる吸入
空気7温度と空気流量測定装置の制御回路は、ほぼ同温
度であり、本回路による吸気温補正は、可能である。過
渡時は、図1の実施例で示したように、別回路で検出し
た感温抵抗体5の温度信号を制御ユニット13内の演算
機能により補正ができる。本実施例によっても、図1の
実施例と同様の効果が得られる。
The embodiment shown in FIG. 2 differs from the embodiment shown in FIG. 1 in that a temperature correction function is added to the air flow rate detection circuit.
The thermal resistor 2 is configured as a bridge circuit by the temperature variable resistor 15, the reference resistor 3, and the resistors 1 and 14 provided in the control circuit of the air flow rate measuring device, and the operational amplifier 17 detects the balanced state of the bridge circuit. The transistor 16 has a circuit configuration for supplying a constant current to the thermal resistor. During steady operation of the internal combustion engine, the temperature of the intake air 7 flowing through the intake passage 6 and the control circuit of the air flow rate measuring device are almost the same temperature, and the intake air temperature can be corrected by this circuit. During the transition, as shown in the embodiment of FIG. 1, the temperature signal of the temperature sensitive resistor 5 detected by another circuit can be corrected by the arithmetic function in the control unit 13. According to this embodiment, the same effect as that of the embodiment of FIG. 1 can be obtained.

【0011】[0011]

【発明の効果】本発明によれば、一つの空気流量測定装
置から空気流量信号と温度信号が取り出せるので内燃機
関の制御に、より、バリエーションをもつことができ
る。更に、高精度の制御が可能になる効果がある。
According to the present invention, since the air flow rate signal and the temperature signal can be taken out from one air flow rate measuring device, the control of the internal combustion engine can have more variations. Further, there is an effect that high-precision control becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す空気流量測定装置の制
御回路図。
FIG. 1 is a control circuit diagram of an air flow measuring device showing an embodiment of the present invention.

【図2】本発明の応用例を示す空気流量測定装置の制御
回路図。
FIG. 2 is a control circuit diagram of an air flow measuring device showing an application example of the present invention.

【符号の説明】[Explanation of symbols]

1…定電流源A、2…熱式抵抗体、3…基準抵抗、4…
定電流源B、5…感熱抵抗体、6…吸気通路、7…吸入
空気、8〜11…ターミナル、12…コネクタ、13…
制御ユニット、14…抵抗体1、15…温度可変抵抗
体、16…トランジスタ、17…オペアンプ。
1 ... Constant current source A, 2 ... Thermal resistor, 3 ... Reference resistance, 4 ...
Constant current source B, 5 ... Thermal resistor, 6 ... Intake passage, 7 ... Intake air, 8-11 ... Terminal, 12 ... Connector, 13 ...
Control unit, 14 ... Resistor 1, 15 ... Temperature variable resistor, 16 ... Transistor, 17 ... Operational amplifier.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内燃機関に供給される吸入空気量を空気通
路内に設置した熱式抵抗体で検出し、更に前記吸入空気
の温度を空気通路内に設置した感温抵抗体で検出する空
気流量測定装置において、前記吸入空気量と、前記空気
温度を同時出力可能な回路構成を有することを特徴とす
る空気流量測定装置。
1. Air for detecting the amount of intake air supplied to an internal combustion engine by a thermal resistor installed in an air passage, and further detecting the temperature of the intake air by a temperature sensitive resistor installed in the air passage. The flow rate measuring device has a circuit configuration capable of simultaneously outputting the intake air amount and the air temperature.
【請求項2】請求項1において、前記熱式抵抗体と前記
感温抵抗体は、各々定電流源を持ち、前記定電流源によ
って駆動されることを特徴とする空気流量測定装置。
2. The air flow measuring device according to claim 1, wherein the thermal resistor and the temperature sensitive resistor each have a constant current source and are driven by the constant current source.
【請求項3】請求項1において、前記熱式抵抗体,感温
抵抗体により検出した吸入空気量,空気温度は、各々演
算回路を有する制御ユニットに入力され、更に、空気温
度信号により、前記熱式抵抗体の前記定電流源の供給電
流の吸気温度補正をおこなうことを特徴とする空気流量
測定装置。
3. The intake air amount and the air temperature detected by the thermal resistor and the temperature sensitive resistor according to claim 1, respectively, are input to a control unit having an arithmetic circuit, and further, by an air temperature signal, the An air flow rate measuring device, which corrects an intake air temperature of a supply current of the constant current source of a thermal resistor.
【請求項4】請求項1において、前記熱式抵抗体は、空
気流量測定装置内の制御回路の温度可変抵抗体,抵抗体
1,基準抵抗によりブリッジ回路を構成し、前記ブリッ
ジ回路の平衡状態をオペアンプで検出して、トランジス
タにより前記熱式抵抗体に定電流を供給する回路構成と
し、前記感温抵抗体は、前記熱式抵抗体と別回路とし、
定電流源によって駆動することを特徴とする空気流量測
定装置。
4. The thermal resistor according to claim 1, wherein the temperature variable resistor of the control circuit in the air flow measuring device, the resistor, and the reference resistor constitute a bridge circuit, and the bridge circuit is in a balanced state. Is detected by an operational amplifier and has a circuit configuration for supplying a constant current to the thermal resistor by a transistor, and the temperature sensitive resistor is a separate circuit from the thermal resistor.
An air flow measuring device characterized by being driven by a constant current source.
JP4268431A 1992-10-07 1992-10-07 Air flow rate measuring instrument Pending JPH06117899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4268431A JPH06117899A (en) 1992-10-07 1992-10-07 Air flow rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4268431A JPH06117899A (en) 1992-10-07 1992-10-07 Air flow rate measuring instrument

Publications (1)

Publication Number Publication Date
JPH06117899A true JPH06117899A (en) 1994-04-28

Family

ID=17458400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4268431A Pending JPH06117899A (en) 1992-10-07 1992-10-07 Air flow rate measuring instrument

Country Status (1)

Country Link
JP (1) JPH06117899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121459A (en) * 2006-11-09 2008-05-29 Toyota Motor Corp Method for correcting measurement value of intake air flow rate measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121459A (en) * 2006-11-09 2008-05-29 Toyota Motor Corp Method for correcting measurement value of intake air flow rate measuring device

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
JPH02276914A (en) Suction air flow rate measuring instrument for internal combustion engine
JP2006201077A (en) Thermal air flowmeter
US5394746A (en) Hot wire flow rate measuring circuit
JPH06117899A (en) Air flow rate measuring instrument
US4571991A (en) Air flow measuring apparatus
JP3105609B2 (en) Heating resistor type air flow meter
JPS62249014A (en) Symmetric bridge circuit measuring mass flow of air
JP2929950B2 (en) Control device for internal combustion engine
KR970022232A (en) Measuring resistance temperature control device and temperature control method
US20050000281A1 (en) Flow sensor having improved operational performance
US6386030B1 (en) Balanced bridge temperature regulator for an air-mass flow meter
KR19990067365A (en) Device for measuring the flow rate of a fluid
JP2001141539A (en) Method of correcting temperature of flow sensor, and flow sensor circuit
JPH11241962A (en) Pressure sensor
JPH0143883B2 (en)
JP3473501B2 (en) Thermal air flow meter
JP2003315129A (en) Thermal flow measuring instrument
JPH1137815A (en) Heat generating resistance type flow rate measuring device and temperature error correcting means
JPS62110123A (en) Thermal type air flow rate measuring apparatus for engine
JPH05312616A (en) Air flow measuring unit
JP5510311B2 (en) Heating resistance type flow sensor and its self-diagnosis method
JP3133617B2 (en) Thermal air flow detector
JPH08105779A (en) Thermal-type air flow-rate detector
JPH01245119A (en) Hot-wire type flow rate measuring instrument