JPH02258657A - Reinforcing material for hydraulic substance - Google Patents

Reinforcing material for hydraulic substance

Info

Publication number
JPH02258657A
JPH02258657A JP1082105A JP8210589A JPH02258657A JP H02258657 A JPH02258657 A JP H02258657A JP 1082105 A JP1082105 A JP 1082105A JP 8210589 A JP8210589 A JP 8210589A JP H02258657 A JPH02258657 A JP H02258657A
Authority
JP
Japan
Prior art keywords
resin
fibers
rod
modulus
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1082105A
Other languages
Japanese (ja)
Inventor
Masaki Okazaki
正樹 岡崎
Keirou Haga
波賀 勁朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1082105A priority Critical patent/JPH02258657A/en
Publication of JPH02258657A publication Critical patent/JPH02258657A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal

Abstract

PURPOSE:To improve the workability, applicability and reinforcing performance to a hydraulic substance by collecting and fixing a specific synthetic fiber with a thermosetting resin into a rod and knitting or weaving the rods in a lattice form. CONSTITUTION:A PVA synthetic fiber or a wholly aromatic polyester synthetic fiber having a polymerization degree of 1,000-20,000, a saponification degree of >=98mol%, a fineness of 0.5-20dr, a tensile strength of >=15g/dr and a Young's modulus of >=300g/dr is collected and twisted at a twist of 50-200 turns/m to form a tow of 20,000-2,000,000dr. The tow is fixed by impregnating with a thermosetting resin to obtain a rod having a resin content of >=60vol.%. The rods are knit or woven at a warp or weft distance of 2-20cm and the cross points of the rods are fixed with a resin such as unsaturated polyester resin or olefin resin.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セメントモルタルやコンクリート等の水硬性
物質の補強材として用いられる土木、建築用の平面状の
補強筋に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a planar reinforcing bar for civil engineering and construction, which is used as a reinforcing material for hydraulic materials such as cement mortar and concrete.

〈従来技術及び発明が解決しようとする課題〉従来から
土木工事、建築工事又は建築部材には鉄筋が構造材料と
して用いられ、その性能に関してはJ I S  G 
3112.3117に規定されている。
<Prior Art and Problems to be Solved by the Invention> Reinforcing bars have traditionally been used as structural materials in civil engineering work, construction work, or building components, and their performance has been determined by JIS G.
3112.3117.

鉄筋には、■内部電池の発生、雨水や塩による発錆、■
通電性、■磁性又は弱磁性、■重い(鉄筋自身比重が大
きいこと、更には一定のかぶり厚さを必要とするため部
材自身の厚さが厚くなり重くなるという欠点がある。し
かし反面、■引張り強度及びヤング率が高い、■線膨張
係数がコンクリートと同じ、■クリープが少ない、■曲
げや溶接などによる加工性に優れる、■大量生産でどこ
ででも入手が可能、■経済性に優れるなどの長所を有し
ている。
Reinforcing bars are susceptible to: - Internal battery formation, rusting due to rainwater and salt, -
Electric conductivity, ■ Magnetism or weak magnetism, ■ Heavy (the reinforcing bar itself has a large specific gravity, and furthermore, it requires a certain cover thickness, which makes the member thick and heavy. However, on the other hand, ■ High tensile strength and Young's modulus; ■ Same linear expansion coefficient as concrete; ■ Low creep; ■ Excellent workability by bending and welding; ■ Mass-produced and available anywhere; ■ Excellent economic efficiency. It has its advantages.

施工面からは鉄筋を用いる場合所定のかぶり厚さを必要
とするためその位置決めをする配筋組立てが必要である
こと、更に面状施工では鉄筋は線材が硬く容易に編織で
きないため格子状に鉄筋を子状物に目多大の手間がかか
り生産性が劣る問題がある。また鉄筋をモルタル中に配
筋し成型した後に成型物を切断する時鉄筋を切断せねば
ならず、切断方法にら問題を残している。
From a construction perspective, when using reinforcing bars, a certain cover thickness is required, so it is necessary to assemble the reinforcing bars to position them.Furthermore, in planar construction, reinforcing bars are hard wires and cannot be easily woven, so reinforcing bars are placed in a lattice pattern. There is a problem in that it takes a lot of time and effort to prepare the particles, resulting in poor productivity. Furthermore, after reinforcing bars are placed in mortar and molded, the reinforcing bars must be cut when cutting the molded product, which leaves problems with the cutting method.

このような問題点を有しない補強用格子状物に関しては
、「強化プラスチックスJ Vol、34、No。
Regarding reinforcing grids that do not have such problems, see "Reinforced Plastics J Vol. 34, No.

6.9〜17頁に総説されている。そこに紹介されてい
る格子状補強材は、ガラス繊維と樹脂を用いて格子状に
成形されたもので、このものは現在市販されている。
Reviewed on pages 6.9-17. The lattice-shaped reinforcing material introduced there is molded into a lattice shape using glass fiber and resin, and this material is currently commercially available.

しかし、このものはガラス1M1fflを用いるためセ
メント中での耐アルカリ性に問題を残しており、成型樹
脂量も多く、セメント硬化体との付着の問題も残こして
いる。
However, since this product uses glass 1M1ffl, there are still problems with its alkali resistance in cement, and the amount of molding resin is large, so there is also the problem of adhesion to the hardened cement.

そこで、鉄筋およびガラス*iの有している欠点を解消
する技術に関して研究を行なった結果、特定の繊維で構
成される棒状物・機械的性能と腰の強さを有する特長を
生かし、それをlil織して格子状にすることにより加
工性、施工性そして水硬性物に対する優れた補強性能を
有する格子状補強材が得られることを見出し、本発明に
到達した。
Therefore, as a result of conducting research on technology to eliminate the drawbacks of reinforcing bars and glass*i, we have developed a method that takes advantage of the characteristics of rod-shaped objects made of specific fibers, mechanical performance, and stiffness. It was discovered that a lattice-shaped reinforcing material having excellent workability, construction properties, and reinforcing performance against hydraulic materials could be obtained by weaving the material into a lattice-like shape, and the present invention was achieved based on this finding.

く課題を解決するための手段〉 本発明は、引張り強度が15g/dr (drはデニー
ルの略)以上、ヤング率が300g/dr以上のポリビ
ニルアルコール(以下PVAと略記)系合成繊維又は全
芳香族ポリエステル(以下PAと略記)系合成繊維およ
びこの繊維を集束固定する熱硬化性樹脂からなり、かつ
該繊維の占める割合が60体積%以上である棒状物か格
子状に編織されており、そしてその交点か固着されてい
る水硬性物質の補強材であって、好ましくは断面が円形
、正方形、矩形であり、またその表面には異形突起を有
している棒状物からなる上記格子状補強材である。
Means for Solving the Problems> The present invention provides polyvinyl alcohol (hereinafter abbreviated as PVA) synthetic fibers or fully aromatic fibers having a tensile strength of 15 g/dr (dr is an abbreviation for denier) or more and a Young's modulus of 300 g/dr or more. It is made of polyester (hereinafter abbreviated as PA) synthetic fibers and a thermosetting resin that bundles and fixes these fibers, and is woven into a rod-like or lattice-like structure in which the fibers account for 60% by volume or more, and A reinforcing material of a hydraulic material fixed at the intersections thereof, preferably having a circular, square, or rectangular cross section, and having irregularly shaped protrusions on its surface. It is.

本発明の特長は、■高強力、高ヤング率の合成繊維であ
ること、■その合成繊維が耐アルカリ性であること、■
非磁性であること、■導電性がないこと、■水硬性物質
とほぼ同一の線膨張係数を有すること、■荷重に対する
クリープが少ないこと、■棒状物に加わる応力が繊維に
伝播するに足りる繊維と樹脂の接着力を有し、■棒状物
とセメント等水硬性物質との構造上の接着性に優れてい
ること、■セメント等から所定のかぶり厚さを必要とせ
ず表面部分から大変浅いところに配筋できること、[株
]棒状物が格子状に編織されているため補強効果は一方
向のみでなく、2方向に作用すること、■工場ですでに
格子状の平面に編織しているため軽量で、運搬、取り扱
いが極めて容易であること、@合成繊維が樹脂製である
ため鋸やペンチなどで容易に切断ができること、[株]
補強筋として用いたコンクリート部材を同一のカッター
で容易に切断することができること、■経済性に優れて
いることなどがある。このように補強性能に加え施工性
、加工性、安全性、経済性の点から大変優れた水硬性物
質の格子状補強材として用いることができる。
The features of the present invention are: ■ It is a synthetic fiber with high strength and high Young's modulus; ■ The synthetic fiber is alkali resistant; ■
Non-magnetic; ■No conductivity; ■Has a coefficient of linear expansion that is almost the same as that of hydraulic materials; ■Less creep under load; ■Fibers that are sufficient to propagate the stress applied to the rod-shaped object to the fibers. ■ Has excellent structural adhesion between sticks and hydraulic substances such as cement, and ■ Can be used at very shallow depths from the surface without requiring a predetermined cover thickness from cement, etc. The reinforcement effect can be applied not only in one direction but in two directions because the rods are woven in a lattice pattern. ■Because the reinforcement is already woven in a lattice-like plane at the factory. It is lightweight and extremely easy to transport and handle, and since the synthetic fiber is made of resin, it can be easily cut with a saw or pliers.
Concrete members used as reinforcing bars can be easily cut with the same cutter, and ■It is highly economical. As described above, it can be used as a lattice-like reinforcing material for hydraulic materials, which is excellent not only in terms of reinforcing performance but also in terms of workability, workability, safety, and economic efficiency.

まず本発明に用いられる棒状物は、引張り強度が15g
/dr以上、ヤング率が300g/dr以上のPVA系
合成繊維又はFA系合成繊維が60体積%以上と熱硬化
性樹脂からなるものであり、引抜成形法で得られる。
First, the rod-shaped object used in the present invention has a tensile strength of 15 g.
/dr or more and a Young's modulus of 300 g/dr or more, PVA-based synthetic fibers or FA-based synthetic fibers are composed of 60% by volume or more and a thermosetting resin, and are obtained by a pultrusion method.

用いられるPVA系合成繊維は、重合度1000〜20
000でケン化度98モル%以上のPVAを用いたもの
で、その繊維の引張り強度としては15g/dr以上、
ヤング率は300g/dr以上が必要である。好ましく
は引張り強度17〜30g/dr、ヤング率450〜t
ooog/drである。引張り強度及びヤング率か15
g/dr未満、300g/dr未満では繊維補強材とし
ての性能を十分発揮することはできない。
The PVA-based synthetic fiber used has a polymerization degree of 1000 to 20.
000 and uses PVA with a saponification degree of 98 mol% or more, and the tensile strength of the fiber is 15 g/dr or more,
Young's modulus is required to be 300 g/dr or more. Preferably tensile strength 17-30 g/dr, Young's modulus 450-t
It is ooog/dr. Tensile strength and Young's modulus 15
If it is less than g/dr, or less than 300 g/dr, it cannot fully exhibit its performance as a fiber reinforcing material.

構成するPVA系繊進の好適な繊度は0.5〜20デニ
ールであり、この条件は、高強度及び高ヤング率の繊維
を製造する好適条件であるうえに、繊維の表面積を大き
くとることにより樹脂との接着力を高めるためにも好ま
しい。表面積の点からは0.5デニ一ル未満の細デニー
ルの方がより好ましいものの、引抜き成型時の繊維の引
き揃え及び樹脂含浸後の繊維の体積%を低下させ好まし
くない。
The preferred fineness of the constituting PVA-based fibers is 0.5 to 20 deniers, which are suitable conditions for producing fibers with high strength and high Young's modulus, and also by increasing the surface area of the fibers. It is also preferable in order to increase the adhesive strength with the resin. Although a fine denier of less than 0.5 denier is more preferable in terms of surface area, it is not preferable because it lowers the volume percent of the fibers after alignment and resin impregnation during pultrusion.

一方20デニールを越えては高強度、高ヤング率の繊維
は得られにくいこと、及び樹脂との接着面積が減少する
ため充分な強度の補強筋が得られないこととなる。
On the other hand, if it exceeds 20 deniers, it will be difficult to obtain fibers with high strength and high Young's modulus, and reinforcing bars with sufficient strength will not be obtained because the adhesive area with the resin will decrease.

また本発明に用いられるPA系合成繊維は、種以上の芳
香族ヒドロキシ酸の、場合によっては芳香族ジオール及
び/又は芳香族二酸との縮合による溶融加工可能な芳香
族ポリエステルであって、存在する各成分の少くとも一
個の芳香環が重合体主鎖に寄与しているという意味にお
いて全芳香族と称される全芳香族ポリエステルであって
、異方性溶融相を形成しうるいわゆるサーモトロピック
液晶性全芳香族ポリエステルである。
Furthermore, the PA-based synthetic fiber used in the present invention is an aromatic polyester that can be melt-processed by condensation of one or more aromatic hydroxy acids, optionally with an aromatic diol and/or an aromatic diacid; It is a wholly aromatic polyester, which is called wholly aromatic in the sense that at least one aromatic ring of each component contributes to the polymer main chain, and is a so-called thermotropic polyester that can form an anisotropic melt phase. It is a liquid crystalline wholly aromatic polyester.

これらの全芳香族ポリエステルのうち、ヒドロキシ安息
香酸、特にp−ヒドロキシ安息香酸と6=ヒドロキシ−
2−ナフトエ酸とのポリエステル、又更にこれらにp、
p−ビスフェノールを第3成分として共重合させたポリ
エステルの他、p−ヒドロキシ安息香酸、p、p′−ビ
フェニール、テレフタール酸及び/又はイソフタル酸か
ら成るポリエステルか有用であるが、それらに限定され
るしのではなく、本発明の目的を阻害しない限りにおい
て、他の成分のポリマーへの導入を妨げるものではない
Among these wholly aromatic polyesters, hydroxybenzoic acid, especially p-hydroxybenzoic acid and 6=hydroxy-
Polyesters with 2-naphthoic acid, and also p,
In addition to polyesters copolymerized with p-bisphenol as the third component, polyesters consisting of p-hydroxybenzoic acid, p, p'-biphenyl, terephthalic acid and/or isophthalic acid are useful, but are limited thereto. However, this does not preclude the introduction of other components into the polymer as long as they do not impede the purpose of the present invention.

一般的にこれらのFA系合成繊維は290℃空気中で2
4時間熱処理を行うと、フィラメントの強度は15g/
dr以上、伸度6%以下、ヤング率400g/dr以上
となる。
Generally, these FA-based synthetic fibers are heated at 290°C in air.
After 4 hours of heat treatment, the strength of the filament is 15g/
dr or more, elongation of 6% or less, and Young's modulus of 400 g/dr or more.

特に単量体としてp−ヒドロキシ安密、香酸と6.2−
ヒドロキシナフトエ酸の共重合体を主成分としたしのは
前述と同様の熱処理によって強度は20g/dr以上、
伸度4%以下、ヤング率500g/drとなる。このF
A系合成繊維に関しては織変1〜3000デニールが好
ましく、この範囲内が高強度及び高ヤング率の繊維を製
造する好適条件であるうえに、繊維の表面積を大きくと
ることにより樹脂との接着力を高める上で好ましい。表
面積の点からは1デニ一ル未満の細デニールの方がより
好ましいらのの、紡糸条件に問題があり、更に引抜き成
型時の繊維の引き揃え及び樹脂含浸後の繊維の体積%を
低下させ好ましくない。一方3000デニールを越えて
は高強虻、高ヤング率の繊維は得られにくいこと、及び
樹脂との接着面積が減少するため充分な補強筋又は抗張
材が得られない。
In particular, monomers such as p-hydroxyamino acid, fragrant acid and 6.2-
Shino, which is mainly composed of a copolymer of hydroxynaphthoic acid, has a strength of 20 g/dr or more by the same heat treatment as described above.
The elongation is 4% or less and the Young's modulus is 500 g/dr. This F
For A-based synthetic fibers, a weaving change of 1 to 3,000 deniers is preferable, and this range is a suitable condition for producing fibers with high strength and high Young's modulus.In addition, by increasing the surface area of the fibers, the adhesive strength with the resin is improved. It is preferable to increase the Although a fine denier of less than 1 denier is more preferable from the viewpoint of surface area, there are problems with the spinning conditions, and furthermore, the fiber alignment during pultrusion and the volume percentage of the fiber after resin impregnation are reduced. Undesirable. On the other hand, if it exceeds 3000 denier, it is difficult to obtain fibers with high tenacity and high Young's modulus, and the adhesion area with the resin decreases, making it impossible to obtain sufficient reinforcing bars or tensile material.

熱硬化性樹脂は種々選択することができるが、セメント
コンクリート用に用いる補強筋はセメントアルカリ中で
使用するものであるから、接着剤がアルカリ劣化したり
、繊維との接着界面で剥離するものは使用できない@ さらに繊維を集束した時の集束体としての力を充分に発
揮できる点で、熱硬化性樹脂が用いられ、なかでもグリ
コール類、ポリオール類にエピクロルヒドリンを反応し
て得られるポリグリシンルエーテル化合物、又はアルコ
ール類やフェノール類から得られるモノグリシツルエー
テル化合物、ビスフェノールA系の不飽和ポリエステル
系樹脂、ビスフェノールAとエピクロルヒドリンから縮
合反応で得られるエボキン系樹脂などが好適である。
A variety of thermosetting resins can be selected, but reinforcing bars used for cement concrete are used in cement alkali, so those that cause the adhesive to deteriorate with alkali or peel off at the adhesive interface with fibers should not be used. Cannot be used @ In addition, thermosetting resins are used because they can fully exert the power as a bundle when fibers are bundled, and among them, polyglycine ether compounds obtained by reacting glycols and polyols with epichlorohydrin. or monoglycyl ether compounds obtained from alcohols and phenols, bisphenol A-based unsaturated polyester resins, and evoquin resins obtained from bisphenol A and epichlorohydrin through a condensation reaction.

これら樹脂は接着性が特に優れており、セメントアルカ
リ液中での劣化もなく、PVA系繊維及びPA系繊維と
の接着力の低下しみられない。
These resins have particularly excellent adhesive properties, do not deteriorate in cement alkaline solution, and do not show any decrease in adhesive strength with PVA-based fibers and PA-based fibers.

またビニルエステル系及びビスフェノール系のビニルエ
ステル樹脂、メラミン−ホルマリン系、フェノール系、
尿素系等の熱硬化性樹脂も用いることができろ。
In addition, vinyl ester resins and bisphenol-based vinyl ester resins, melamine-formalin-based, phenol-based,
Thermosetting resins such as urea-based resins may also be used.

樹脂中のw&推金含有体積、60%以上であらねばなら
ず、その理由は、補強材として繊維の力を発揮すること
が可能なのは連続繊維を用いた複合間より、マトリック
ス成分である樹脂が少ない方が複合材の引張り強度、ヤ
ング率は高まることは明らかである。本発明において複
合材における繊維の占める体積が60%以上でないと繊
維の強力、ヤング率等の機械的性能が低下してしまい意
味がない。また引抜き成形においては繊維が引抜きノズ
ル内を通過する時空気のだき込みをおさえ、かつ潤滑に
成型するためには樹脂は多い方が好ましいにもかかわら
ず複合体の機械的性質を満足するためには40%以下の
樹脂量にする必要がある。
The volume of w & thrust metal contained in the resin must be 60% or more, and the reason is that the strength of the fibers as a reinforcing material can be exerted when the resin as a matrix component is more effective than in composites using continuous fibers. It is clear that the smaller the amount, the higher the tensile strength and Young's modulus of the composite material. In the present invention, if the volume occupied by the fibers in the composite material is not 60% or more, the mechanical properties such as the strength and Young's modulus of the fibers will deteriorate, which is meaningless. In addition, in pultrusion molding, it is preferable to use a large amount of resin in order to suppress air entrapment when the fibers pass through the pultrusion nozzle and to mold the fibers with lubricity. The amount of resin must be 40% or less.

引抜き成形法によって得られる棒状物の断面形状は正方
形、矩形がよい。これは格子状にg織した時格子状交差
点での接着面積が多くなり、交点強度が得やすいためで
あるが、円形、偏平形などであってもよい。
The cross-sectional shape of the rod-shaped article obtained by the pultrusion method is preferably square or rectangular. This is because when g-woven in a lattice shape, the bonding area at the intersections of the lattice increases, making it easier to obtain strength at the intersections, but it may also be circular, flat, etc.

またこの棒状物の表面はセメント等の付着強度を高める
ために必要に応じ異形鉄筋と同様に棒状表面に突起物を
設けてもよい。突起物を付与する方法としては、成型棒
状体成型時の全繊度の1〜5%のデニールの太さの糸条
を用い、異形性を高めるために1m当り50〜200回
の撚を付与したPVA系合成繊維、アラミド系合成繊維
、ボリアリレート系合成繊維よりなる撚糸に引抜き成型
時に用いた尉指を含浸しf二ものを、引抜き成型後の棒
状物に軸線方向に対し40〜50°の角度をもって斜め
ふしをつけるように2本のコードで巻きつけ熱処理して
接合する方法により異型棒状体を得ることができる。巻
き付はピッチは斜めふし間隔と呼ばれ、ふしの平均間隔
を棒状態の直径で割った値が06〜0.8が好ましく、
最も好ましくは0.7程度である。棒状体中の繊維のト
ータルデニールとしては20,000〜2.800.0
00デニールが一般的である。
In addition, protrusions may be provided on the surface of this rod-like object, if necessary, in the same way as deformed reinforcing bars, in order to increase the adhesion strength of cement or the like. As a method for imparting protrusions, a yarn having a denier thickness of 1 to 5% of the total fineness at the time of molding the rod-shaped body was used, and twists were applied at 50 to 200 twists per meter to increase the deformability. Twisted yarns made of PVA synthetic fibers, aramid synthetic fibers, and polyarylate synthetic fibers were impregnated with the index finger used during pultrusion molding, and then pultruded into a rod-shaped object at an angle of 40 to 50 degrees with respect to the axial direction. An irregularly shaped rod-shaped body can be obtained by winding two cords so as to form a diagonal seam at an angle, heat-treating the cords, and joining them together. The winding pitch is called the diagonal stitch spacing, and the value obtained by dividing the average spacing of the stitches by the diameter of the bar is preferably 06 to 0.8.
Most preferably it is about 0.7. The total denier of the fibers in the rod-shaped body is 20,000 to 2.800.0
00 denier is common.

格子状を構成する経緯に用いる本発明の棒状体は連続状
の巻き物として用いることもできるし、所定の長さに切
断した直線状のものであってもよい。その棒状物の線径
は、巻物とするためには円柑当直径が5+m以下までで
ある。それ以上の太さでは直線状で供給する・。
The rod-shaped body of the present invention used for constructing a lattice shape can be used as a continuous scroll, or it can be a straight-shaped body cut into a predetermined length. The wire diameter of the rod-like material must be 5+m or less per round diameter in order to make it into a scroll. If the thickness is larger than that, it will be supplied in a straight line.

緯糸に相当する棒状物を織み込むために経糸は折り曲げ
加工を施した方が格子状への成形性かよいが線径が細い
場合は必要に応じて実施する。
It is better to bend the warp threads in order to weave rod-shaped objects corresponding to the weft threads into a lattice shape, but if the wire diameter is small, this may be done as necessary.

緯糸に相当する棒状物を織み込むために直線状でもよい
し必要に応し折り曲げ加工をしてらよい。
In order to weave rod-like objects corresponding to wefts, it may be straight or may be bent if necessary.

該る方式にて平織と同様に織み立てて格子状物とする。It is woven in the same manner as plain weave to form a lattice-like object.

格子状物の格子間隔はセメントモルタル等の水硬化性物
質のスラリーが格子間に良好に流入するために2〜20
cmがよい。好ましくは3〜15cmである。
The lattice spacing of the lattice-like material is 2 to 20 to allow the slurry of a hydraulic material such as cement mortar to flow well between the lattices.
cm is better. Preferably it is 3 to 15 cm.

織り立てした格子状物の棒状物の交点は格子形態を保持
すること。セメント硬化体との付着強度を保持すること
のために強固に固着していることが必要である。固着は
繊惟秋物や針金、固着治具などを用いて固定してもよい
。また常、fX便化性の樹脂である不飽和ポリエステル
樹脂、(ビニルエステル系、ビスフェノール系)を用い
てもよいし、エボキノ樹脂、アクリル樹脂、尿素系、ン
アノアクリレート系樹脂等を用いることもできる。
The intersection points of the rod-like objects of the woven grid-like object must maintain the grid form. It is necessary to firmly adhere to the cement hardened body in order to maintain adhesive strength. The fixing may be done using a textile, wire, a fixing jig, or the like. In addition, unsaturated polyester resins (vinyl ester type, bisphenol type), which are usually fX-facilitated resins, may be used, and evoquino resins, acrylic resins, urea type resins, phosphoric acid resins, etc. may also be used. can.

また熱可塑性樹脂でホットメルトタイプは1をl−を用
いることらでき、ビニル系樹脂、オレフィン系樹脂、ア
クリル系樹脂なども用いることができ、それらはエラス
トマーの性能を有するらのであってらよい。
Further, hot melt type thermoplastic resins can be used with 1-1, and vinyl resins, olefin resins, acrylic resins, etc. can also be used, as long as they have the performance of an elastomer.

本発明の対象とする水硬性硬化物とは、水を添加するこ
とにより硬化する無機物の総称であって、代表側として
はセメントや石膏が挙げられる。
The hydraulically cured material to which the present invention is applied is a general term for inorganic materials that harden by adding water, and representative examples thereof include cement and gypsum.

〈作 用〉 本発明の格子状補強材は、セメントモルタル及びコンク
リート等の鉄筋代替材料として優れた機械的性能、耐久
性、施工性、安全性、加工性、経済性を宵しており、平
面状補強部材として利用することができる。特に土木建
築用の現場施工用材料、工場生産用材料として用いるこ
とができる。
<Function> The lattice reinforcement material of the present invention has excellent mechanical performance, durability, workability, safety, workability, and economic efficiency as a reinforcing material for cement mortar, concrete, etc. It can be used as a reinforcing member. In particular, it can be used as an on-site construction material for civil engineering and construction, and as a material for factory production.

リニヤモーターカー等に用いる場合、非磁性、非導電性
の補強部材として有効であり、軽量コンクリートを用い
る平板状の建築材料の配筋部材として利用することがで
きる。
When used in linear motor cars, etc., it is effective as a non-magnetic, non-conductive reinforcing member, and can be used as a reinforcing member for flat building materials using lightweight concrete.

また発錆がなく、補強性能に優れ、耐衝撃性を向上させ
る。さらに部材の切断作業性ら簡便であるため加工性も
優れる。
It also does not rust, has excellent reinforcing performance, and improves impact resistance. Furthermore, since the workability of cutting the member is simple, the workability is also excellent.

以下実施例で説明する。This will be explained below using examples.

実施例! 重合度4500、ケン化度99.9モル%のP V A
 IS液から湿式紡糸することにより、単繊維繊度1,
8デニール、引張り強度18.5g/dr、伸度35%
、ヤング率460g/drの1800デニール+000
フイラメントノPVA繊維を得た。該繊維140チーズ
を張力制御装置付クリールに取りつけ全デニールを25
2000デニールとし、エボキン樹脂(油性シェルエボ
キン社製エピコート828)含浸槽内にトウが乱れない
ように回転デイツプロール中に注意深<導入した。
Example! PVA with a degree of polymerization of 4500 and a degree of saponification of 99.9 mol%
By wet spinning from IS liquid, single fiber fineness of 1,
8 denier, tensile strength 18.5g/dr, elongation 35%
, Young's modulus 460g/dr 1800 denier +000
A filamentous PVA fiber was obtained. The 140-fiber cheese was attached to a creel with a tension control device to reduce the total denier to 25.
The tow was carefully introduced into a rotating date roll so as not to disturb the tow in the impregnating bath with Evokin resin (Epicoat 828, manufactured by Shell Evokin Co., Ltd.).

樹脂の付着率は体積率で30%となるように絞り、繊維
の体積%は70%であった。引抜き成型ノズル−辺が5
.3mmの正方形のものを用いた。樹脂の硬化温度を1
80℃とし毎分3mで成形を行った。更に加熱硬化後の
引抜きロール速度はデイツプロールの0.7%増であっ
た。棒状物の引張り強力の測定はインストロンTT  
CMを用い試長30cmてストレーンゲーノを試料には
りつけて行った。
The adhesion rate of the resin was reduced to 30% by volume, and the volume% of the fibers was 70%. Pultrusion molding nozzle - 5 sides
.. A 3 mm square piece was used. The curing temperature of the resin is 1
Molding was carried out at 80° C. and at a speed of 3 m/min. Furthermore, the drawing roll speed after heat curing was 0.7% higher than that of the date roll. Instron TT is used to measure the tensile strength of rod-shaped objects.
A strainer with a test length of 30 cm was attached to the sample using CM.

更に同上の繊維を3600デニールに集束し、120回
/mの撚りをかけたものを同上の樹脂に含浸しながら軸
方向に45°と135°の方向に斜めに巻き付け180
℃の空気中で3分間熱処理を行い、表面に突起をつけた
棒状物を得た。
Further, the above fibers were bundled to 3,600 deniers and twisted at 120 turns/m, then impregnated with the above resin and wound diagonally at 45° and 135° in the axial direction for 180°.
Heat treatment was performed for 3 minutes in air at ℃ to obtain a rod-shaped object with protrusions on the surface.

実施例2 p−ヒドロキン安息香酸と6−ヒドロキシ−2−ナフト
エ酸との共重合体からなる溶融液晶ポリマーを用い、溶
融紡糸して紡糸原糸1500dr/300 fを得た。
Example 2 A molten liquid crystal polymer consisting of a copolymer of p-hydroquine benzoic acid and 6-hydroxy-2-naphthoic acid was melt-spun to obtain a spun yarn of 1500 dr/300 f.

更に290℃で24時間空気中で熱処理を行い15QO
d/3QOfの熱処理系を得た。その単繊維デニールは
5デニール、引張り強度24.3g/dr、伸度3.4
%、ヤング率600g/drであった。
Further heat treatment was performed in air at 290°C for 24 hours to obtain 15QO.
A heat treatment system of d/3QOf was obtained. Its single fiber denier is 5 denier, tensile strength is 24.3g/dr, and elongation is 3.4.
%, Young's modulus was 600 g/dr.

該る繊維160チーズを張力制御装置付クリールに取り
つけ全デニールを240000デニールとしエポキシ樹
脂(油性シェルエポキシ社製エピコート828)含浸槽
内にトウが乱れないように回転デイツプロール中に注意
深く導入した。樹脂の付着率は30%となるように絞り
、繊維の体積%は70%であった。引抜き成型ノズル−
辺が5.31の正方形のものを用いた。樹脂の硬化温度
は180℃とし、毎分3mで成形を行った。更に加熱硬
化後の引抜きロールはデイツプロールの0.7%の速度
差をつける引抜き張力であった。
The 160-fiber cheese was attached to a creel with a tension control device, and the total denier was adjusted to 240,000 denier, and the cheese was carefully introduced into a rotating date roll so as not to disturb the tow in an epoxy resin (Epicoat 828 manufactured by Oil-based Shell Epoxy Co., Ltd.) impregnation bath. The adhesion rate of the resin was reduced to 30%, and the volume percent of the fibers was 70%. Pultrusion molding nozzle
A square piece with sides of 5.31 was used. The curing temperature of the resin was 180° C., and molding was performed at 3 m/min. Furthermore, the drawing roll after heat curing had a drawing tension that gave a speed difference of 0.7% compared to the date roll.

棒状物の引張り強力等は実施例1と同一方法により行な
い、その結果を表−1に示した。更に棒状物には同上の
繊維を3000デニールとし120回/mの撚りをかけ
たものを同上の樹脂に含浸し、実施例1と同一方法で表
面に突起をつけた。
The tensile strength and other properties of the rod-like material were tested in the same manner as in Example 1, and the results are shown in Table 1. Furthermore, the rod-shaped article was impregnated with the same resin using the same fibers of 3000 denier and twisted at 120 turns/m, and protrusions were formed on the surface in the same manner as in Example 1.

強   度  kg/am”     128    
   165ヤング率 kg/11116000   
 8800実施例3.4 実施例1.2で得た棒状物を各々経、緯が5cI+1間
隔となるように格子状に平織で織り立て経糸用に18本
折り目をあらかじめつけた棒状物をセットし緯糸用には
ストレートのまま一本一本打ち込んで長さ180cm、
巾90cmの格子状物を各々得た。交点は常温硬化用エ
ポキシ樹脂で接着した。各々の格子状物は据りで容易に
切断することができた。各々の総重量は3300g (
実施例3)と32[10g(実施例4)で、人の手で容
易に運搬することができるものであった。
Strength kg/am” 128
165 Young's modulus kg/11116000
8800 Example 3.4 The rods obtained in Example 1.2 were woven in plain weave in a lattice pattern so that the warp and weft were at intervals of 5cI+1.The rods were set with 18 creases pre-prepared for the warp. For the weft threads, one by one, straight, are driven to a length of 180 cm.
Each grid was obtained with a width of 90 cm. The intersections were glued together using epoxy resin that cures at room temperature. Each grid-like object could be easily cut on a stand. The total weight of each is 3300g (
Example 3) and 32[10 g (Example 4), which could be easily transported by hand.

比較のためにSD6の異形鉄筋を同様の方法で行ったが
、鉄筋がかたく格子状物は織れなかった。
For comparison, a similar method was applied to SD6 deformed reinforcing bars, but the reinforcing bars were hard and a lattice-like object could not be woven.

実施例5,6,7.8及び比較例1,2,3.4セメン
トマトリツクスに補強筋として実施例!。
Examples 5, 6, 7.8 and Comparative Examples 1, 2, 3.4 Examples as reinforcing bars in cement matrix! .

2で作製した異型筋を用いて格子状物とした実施例3.
4のものを用いて補強効果を調べた。また比較のため、
比較例1として市販のSD6異型筋を用い、5CIm間
隔に溶接したものを用い、配筋率0゜56%として補強
効果を調べた。また配筋しないプレーンのものを比較例
2.4とした。
Example 3. A lattice-like object was made using the atypical muscle prepared in 2.
The reinforcing effect was investigated using No. 4. Also, for comparison,
As Comparative Example 1, commercially available SD6 deformed reinforcing bars were welded at intervals of 5 CIm, and the reinforcing effect was investigated at a reinforcing bar arrangement ratio of 0°56%. In addition, comparative example 2.4 was a plain one without reinforcement.

実施例5.6、比較例1.2に用いたセメントモルタル
配合は早強セメント(アサノ早強セメント)100重潰
部(以下全て重量部)、珪砂<FIL硅砂珪砂5号)3
00部、砂利(岡山旭川51粒径以下)、150部を計
量しオムニミキサーにてドライミックス1分間実施後、
水52部、減水剤(花王マイティ150) 2.5部添
加し、2分間混合してモルタルを得た。
The cement mortar composition used in Example 5.6 and Comparative Example 1.2 was 100 parts crushed early strength cement (Asano early strength cement) (all parts by weight hereinafter), silica sand < FIL silica sand silica sand No. 5) 3
00 parts, gravel (Okayama Asahikawa 51 particle size or less), 150 parts were weighed and dry mixed in an omni mixer for 1 minute, then
52 parts of water and 2.5 parts of a water reducing agent (Kao Mighty 150) were added and mixed for 2 minutes to obtain a mortar.

実、施例7.8、比較例3.4に用いた軽量セメントモ
ルタルの配合は早強セメント(アサノ早強セメント)1
00部、微粉パーライト(宇部1型)10部、膨張材(
電気化学工業社デンカCS A # 20)を加えオム
ニミキサーにて1分間ドライミックスし、起泡剤(ハマ
ノ工業社製フォーミックスC2)3部、減水剤1部を加
えオムニミキサーにて2分間混合しモルタルを得た。こ
のプレーンモルタルを比較例4とした。
In fact, the composition of the lightweight cement mortar used in Example 7.8 and Comparative Example 3.4 was early strength cement (Asano early strength cement) 1
00 parts, fine powder pearlite (Ube 1 type) 10 parts, expanding agent (
Add Denka Kagaku Kogyo Co., Ltd. Denka CS A #20) and dry mix for 1 minute using an omni mixer. Add 3 parts of a foaming agent (formix C2 manufactured by Hamano Kogyo Co., Ltd.) and 1 part of a water reducing agent and mix for 2 minutes using an omni mixer. and got mortar. This plain mortar was designated as Comparative Example 4.

成型は厚さIOX長さ40X巾40cmの型枠を用い、
かぶり厚土がlc■となるように配置した。配筋しない
ものは同一大きさへの型わくそのままを用いた。
For molding, a mold with a thickness of IOX, a length of 40 cm and a width of 40 cm was used.
The soil was placed so that the cover thickness was lc■. For those without reinforcement, the molded frames of the same size were used as they were.

実施例5.6、比較例1.2のセメントモルタル及び実
l]11例7.8、比較例3.4の軽量セメントモルタ
ルを流し込み成型を行った。
Cement mortar of Example 5.6 and Comparative Example 1.2 and Example 1] The lightweight cement mortar of Example 7.8 and Comparative Example 3.4 was poured and molded.

養生は、実施例5,6、比較例1.2については室温中
に一昼夜放置硬化後脱型して4週間水中養生を行なった
For curing, Examples 5 and 6 and Comparative Example 1.2 were cured by leaving them at room temperature overnight to harden, then demolding and curing in water for 4 weeks.

実施例7,8、比較例3,4については室温中に一昼夜
放置後脱型してその後気中放置にて4週間養生した。
Examples 7 and 8 and Comparative Examples 3 and 4 were left at room temperature for a day and night, then demolded, and then left in the air for 4 weeks of curing.

測定は島津製万能試験機にて曲げ強度を測定した。スパ
ン長30cmとし、中央載荷方式により最大破壊荷重と
、そのたわみを測定した。曲げ強度は(但し、Pは荷物
、Lはスパン長、bは部材の巾、tは部材り厚さ)より
求めた。それを表−2に示す。           
          以下余白実施例5.6は比較例1
に比べ補強効果もあり、実施例7.8も比較例3に比べ
補強効果が認められる。
The bending strength was measured using a Shimadzu universal testing machine. The span length was set to 30 cm, and the maximum breaking load and its deflection were measured using the center loading method. The bending strength was determined from (where P is the load, L is the span length, b is the width of the member, and t is the thickness of the member). It is shown in Table-2.
The following margin Examples 5 and 6 are Comparative Example 1
There is also a reinforcing effect compared to Comparative Example 3, and Examples 7 and 8 also have a reinforcing effect compared to Comparative Example 3.

実施例7,8、比較例3.4を回転式のガラターで切断
すると、実施例7.8は容易に切断が可能であった。こ
れに比較し比較例3の鉄筋を用いたものは!枚切るのみ
で刃がきれなくなった。
When Examples 7 and 8 and Comparative Example 3.4 were cut with a rotary galater, Example 7.8 could be easily cut. Compared to this, the one using the reinforcing bars of Comparative Example 3! The blade could no longer sharpen after just cutting it.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)引張り強度が15g/dr以上、ヤング率が30
0g/dr以上のポリビニルアルコール系合成繊維又は
全芳香族ポリエステル系合成繊維およびこの繊維を集束
固定している熱硬化性樹脂からなり、かつ該繊維の占め
る割合が60体積%以上である棒状物が格子状に編織さ
れており、そしてその棒状物の交点が固着されているこ
とを特徴とする水硬性物質の補強材。
(1) Tensile strength is 15g/dr or more, Young's modulus is 30
A rod-shaped object consisting of polyvinyl alcohol-based synthetic fiber or fully aromatic polyester-based synthetic fiber of 0 g/dr or more and a thermosetting resin that bundles and fixes the fiber, and in which the proportion of the fiber is 60% by volume or more. A reinforcing material made of a hydraulic material, characterized in that it is knitted in a lattice pattern, and the intersections of the rods are fixed.
JP1082105A 1989-03-31 1989-03-31 Reinforcing material for hydraulic substance Pending JPH02258657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082105A JPH02258657A (en) 1989-03-31 1989-03-31 Reinforcing material for hydraulic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082105A JPH02258657A (en) 1989-03-31 1989-03-31 Reinforcing material for hydraulic substance

Publications (1)

Publication Number Publication Date
JPH02258657A true JPH02258657A (en) 1990-10-19

Family

ID=13765132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082105A Pending JPH02258657A (en) 1989-03-31 1989-03-31 Reinforcing material for hydraulic substance

Country Status (1)

Country Link
JP (1) JPH02258657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063366A1 (en) * 1999-06-21 2000-12-27 Weber et Broutin France Reinforced construction material
US20090286038A1 (en) * 2008-05-15 2009-11-19 Xerox Corporation Precision resistive elements and related manufacturing process
JP2019002094A (en) * 2017-06-16 2019-01-10 武志 衛藤 Fiber bundle fabric for bar arranging material and concrete bar arrangement structure using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063366A1 (en) * 1999-06-21 2000-12-27 Weber et Broutin France Reinforced construction material
US20090286038A1 (en) * 2008-05-15 2009-11-19 Xerox Corporation Precision resistive elements and related manufacturing process
US8349421B2 (en) * 2008-05-15 2013-01-08 Xerox Corporation Precision resistive elements and related manufacturing process
JP2019002094A (en) * 2017-06-16 2019-01-10 武志 衛藤 Fiber bundle fabric for bar arranging material and concrete bar arrangement structure using the same

Similar Documents

Publication Publication Date Title
Das et al. Applications of fiber reinforced polymer composites (FRP) in civil engineering
WO1998010159A1 (en) Optimized geometries of fiber reinforcements of cement, ceramic and polymeric based composites
JPH02258657A (en) Reinforcing material for hydraulic substance
JP2002028922A (en) Repairing/reinforcing material consisting of fiber reinforced resin molded object, method for manufacturing the same, and cementitious structure using repairing/reinforcing material
JP3214648B2 (en) Mesh prepreg for reinforcement, mesh fiber-reinforced plastic and fiber-reinforced cementitious materials
RU82464U1 (en) FITTINGS FROM POLYMERIC COMPOSITE MATERIAL
JP2829762B2 (en) Manufacturing method of reticulated molded body
JP2002194855A (en) Grating-like material, method of manufacturing grating- like material and method of reinforcement
JP2744258B2 (en) Reinforcing material comprising wholly aromatic polyester fiber and method for producing the same
US20040213976A1 (en) Non-metallic reinforcement member for the reinforcement of a structure and process of its manufacture
JPH0343552A (en) Lattice-shaped reinforcing material for hydraulic substance
JPH0343551A (en) Lattice-shaped reinforcing material for hydraulic substance
JP3403988B2 (en) Repair and reinforcement of concrete structures
JPH05302230A (en) Network textile good
JP2002054270A (en) Basic material for reinforcement
JP2002069785A (en) Twisted yarn material
JP2995826B2 (en) Three-dimensional reinforcing material
JP2735293B2 (en) Inorganic moldings reinforced with reticulated moldings
JPH06264560A (en) Concrete structure body and manufacture thereof
JP2003306856A (en) Building material composed of fiber-reinforced plastic
JP2787368B2 (en) Method for producing reticular molded body reinforced inorganic molded body
JP2957587B2 (en) Reinforcement made of high-strength polyvinyl alcohol-based fiber and method for producing the same
JP2766535B2 (en) Reinforcement
WO2022015156A1 (en) A non-metallic reinforcement bar and method of producing thereof
JPH04281999A (en) Lock bolt