JPH11241962A - Pressure sensor - Google Patents
Pressure sensorInfo
- Publication number
- JPH11241962A JPH11241962A JP4367698A JP4367698A JPH11241962A JP H11241962 A JPH11241962 A JP H11241962A JP 4367698 A JP4367698 A JP 4367698A JP 4367698 A JP4367698 A JP 4367698A JP H11241962 A JPH11241962 A JP H11241962A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- constant current
- temperature
- current
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はガスクロマトグラフ
試料導入部に用いられるような圧力センサーに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor for use in a gas chromatograph sample inlet.
【0002】[0002]
【従来の技術】ガスクロマトグラフでは試料導入部から
カラムに試料を送り込む際にカラム入口圧を一定に保持
して試料導入を行うことがなされるために、試料導入部
には圧力センサが取り付けられている。2. Description of the Related Art In a gas chromatograph, when a sample is introduced from a sample introduction section to a column, a sample is introduced while maintaining a constant column inlet pressure. I have.
【0003】図1に従来からガスクロマトグラフの試料
導入装置に用いられている圧力センサーの構成図を示
す。 図において、1は歪ゲージによる感圧抵抗体、2
〜4はセンサー内のブリッジ抵抗、5は定電流回路、6
は増幅回路、7は電圧測定回路、8、9は電圧測定点で
ある。FIG. 1 shows a configuration diagram of a pressure sensor conventionally used in a sample introduction device of a gas chromatograph. In the figure, 1 is a pressure-sensitive resistor by a strain gauge, 2
4 is a bridge resistance in the sensor, 5 is a constant current circuit, 6
Is an amplifier circuit, 7 is a voltage measurement circuit, and 8 and 9 are voltage measurement points.
【0004】定電流回路5は1〜4で構成されたブリッ
ジに測定用の定電流(一般に数mA)を流す。1〜4で
構成されたブリッジにおける電圧測定点8、9の間の電
圧は増幅回路6により増幅された後、電圧測定回路7に
より測定される。感圧抵抗体1が被測定圧力にさらされ
ていない状態では感圧抵抗体1とブリッジ抵抗2〜4は
ほぼ等しい電気抵抗値を持つように選択されている。よ
って、電圧測定点8、9の間の電圧差はほぼ0であるの
で電圧測定回路7により測定される電圧はやはり、0に
近い。A constant current circuit 5 supplies a constant current for measurement (generally several mA) to a bridge composed of 1 to 4. The voltage between the voltage measurement points 8 and 9 in the bridge composed of 1 to 4 is amplified by the amplifier circuit 6 and then measured by the voltage measurement circuit 7. When the pressure-sensitive resistor 1 is not exposed to the pressure to be measured, the pressure-sensitive resistor 1 and the bridge resistors 2 to 4 are selected to have substantially equal electric resistance values. Therefore, since the voltage difference between the voltage measurement points 8 and 9 is almost 0, the voltage measured by the voltage measurement circuit 7 is also close to 0.
【0005】感圧抵抗体1は被測定圧力にさらされると
感圧抵抗体1は、その圧力により歪む。感圧抵抗体1は
歪むと電気抵抗値が変化する特性を持っている。よっ
て、感圧抵抗体1が圧力にさらされると、感圧抵抗体1
の抵抗が変化し、電圧測定点8、9の間に電圧差が生
じ、その電圧差は増幅回路6に入力される。その結果、
被観測圧力に応じた電圧を電圧測定回路7により測定す
ることができる。When the pressure-sensitive resistor 1 is exposed to a measured pressure, the pressure-sensitive resistor 1 is distorted by the pressure. The pressure-sensitive resistor 1 has a characteristic that an electric resistance value changes when it is distorted. Thus, when the pressure-sensitive resistor 1 is exposed to pressure, the pressure-sensitive resistor 1
Is changed, a voltage difference is generated between the voltage measurement points 8 and 9, and the voltage difference is input to the amplifier circuit 6. as a result,
The voltage according to the observed pressure can be measured by the voltage measurement circuit 7.
【0006】[0006]
【本発明が解決しようとする課題】上記のような圧力セ
ンサは、外気温の変化により、感熱抵抗体やブリッジ抵
抗の抵抗値が変化するので、温度変化の影響を受けるこ
とにより正確な圧力の測定が困難であった。そのため、
従来は正確な測定をする場合にはわざわざ温度対策とし
てブリッジ部分を例えば摂氏40度で恒温化するための
温度センサとヒータ回路とによる温調機構を設け、一定
温度となるように制御していた。しかし、そのため、温
調用のヒータを別途に設けなければならず、部品点数が
増加するとともに小型化の障害になっていた。In the pressure sensor as described above, the resistance value of the heat-sensitive resistor or the bridge resistor changes according to the change of the outside air temperature. The measurement was difficult. for that reason,
Conventionally, when performing accurate measurement, a temperature control mechanism including a temperature sensor and a heater circuit for keeping the temperature of the bridge portion constant at, for example, 40 degrees Celsius was provided as a countermeasure against temperature, and the temperature was controlled so as to be constant. . However, for this reason, a heater for controlling the temperature had to be separately provided, which increased the number of parts and hindered miniaturization.
【0007】そこで、本発明はこのような別途の温調機
構を設けることなく安定した圧力測定が行うことができ
る圧力センサを提供することを目的とする。Accordingly, an object of the present invention is to provide a pressure sensor capable of performing stable pressure measurement without providing such a separate temperature control mechanism.
【0008】[0008]
【課題を解決するための手段】上記問題を解決するため
になされた本発明の圧力センサは、圧力変化により抵抗
値が変化する感圧抵抗体を含む抵抗ブリッジ回路と、前
記抵抗ブリッジ回路にある感圧低抗体の抵抗値を電圧値
として検出するための電圧測定回路と、前記電圧値の測
定時に抵抗ブリッジ回路に流す第1の定電流値と、抵抗
ブリッジ回路を加熱するときに流す第2の定電流値とを
切り替える制御を行う電流制御手段と、外気温を測定す
る温度センサと、前記温度センサで測定された温度に応
じて第2の定電流値の大きさ又は/及び第2の定電流値
を流す時間を電流制御手段に設定するパラメータ設定手
段とを備えたことを特徴とする。A pressure sensor according to the present invention, which has been made to solve the above problems, has a resistance bridge circuit including a pressure-sensitive resistor whose resistance value changes with a change in pressure, and the resistance bridge circuit. A voltage measuring circuit for detecting the resistance value of the pressure-sensitive low antibody as a voltage value, a first constant current value flowing through the resistance bridge circuit when measuring the voltage value, and a second constant current value flowing when heating the resistance bridge circuit. Current control means for performing control for switching between the constant current value and a temperature sensor for measuring the outside air temperature, and the magnitude of the second constant current value and / or the second constant current value according to the temperature measured by the temperature sensor. Parameter setting means for setting the time for flowing the constant current value in the current control means.
【0009】この圧力センサーでは、第1の定電流値
(抵抗体による加熱が問題とならないあるいは無視でき
るような小電流)を流すことにより、ブリッジ抵抗にあ
る感圧抵抗体の抵抗値を電圧値として測定するのは従来
と同じであるが、電流制御手段により第2の定電流値
(抵抗体が加熱できる程度の電流)に切り替えることに
より、抵抗体を電流加熱、即ち抵抗体自身をヒータとし
て利用することにより、別途のヒータを取り付けること
なく加熱し、一定温度に保持するようにする。In this pressure sensor, the resistance value of the pressure-sensitive resistor in the bridge resistor is changed to a voltage value by flowing a first constant current value (a small current that causes no or negligible heating by the resistor). Is measured as in the prior art, but the current control means switches the current to a second constant current value (a current that can heat the resistor), thereby heating the resistor with current, that is, using the resistor itself as a heater. By using this, heating is performed without attaching a separate heater, and the temperature is kept constant.
【0010】[0010]
【発明の実施の形態】以下、本発明を実施例を用いて説
明する。図2は本発明の一実施例である圧力センサの構
成図である。 1は感圧抵抗体、2〜4はセンサー内の
ブリッジ抵抗であり、これらによりブリッジBが構成さ
れる。11は後述するパラメータ設定部により指定され
たデューティ比および電流を発生することのできる電流
制御部、6は増幅回路、7は電圧測定回路、8、9は電
圧測定点、12は外気温を測定する温度センサーであ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. FIG. 2 is a configuration diagram of a pressure sensor according to one embodiment of the present invention. 1 is a pressure-sensitive resistor, and 2 to 4 are bridge resistors in the sensor. Reference numeral 11 denotes a current control unit capable of generating a duty ratio and a current specified by a parameter setting unit described later, 6 denotes an amplifier circuit, 7 denotes a voltage measurement circuit, 8 and 9 denote voltage measurement points, and 12 measures outside air temperature. Temperature sensor.
【0011】13はパラメータ設定部であり、ここには
メモリが内蔵されており、このメモリには外気温値ごと
にブリッジ温度を例えば摂氏40度に保持しようとすると
きにブリッジに流す最適電流値やデューティー比が記憶
されている。したがって、温度センサー12から出力さ
れる測定値に応じた最適電流値やデューティー比がパラ
メータ設定部13により決定され、このパラメータ値が
電流制御部11に設定される。Reference numeral 13 denotes a parameter setting unit, which has a built-in memory. The memory has an optimum current value flowing through the bridge when the bridge temperature is to be maintained at, for example, 40 degrees Celsius for each outside air temperature value. And the duty ratio are stored. Therefore, the optimum current value and the duty ratio according to the measurement value output from the temperature sensor 12 are determined by the parameter setting unit 13, and the parameter values are set in the current control unit 11.
【0012】定電流制御部11は1〜4で構成されたブ
リッジBにあらかじめ設定されたデューティ比でもって
測定用定電流(一般に数mA)と、前記パラメータ設定
部13で決定された測定用定電流の数倍程度の加熱用定
電流を流す。その様子を図3に示す。The constant current control section 11 has a constant duty for measurement (generally several mA) with a preset duty ratio in the bridge B composed of 1 to 4 and a constant current for measurement determined by the parameter setting section 13. A heating constant current of several times the current is passed. This is shown in FIG.
【0013】図3においてT1は電流制御部11が印可
する電流の周期であり、T2は測定用定電流を流す時
間、T3は加熱用の定電流を流すための時間、I1は測
定用電流,I2は加熱用電流である。電流制御部11は
温度センサー12により測定される外気温に応じたT
1,T2,T3,I1のそれぞれの値をテーブルとし
て、その内部に有している。ブリッジ全体の温度はI1
を流しても殆ど変わらないが、I2を流すと上昇するよ
うにI1,I2は設定されている。また、ブリッジ全体
の温度が外気温にかかわらず40℃前後となるように上
述のテーブルは作成されている。In FIG. 3, T1 is a period of a current applied by the current control unit 11, T2 is a time for flowing a constant current for measurement, T3 is a time for flowing a constant current for heating, I1 is a current for measurement, I2 is a heating current. The current control unit 11 determines T based on the outside air temperature measured by the temperature sensor 12.
Each value of 1, T2, T3, and I1 is stored in a table as a table. The temperature of the entire bridge is I1
Is almost the same even if the current I2 flows, but I1 and I2 are set so as to rise when the current I2 flows. Further, the above table is created so that the temperature of the entire bridge is about 40 ° C. regardless of the outside air temperature.
【0014】1〜4で構成されたブリッジにおける電圧
測定点8、9の間の電圧は増幅回路6により増幅された
後、電圧測定回路7により測定される。感圧抵抗体1が
被測定圧力にさらされていない状態では感圧抵抗体1と
ブリッジ抵抗2〜4はほぼ等しい電気抵抗値を持つ。よ
って、電圧測定点8、9の間の電圧差はほぼ0であるの
で電圧測定回路7により測定される電圧はやはり、0に
近い。The voltage between the voltage measuring points 8 and 9 in the bridge constituted by 1 to 4 is amplified by the amplifier circuit 6 and then measured by the voltage measuring circuit 7. When the pressure-sensitive resistor 1 is not exposed to the pressure to be measured, the pressure-sensitive resistor 1 and the bridge resistors 2 to 4 have substantially equal electric resistance values. Therefore, since the voltage difference between the voltage measurement points 8 and 9 is almost 0, the voltage measured by the voltage measurement circuit 7 is also close to 0.
【0015】感圧抵抗体1は、被測定圧力にさらされる
とその圧力により歪む。感圧抵抗体1は歪むと電気抵抗
値が変化する特性を持っている。よって、感圧抵抗体1
が圧力にさらされると、感圧抵抗体1の抵抗が変化し、
電圧測定部8、9の間に電圧差が生じ、その電圧差は増
幅回路6に入力される。電流制御部11はI1の電流を
流すタイミングを電圧測定回路7に知らせる。電圧測定
回路7は、電流制御部11がI1を流している間に電圧
測定点8、9の間の電圧差を測定する。その結果、被観
測圧力に応じた電圧を電圧測定回路7により測定するこ
とができる。When the pressure-sensitive resistor 1 is exposed to a measured pressure, the pressure-sensitive resistor 1 is distorted by the pressure. The pressure-sensitive resistor 1 has a characteristic that an electric resistance value changes when it is distorted. Therefore, the pressure-sensitive resistor 1
Is exposed to pressure, the resistance of the pressure-sensitive resistor 1 changes,
A voltage difference occurs between the voltage measurement units 8 and 9, and the voltage difference is input to the amplifier circuit 6. The current control unit 11 notifies the voltage measurement circuit 7 of the timing at which the current I1 flows. The voltage measurement circuit 7 measures a voltage difference between the voltage measurement points 8 and 9 while the current control unit 11 is flowing I1. As a result, the voltage according to the pressure to be observed can be measured by the voltage measurement circuit 7.
【0016】上述のように1〜4で構成されたブリッジ
の温度は40℃くらいに保たれているため、外気温の影
響を受けない正確な圧力を測定することが出来る。As described above, since the temperature of the bridge composed of 1 to 4 is maintained at about 40 ° C., an accurate pressure which is not affected by the outside air temperature can be measured.
【0017】上記実施例では、加熱用電流値と加熱用電
流を流す時間の両方の設定を変更することとしたが、い
ずれか一方のみを変更することとしても同様の効果を得
ることができる。In the above embodiment, both the setting of the heating current value and the time for supplying the heating current are changed, but the same effect can be obtained by changing only one of them.
【0018】以下、実施態様をまとめておく。 (1)圧力変化により抵抗値が変化する感圧抵抗体を含
む抵抗ブリッジ回路と、前記抵抗ブリッジ回路にある感
圧低抗体の抵抗値を電圧値として検出するための電圧測
定回路と、少なくとも大小2つの電流値を有しその電流
値のデューティー比を変化させることのできる電流制御
部を有し、さらに、外気温を測定することのできる温度
センサーを有し、前記電流制御部が、前記温度センサー
からの出力に応じたデューティー比でもって、前記抵抗
ブリッジ回路の抵抗体に電流を流す電流制御部を備えた
ことを特徴とする圧力センサ。Hereinafter, embodiments will be summarized. (1) A resistance bridge circuit including a pressure-sensitive resistor whose resistance value changes according to a pressure change, a voltage measurement circuit for detecting the resistance value of the pressure-sensitive low antibody in the resistance bridge circuit as a voltage value, A current control unit that has two current values and is capable of changing a duty ratio of the current values, and further includes a temperature sensor that can measure an outside air temperature; A pressure sensor, comprising: a current control unit that causes a current to flow through a resistor of the resistance bridge circuit at a duty ratio according to an output from the sensor.
【0019】[0019]
【発明の効果】以上、説明したように本発明による圧力
センサは、別途に温調機構を設けることなく、圧力セン
サ自身を利用して温調を行うようにしたので、別のヒー
タを用いることなく、簡単な構成で外気温に影響される
ことのない正確な圧力を測定することができる。As described above, in the pressure sensor according to the present invention, the temperature is controlled by using the pressure sensor itself without providing a separate temperature control mechanism. In addition, accurate pressure can be measured without being affected by the outside temperature with a simple configuration.
【図1】従来の圧力センサーの構成図。FIG. 1 is a configuration diagram of a conventional pressure sensor.
【図2】本発明の一実施例である圧力センサーの構成
図。FIG. 2 is a configuration diagram of a pressure sensor according to an embodiment of the present invention.
【図3】本発明の一実施例の電流制御部により制御され
る電流の説明図。FIG. 3 is an explanatory diagram of a current controlled by a current control unit according to one embodiment of the present invention.
1:感圧抵抗体 2〜4:ブリッジ抵抗 5:定電流回路 6:増幅回路 7:電圧測定回路 8、9:電圧測定点 11:電流制御部 12:温度センサー 13:パラメータ設定部 T1:周期 T2:測定用定電流を流す時間 T3:加熱用定電流を流す時間 I1:測定用電流 I2:加熱用電流 1: pressure-sensitive resistor 2 to 4: bridge resistor 5: constant current circuit 6: amplifier circuit 7: voltage measurement circuit 8, 9: voltage measurement point 11: current control unit 12: temperature sensor 13: parameter setting unit T1: cycle T2: Time for flowing constant current for measurement T3: Time for flowing constant current for heating I1: Current for measurement I2: Current for heating
Claims (1)
抗体を含む抵抗ブリッジ回路と、前記抵抗ブリッジ回路
にある感圧低抗体の抵抗値を電圧値として検出するため
の電圧測定回路と、前記電圧値の測定時に抵抗ブリッジ
回路に流す第1の定電流値と、抵抗ブリッジ回路を加熱
するときに流す第2の定電流値とを切り替える制御を行
う電流制御手段と、外気温を測定する温度センサと、前
記温度センサで測定された温度に応じて第2の定電流値
の大きさ又は/及び第2の定電流値を流す時間を電流制
御手段に設定するパラメータ設定手段とを備えたことを
特徴とする圧力センサ。1. A resistance bridge circuit including a pressure-sensitive resistor whose resistance value changes according to a pressure change, a voltage measurement circuit for detecting a resistance value of a pressure-sensitive low antibody in the resistance bridge circuit as a voltage value, A first constant current value flowing through the resistance bridge circuit at the time of measuring the voltage value, a current control means for performing control to switch between a second constant current value flowing when heating the resistance bridge circuit, and measuring the outside air temperature A temperature sensor, and parameter setting means for setting the magnitude of the second constant current value or / and the time for flowing the second constant current value to the current control means in accordance with the temperature measured by the temperature sensor. Pressure sensor characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04367698A JP3959828B2 (en) | 1998-02-25 | 1998-02-25 | pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04367698A JP3959828B2 (en) | 1998-02-25 | 1998-02-25 | pressure sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11241962A true JPH11241962A (en) | 1999-09-07 |
JP3959828B2 JP3959828B2 (en) | 2007-08-15 |
Family
ID=12670454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04367698A Expired - Fee Related JP3959828B2 (en) | 1998-02-25 | 1998-02-25 | pressure sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3959828B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4809837B2 (en) * | 2004-07-28 | 2011-11-09 | ブルックス オートメーション インコーポレイテッド | How to operate a heat loss pressure sensor with resistance |
JP2018132433A (en) * | 2017-02-16 | 2018-08-23 | セイコーインスツル株式会社 | Pressure change measuring apparatus, altitude measuring apparatus, and pressure change measuring method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5085517B2 (en) * | 2008-11-21 | 2012-11-28 | 大和製衡株式会社 | Load cell type weighing device |
JP6386328B2 (en) | 2014-10-06 | 2018-09-05 | ルネサスエレクトロニクス株式会社 | Semiconductor device, resistance measuring system and pressure measuring device including the same |
-
1998
- 1998-02-25 JP JP04367698A patent/JP3959828B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4809837B2 (en) * | 2004-07-28 | 2011-11-09 | ブルックス オートメーション インコーポレイテッド | How to operate a heat loss pressure sensor with resistance |
JP2018132433A (en) * | 2017-02-16 | 2018-08-23 | セイコーインスツル株式会社 | Pressure change measuring apparatus, altitude measuring apparatus, and pressure change measuring method |
Also Published As
Publication number | Publication date |
---|---|
JP3959828B2 (en) | 2007-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5753815A (en) | Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas | |
EP1441206B1 (en) | Sensor temperature control in a thermal anemometer | |
JP2005055431A (en) | Method and structure for measuring humidity | |
JPH01150817A (en) | Mass flow meter | |
CN106053546A (en) | Arrangement and method for measuring and controlling heating temperature in semiconductor gas sensor | |
JP2599854B2 (en) | How to set the thermal flow sensor | |
JPH11241962A (en) | Pressure sensor | |
JP2946400B2 (en) | Heating resistor temperature control circuit | |
JPH09306637A (en) | Heater control device | |
JP4809837B2 (en) | How to operate a heat loss pressure sensor with resistance | |
US6086251A (en) | Process for operating a thermocouple to measure velocity or thermal conductivity of a gas | |
JP3153787B2 (en) | Heat conduction parameter sensing method and sensor circuit using resistor | |
JP3425638B2 (en) | Measuring method and measuring element | |
JP2007285849A (en) | Gas concentration detector | |
JP2004340936A (en) | Flow sensor | |
JPH05332848A (en) | Temperature measuring method | |
JPH1172457A (en) | Sensor circuit using resistor sensor as element | |
JPH0718729B2 (en) | Heater temperature control circuit | |
US20010004372A1 (en) | Arrangement and method for measuring the temperature of a fluid | |
JPH06117899A (en) | Air flow rate measuring instrument | |
JPH09311062A (en) | Drive circuit for flow rate sensor | |
JP2863053B2 (en) | Heater drive circuit | |
RU2176394C2 (en) | Device measuring speed of fluid media | |
JP2845608B2 (en) | Airflow sensor | |
JPH07261846A (en) | Mass flow controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070507 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100525 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120525 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140525 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |