JP2735293B2 - Inorganic moldings reinforced with reticulated moldings - Google Patents

Inorganic moldings reinforced with reticulated moldings

Info

Publication number
JP2735293B2
JP2735293B2 JP16252289A JP16252289A JP2735293B2 JP 2735293 B2 JP2735293 B2 JP 2735293B2 JP 16252289 A JP16252289 A JP 16252289A JP 16252289 A JP16252289 A JP 16252289A JP 2735293 B2 JP2735293 B2 JP 2735293B2
Authority
JP
Japan
Prior art keywords
reticulated
fiber
molded article
woven fabric
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16252289A
Other languages
Japanese (ja)
Other versions
JPH0328155A (en
Inventor
隆介 林
好夫 中沢
寛次 山田
伸一 稲場
恭行 神藤
司郎 坪内
弘規 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Nippon Steel Corp
Original Assignee
Kanebo Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Nippon Steel Corp filed Critical Kanebo Ltd
Priority to JP16252289A priority Critical patent/JP2735293B2/en
Publication of JPH0328155A publication Critical patent/JPH0328155A/en
Application granted granted Critical
Publication of JP2735293B2 publication Critical patent/JP2735293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、土木建築分野で用いる構造物、特に屋根、
壁、床、ピット等の板状構造物として使用する繊維強化
無機質板に係わり、補強用繊維のもつ引っ張り強度、弾
性率などの引っ張り特性を損なわずに、マトリックスと
の付着力を向上させ、補強用繊維の引っ張り特性を有効
に発現できる網状成形体を補強材とすることにより、繊
維強化無機質成形体の物性の向上を計ったものである。
The present invention relates to structures used in the field of civil engineering and construction, in particular roofs,
In connection with fiber-reinforced inorganic plates used as plate-like structures such as walls, floors, and pits, the adhesion of the reinforcing fibers to the matrix is improved without impairing the tensile properties such as the tensile strength and elastic modulus of the reinforcing fibers. The physical property of the fiber-reinforced inorganic molded article is measured by using a reticulated molded article capable of effectively exhibiting the tensile properties of fibers for use as a reinforcing material.

従来の技術 従来、繊維強化無機質板について種々の提案がされて
おり、補強材として短繊維をランダムに配向した繊維強
化無機質板、および連続繊維を一方向または二方向に配
向して積層した繊維強化無機質板が知られている(鹿島
建設技術研究所年報第29号、第81〜88頁、および第30
号、第57〜68頁、特開昭59−138647号公報)。
2. Description of the Related Art Conventionally, various proposals have been made for a fiber-reinforced inorganic plate, and as a reinforcing material, a fiber-reinforced inorganic plate in which short fibers are randomly oriented, and a fiber reinforcement in which continuous fibers are oriented in one direction or two directions and laminated. Inorganic plates are known (Kashima Institute of Construction Technology Annual Report No. 29, pp. 81-88, and 30
No. 57-68, JP-A-59-138647).

繊維強化無機質板は、補強材である繊維と結合材であ
る無機質材料間の付着強度が充分でなければ、補強材の
強度に見合った補強効果が得られない。この問題は、高
強度の補強材、または繊維束を用いる場合に特に重要で
ある。すなわち、80kgf/mm2程度の低強度の炭素繊維を
短繊維状のモノフィラメントにして使用する場合には、
繊維の表面積が繊維の断面積に比べて大きいために、引
っ張り応力が付加された際に繊維が破断するまで補強効
果を発揮する。しかし、高強度の繊維または繊維束を使
用する場合には、繊維が抜けて補強用の繊維の本来の引
っ張り特性に見合った補強効果が得られない。
A fiber-reinforced inorganic plate cannot provide a reinforcing effect commensurate with the strength of the reinforcing material unless the bonding strength between the fiber as the reinforcing material and the inorganic material as the binder is sufficient. This problem is particularly important when high strength reinforcements or fiber bundles are used. That is, when used in a carbon fiber of 80 kgf / mm 2 as low strength of short fiber monofilaments,
Since the surface area of the fiber is larger than the cross-sectional area of the fiber, the reinforcing effect is exerted until the fiber breaks when a tensile stress is applied. However, when high-strength fibers or fiber bundles are used, the fibers come off, and a reinforcing effect corresponding to the original tensile properties of the reinforcing fibers cannot be obtained.

これを改善すべく、連続状の高強度繊維を交点拘束力
の強い網状織物、例えば絡み織物となし、樹脂を含浸さ
せ網状成形体となした後、セメントモルタル内に配置し
た物が提案されている(特開昭63−111045号公報、同63
−22636号公報)。しかし、織物の繊維の引っ張り特
性、すなわち引っ張り強度、弾性率等がまだ充分に生か
されていないのが現状である。
In order to improve this, it has been proposed that a continuous high-strength fiber is formed into a net-like woven fabric having a strong intersection-binding force, for example, a tangled woven fabric, a resin-impregnated net-like molded body, and then placed in a cement mortar. (JP-A-63-1111045, 63
-22636). However, at present, the tensile properties of the fibers of the woven fabric, that is, the tensile strength, the elastic modulus, etc., have not been fully utilized.

発明が解決しようとする課題 本発明は、従来の網状織物により強化した繊維強化無
機質成形体の欠点を解消し、補強材の本来の引っ張り特
性がより発揮されるようにした網状成形体で強化した無
機質成形体を提供することを目的とする。
Problem to be Solved by the Invention The present invention solves the drawbacks of the conventional fiber-reinforced inorganic molded article reinforced by a net-like woven fabric, and is reinforced with a net-like molded article so that the original tensile properties of the reinforcing material can be exhibited more. An object is to provide an inorganic molded article.

課題を解決するための手段 本発明者らは、上記の課題を解決すべく鋭意検討した
結果、以下に述べるような特殊な網状織物を使用するこ
とによりそれが達成されることを見い出し、本発明を完
成した。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that it can be achieved by using a special net-like woven fabric as described below. Was completed.

本発明は、網状織物の交点または織物全体を樹脂で固
定した網状成形体を補強材として含有し、無機質硬化材
料をマトリックスとする繊維強化無機質成形体におい
て、補強材となる網状成形体の網状織物の少なくとも緯
糸および/または経糸に使用する糸の撚り数が、上撚り
数0.5〜7ターン/inchの範囲のもろ撚り糸、を使用した
網状織物にすることにより、補強材の引っ張り特性を生
かしつつマトリックスとの付着力を向上させたことを特
徴とする、繊維強化無機質成形体、である。
The present invention relates to a fiber-reinforced inorganic molded article containing, as a reinforcing material, a reticulated molded article in which the intersection of the reticulated textiles or the entire textile is fixed with a resin, and a reticulated molded article serving as a reinforcing material in a fiber-reinforced inorganic molded article having an inorganic cured material as a matrix. By using a woven fabric having at least a twist of 0.5 to 7 turns / inch in the number of twists of the yarn used for at least the weft and / or warp, a matrix is formed while taking advantage of the tensile properties of the reinforcing material. A fiber-reinforced inorganic molded article, characterized in that the adhesion to the fiber-reinforced inorganic molded article is improved.

なお、網状織物としては、からみ機、摸紗織などがあ
るが、からみ機がその代表的なものである。
In addition, as a net-like woven fabric, there are an entangling machine and a mosaic weave, and an entangling machine is a typical example.

すなわち、本発明の繊維強化無機質成形体において
は、繊維の引っ張り特性を損なわない程度に撚りをかけ
た糸を、少なくとも緯糸および/または経糸に使用した
網状織物とし、樹脂で固定した網状成形体を補強材とす
ることにより、補強材のマトリックスに対する付着力を
向上させ、引っ張り特性を充分に発揮させることで、繊
維強化無機質成形体の機械的特性を向上したものであ
る。
That is, in the fiber-reinforced inorganic molded article of the present invention, a thread formed by twisting the fiber to such an extent that the tensile properties of the fiber is not impaired is used as a net-like woven fabric used for at least a weft and / or a warp, and a net-like molded article fixed with a resin is used. By using the reinforcing material, the adhesion of the reinforcing material to the matrix is improved, and the tensile properties are sufficiently exhibited, thereby improving the mechanical properties of the fiber-reinforced inorganic molded article.

以下では、本発明を説明する前に、先ず従来の網状織
物の代表例である絡み織物について説明する。
Hereinafter, before describing the present invention, first, a tangled woven fabric, which is a typical example of a conventional net-like woven fabric, will be described.

従来の絡み織物の織り組織では、第4図(a)に示す
ように、一組の緯糸1、1′が相互に絡み合っている。
また、緯糸3は、第4図(b)に示すように、経糸1、
1′によって長さ方向に力を受け、屈曲(クリンプ)し
ている。従来、繊維強化無機質成形体に使用された網状
成形体は、このような網状織物を樹脂で固定したもので
ある。この成形体単味が負荷を受けた時、繊維は樹脂で
固定されているので、負荷が増大したとき屈曲部分に局
部的な歪と応力集中が起こりやすく、繊維の引っ張り特
性が100%発揮されないうちに屈曲部分で破壊が起こっ
てしまう。
In the weaving structure of the conventional entangled fabric, as shown in FIG. 4 (a), a pair of wefts 1 and 1 'are entangled with each other.
Further, as shown in FIG. 4 (b), the warp 3
1 'receives a force in the length direction and is crimped. Conventionally, a reticulated body used for a fiber-reinforced inorganic molded body is obtained by fixing such a reticulated fabric with a resin. When a load is applied to the molded body alone, the fiber is fixed with resin, so when the load increases, local strain and stress concentration are likely to occur in the bent portion, and the fiber does not exhibit 100% tensile properties. Destruction will occur at the bent part in the meantime.

さらに、この網状成形体を繊維強化無機質成形体に使
用した場合、引っ張り応力を受ける位置に配筋した網状
成形体が張力を分担するが、屈曲のある網状成形体に張
力4を加えると、張力の増加とともに第4図(c)の矢
印5の方向に力が作用し、網状成形体とマトリックスと
の界面を壊そうとする働きが生ずる。すなわち、耐食性
が優れた、炭素繊維、アラミド繊維などは、鉄筋に比べ
てモルタルのかぶり厚さを小さくできるという長所があ
るが、屈曲部分をもった網状成形体に対し引っ張り応力
が増大するにつれ、モルタルが剥離してしまい、網状成
形体の定着力が低下し、ひいては、繊維の引っ張り特性
を充分に発揮しないうちに繊維強化無機質成形体は、破
壊してしまう。
Further, when this reticulated molded product is used for a fiber-reinforced inorganic molded product, the reticulated molded product arranged at the position receiving the tensile stress shares the tension. With the increase of the force, a force acts in the direction of arrow 5 in FIG. 4 (c), and a function to break the interface between the reticulated body and the matrix occurs. In other words, carbon fiber, aramid fiber, etc., which have excellent corrosion resistance, have the advantage that the cover thickness of the mortar can be reduced as compared with rebar, but as the tensile stress increases with respect to the reticulated molded body having a bent portion, The mortar peels off, and the fixing power of the reticulated molded product is reduced. As a result, the fiber-reinforced inorganic molded product is destroyed before the fiber exhibits sufficient tensile properties.

一方、本発明における網状成形体を、緯糸に使用する
糸の撚り数が、上撚り数0.5〜7ターン/inchの範囲のも
ろ撚り糸、を使用した網状織物の場合について第1図
(a)、第1図(b)に示す。
On the other hand, FIG. 1 (a) shows a case of a net-like woven fabric using a reticulated yarn in which the number of twists of yarn used for the weft is 0.5 to 7 turns / inch. It is shown in FIG.

さらに、経糸および緯糸に、上撚り数0.5〜7ターン/
inchの範囲のもろ撚り糸、を使用した網状織物の場合に
ついて第2図(a)、第2図(b)に示す。
Furthermore, the warp and the weft have a twist of 0.5 to 7 turns /
FIGS. 2 (a) and 2 (b) show the case of a net-like woven fabric using a stranded yarn in the inch range.

この場合の網状成形体の経糸は、剛性の異なる高剛性
経糸1と低剛性経糸2の二種以上の糸条からなり、緯糸
には、高剛性緯撚糸条3から構成されている。
In this case, the warp of the reticulated molded body is composed of two or more kinds of yarns of high rigidity warp 1 and low rigidity warp 2 having different rigidities, and the weft is composed of a high rigidity weft twisted yarn 3.

従来の網状織物のように無撚糸の繊維束を用いると経
糸により挟み込まれて繊維束の断面が偏平になり、屈曲
部分を持った網状成形体となるが、撚糸の繊維束を用い
ると織成後でも繊維束の断面が偏平になることなく丸く
なり、繊維束自身に剛性を付与でき屈曲部分を低減さ
せ、さらに撚糸を用いることにより繊維束に引っ張り張
力を作用させた場合、繊維束自身は締まる傾向にあり、
無撚糸の場合とは異なり、マトリックスとの界面を破壊
するどころか、物理的付着力を向上させた網状成形体が
得られる。
When a non-twisted fiber bundle is used as in a conventional net-like woven fabric, the cross-section of the fiber bundle is sandwiched by warps and the cross-section of the fiber bundle becomes flat, resulting in a net-shaped molded body having a bent portion. Even afterwards, the cross section of the fiber bundle is rounded without flattening, the rigidity can be given to the fiber bundle itself, the bent part is reduced, and if the fiber bundle itself is subjected to a tensile tension by using a twisted yarn, the fiber bundle itself becomes Tend to tighten,
Unlike the case of the non-twisted yarn, a reticulated molded body with improved physical adhesion is obtained, instead of destroying the interface with the matrix.

次に、撚糸の上撚り数について第3図(a)、第3図
(b)で説明する。
Next, the number of twists of the twisted yarn will be described with reference to FIGS. 3 (a) and 3 (b).

ここでは、引っ張り強度が約280[kgf/mm2]、引っ張
り弾性率が約20[tonf/mm2]の炭素繊維3,000本(以下3
kと略す)の無撚糸を二本用いて、双撚糸を作製後、樹
脂を含浸し引っ張り試験用スティック、および付着試験
用スティックを準備した。
Here, 3,000 carbon fibers having a tensile strength of about 280 [kgf / mm 2 ] and a tensile elasticity of about 20 [tonf / mm 2 ] (hereinafter 3
Using two non-twisted yarns (abbreviated as k), a twin-twisted yarn was prepared, and then impregnated with resin to prepare a stick for a tensile test and a stick for an adhesion test.

引っ張り試験は、JIS R 7061「炭素繊維試験法」に準
じ測定した。また、付着試験は、JCI−SF8「繊維の付着
試験方法」に準じ第3図(a)に示す様な試験片(引き
抜け側の埋め込み長さ:10mm、スティック4本)を準備
し、測定を行った。付着強度は、単位長さ当りの荷重値
で示した。測定の結果を、第3図(b)に示す。この双
撚糸の場合では、引っ張り強度(■印)、弾性率(●
印)が3ターン/inch以上では著しい物性の低下が観察
された。
The tensile test was measured according to JIS R 7061 "Carbon fiber test method". For the adhesion test, a test piece (embedded length on the pull-out side: 10 mm, 4 sticks) as shown in Fig. 3 (a) was prepared and measured according to JCI-SF8 "Fiber adhesion test method". Was done. The adhesion strength was indicated by a load value per unit length. The result of the measurement is shown in FIG. In the case of this twin-twisted yarn, the tensile strength (■ mark) and the elastic modulus (●
(Mark) is 3 turns / inch or more, a remarkable decrease in physical properties was observed.

一方、付着強度(▲印)については、3ターン/inch
以上でマトリックスの剪断破壊によりスティックが引き
抜けている。
On the other hand, the adhesion strength (▲) was 3 turns / inch
Thus, the stick has been pulled out due to the shear fracture of the matrix.

すなわち、3ターン/inch以上では、マトリックスと
スティックの間の界面破壊による耐衝撃性(破壊エネル
ギー)が小さくなってくる。
That is, at 3 turns / inch or more, impact resistance (breaking energy) due to interfacial fracture between the matrix and the stick decreases.

従って、上撚り例示として上記の炭素繊維の双撚糸の
場合を例に挙げたが、使用される繊維、繊維束数、繊維
強化無機質成形体の使用される部材、目的によって異な
るが、上撚り数が0.5〜7ターン/inchの範囲、好ましく
は、1〜4ターン/inchの範囲のものがバランスのとれ
たものである。
Therefore, the case of the above-mentioned twin-twisted yarn of carbon fiber is given as an example of the ply twist, but the number of ply twists varies depending on the fiber used, the number of fiber bundles, the member used for the fiber-reinforced inorganic molded article, and the purpose. Is in the range of 0.5 to 7 turns / inch, preferably in the range of 1 to 4 turns / inch.

網状成形体に用いる高剛性糸条は高強度であることが
必要であり、例えば、高強度炭素繊維、アラミド繊維、
耐アルカリガラス繊維、高強力ビニロン繊維などが挙げ
られる。
The high-rigidity yarn used for the reticulated molded body needs to have high strength, for example, high-strength carbon fiber, aramid fiber,
Examples include alkali-resistant glass fibers and high-strength vinylon fibers.

さらに、上述の炭素繊維、アラミド繊維、耐アルカリ
ガラス繊維、高強力ビニロン繊維などのフィラメント
数、ならびに、ストランド数については、すなわち、も
ろ撚り糸の断面としては、第3図(c)に示す様な断面
構造が挙げられる。しかし、断面直径の限界としては、
織機の能力、すなわち、織物のみみ部分を裁断するこ
と、および、糸の通るガイド部などの仕様によって決ま
るものであるが、繊維強化無機質成形体の使用される部
材、目的によって織機の仕様を変えれば良いことであ
る。
Further, the number of filaments and the number of strands of the above-mentioned carbon fiber, aramid fiber, alkali-resistant glass fiber, high-strength vinylon fiber, and the like, that is, the cross section of the stranded yarn are as shown in FIG. 3 (c). Cross-sectional structure. However, the limit of the cross-sectional diameter is
It depends on the capacity of the loom, that is, the cutting of the woven portion of the fabric, and the specifications of the guide section through which the yarn passes.However, the specifications of the loom can be changed depending on the member used and the purpose of the fiber-reinforced inorganic molded body. That is good.

網状織物の織り密度は一般に粗い。例えば、無機質材
料マトリックスとして骨材入りセメントを用いる場合に
は、骨材の粒径(2〜25mm)が網状成形体中を通過でき
ることを考慮して開口を3〜50mm好ましくは3〜30mm程
度の間隔とすることが望ましい。
The weave density of reticulated fabrics is generally coarse. For example, when an aggregate-containing cement is used as the inorganic material matrix, the opening is set to 3 to 50 mm, preferably about 3 to 30 mm in consideration of the fact that the particle size of the aggregate (2 to 25 mm) can pass through the reticulated molded body. It is desirable to set the interval.

網状織物を固定するための樹脂は、適当な手段、例え
ば、浸漬、スプレー法などによって織物に含浸される。
公知のプリプレグ製造装置を用いることが好ましい。樹
脂としては、熱硬化型の樹脂が好ましく、具体的には、
エポキシ樹脂、ウレタン樹脂、フェノール樹脂、ポリイ
ミド樹脂などがあげられる。マトリックスとして用いる
無機質材料の成分にセメントが存在する場合は、アルカ
リ性に対して長期間の耐久性を持つものが好ましく、さ
らに、180℃×5時間程度のオートクレーブ養生を施し
ても強度低下が少ないものが好ましい。含浸した樹脂
は、熱硬化処理を行うが、これは織物の形態を保持する
ために行うものであるから、少なくとも樹脂が流動しな
い、いわゆるCステージ状態とすることが必要であり、
必ずしも完全硬化は必要ではない。しかし、製品の安定
上、できるだけ硬化が進んでいる方が好ましい。
The resin for fixing the net-like woven fabric is impregnated into the woven fabric by an appropriate means, for example, dipping, spraying or the like.
It is preferable to use a known prepreg manufacturing apparatus. As the resin, a thermosetting resin is preferable, and specifically,
Epoxy resin, urethane resin, phenol resin, polyimide resin and the like can be mentioned. When a cement is present as a component of the inorganic material used as the matrix, it is preferable that the cement has long-term durability against alkalinity, and furthermore, the strength is less reduced even after autoclaving at about 180 ° C. for about 5 hours. Is preferred. The impregnated resin is subjected to a thermosetting treatment, but since this is performed to maintain the form of the woven fabric, it is necessary that at least the resin does not flow, that is, a so-called C stage state,
Complete curing is not necessary. However, from the viewpoint of product stability, it is preferable that the curing has progressed as much as possible.

本発明でマトリックスを構成するために用いる無機質
硬化材料としては、ポルトランドセメント、高炉セメン
トなどの通常のセメント類、石灰質と珪酸質よりなる珪
酸カルシウム系化合物、石膏(半水石膏、無水石膏な
ど)、高炉スラグおよびスラグ粉砕物と石膏の混合物な
どの水砕スラグ系水硬性材料などの各種バインダーと水
に、必要に応じて天然または人工の骨材(粒径:2〜25m
m)および混和剤、混和材を混練して得られるものが例
示される。
As the inorganic hardening material used to constitute the matrix in the present invention, Portland cement, ordinary cements such as blast furnace cement, calcium silicate-based compounds composed of calcareous and siliceous, gypsum (semihydrate gypsum, anhydrous gypsum and the like), Blast furnace slag and various binders such as granulated slag-based hydraulic material such as a mixture of slag crushed slag and gypsum, and water, if necessary, natural or artificial aggregate (particle size: 2 to 25m)
m), an admixture, and a mixture obtained by kneading the admixture.

上述のようにして得られた網状織物を、製品である無
機質成形体の引っ張り応力のかかる位置に配筋し、マト
リックス材料を流し込み、硬化させて繊維強化無機質成
形体が得られる。成形体製品の目標とする強度に応じ
て、使用する高剛性繊維の種類、強度、弾性率、フィラ
メント数、ストランド数などを決めれば良い。本発明の
成形体としては、表面近傍に網状成形体を埋め込んだ板
状物品が特に好ましい。
The reticulated woven fabric obtained as described above is arranged at a position where a tensile stress is applied to the inorganic molded article as a product, and a matrix material is poured and cured to obtain a fiber-reinforced inorganic molded article. The type, the strength, the elastic modulus, the number of filaments, the number of strands, and the like of the high-rigidity fibers to be used may be determined according to the target strength of the molded product. As the molded article of the present invention, a plate-like article in which a net-like molded article is embedded near the surface is particularly preferable.

本発明の繊維強化無機質成形体のように、繊維の引っ
張り特性を損なわない程度に撚りをかけた糸を、少なく
とも緯糸および/または経糸に使用した網状織物とし、
樹脂で固定した網状成形体を補強材とすることにより、
補強剤のマトリックスに対する付着力を向上させ、引っ
張り特性を充分に発揮させることで、繊維強化無機質成
形体の機械的物性が向上するのである。
As in the case of the fiber-reinforced inorganic molded article of the present invention, a twisted yarn that does not impair the tensile properties of the fiber is used as a net-like woven fabric used at least for the weft and / or the warp,
By using a reticulated molded body fixed with resin as a reinforcing material,
By improving the adhesion of the reinforcing agent to the matrix and sufficiently exhibiting the tensile properties, the mechanical properties of the fiber-reinforced inorganic molded body are improved.

実施例 実施例1 高剛性繊維として、引っ張り強度が約380[kgf/m
m2]、引っ張り弾性率が約20[tonf/mm2]の炭素繊維6,
000本(以下6kと略す)を二本用いて、上撚り数が2タ
ーン/inchの双撚糸を作製後、織り密度が経糸、緯糸と
ともに3.3本/25mmの条件で、第1図(a)および(b)
に示す組織の網状織物を作製した。この織物に下記処方
のエポキシ樹脂を含浸させ、150℃×15分間で乾燥硬化
させた。樹脂の量は、硬化成形体重量に対して約40%で
あった。
Examples Example 1 As a high rigidity fiber, the tensile strength is about 380 [kgf / m].
m 2 ], a carbon fiber with a tensile modulus of about 20 [tonf / mm 2 ]
Using two 2,000 (hereinafter abbreviated as 6k) twin-twisted yarns with a twist of 2 turns / inch, the weaving density is 3.3 yarns / 25mm together with the warp and weft, and FIG. And (b)
A net-like woven fabric having the structure shown in Table 1 was produced. The woven fabric was impregnated with an epoxy resin having the following formulation, and dried and cured at 150 ° C. for 15 minutes. The amount of the resin was about 40% based on the weight of the cured molded body.

ビスフェノールA型エポキシ樹脂 (GY−260、チバガイギー社製) 100部 ジシアンジアミド 10部 イミダゾール型促進剤 (キュアゾール2P4MHZ、四国化成株式会社製) 2部 溶剤(メチルセロソルブ) 120部 このようにして得られた網状成形体を経糸または緯糸
を2本含み、厚さ10mmの中心位置になるようにして、下
記の配合のマトリックス材料を秤量して、混練して得た
マトリックスペーストを、型枠中に流し込んで成形を行
い、第5図に示すような引っ張り試験片(平行部の厚
さ:10mm、長さ:50mm)を準備した。得られた、成形体を
20℃の水中で14日間養生した。
Bisphenol A type epoxy resin (GY-260, manufactured by Ciba Geigy) 100 parts Dicyandiamide 10 parts Imidazole type accelerator (Curesol 2P4MHZ, manufactured by Shikoku Kasei Co., Ltd.) 2 parts Solvent (methyl cellosolve) 120 parts Net obtained in this manner The molded body contains two warps or wefts, and the matrix material having the following composition is weighed so as to be at the center position of 10 mm in thickness, and the matrix paste obtained by kneading is poured into a mold and molded. Was carried out to prepare a tensile test piece (parallel portion thickness: 10 mm, length: 50 mm) as shown in FIG. The obtained molded body is
Cured in water at 20 ° C for 14 days.

マトリックス配合: 普通ポルトランドセメント 100重量部 8号珪砂 50重量部 水 50重量部 引っ張り試験は、載荷速度0.5mm/min、変位計は、平
行部分に20mmのパイ型変位計を装着して行った。
Matrix composition: Normal Portland cement 100 parts by weight No. 8 silica sand 50 parts by weight Water 50 parts by weight In the tensile test, the loading speed was 0.5 mm / min, and the displacement meter was a 20 mm pie type displacement meter attached to the parallel part.

さらに、比較のために、第4図(a)に示すような網
状織物を上記と同様にして、引っ張り試験片を作製し引
っ張り試験を行った。
Further, for comparison, a tensile test piece was prepared from a mesh fabric as shown in FIG. 4 (a) in the same manner as described above, and a tensile test was performed.

引っ張り試験で得られた荷重〜変位曲線を第6図
(a)および(b)に示す。図中の4つの曲線11、12、
13および14は、下記に対応する。
The load-displacement curves obtained in the tensile test are shown in FIGS. 6 (a) and 6 (b). The four curves 11, 12,
13 and 14 correspond to:

11・・・本発明の網状織物で経糸を引っ張り方向とした
もの 12・・・本発明の網状織物で緯糸を引っ張り方向とした
もの 13・・・従来の網状織物で経糸を引っ張り方向としたも
の 14・・・従来の網状織物で緯糸を引っ張り方向としたも
の これより、本発明の網状織物を補強材とした繊維強化
無機質成形体は、経糸方向(11)または緯糸方向(12)
を引っ張り方向にしたいずれの場合においても従来の網
状織物を補強材とした成形体(13、14)に比べ、網状成
形体とマトリックス間で層間剥離破壊を生ずることな
く、繊維の引っ張り特性を充分に発揮し、高い引っ張り
強度を示した。
11: The mesh fabric of the present invention in which the warp is in the pulling direction 12: The mesh fabric of the present invention in which the weft is in the pulling direction 13: The conventional mesh fabric having the warp in the pulling direction 14 ··································································· The fiber-reinforced inorganic molded article using the reticulated fabric of the present invention in the warp direction (11) or weft direction (12)
In any case where the tension is set in the tensile direction, the fiber has sufficient tensile properties without delamination failure between the mesh and the matrix, compared to the molded body (13, 14) using the conventional mesh fabric as a reinforcing material. And exhibited high tensile strength.

一方、第2図(a)、(b)および(c)に示す本発
明に従う網状織物を補強材とした場合においても、実施
例1と同様に、網状成形体とマトリックス間で層間剥離
破壊を生ずることなく、繊維の引っ張り特性を充分に発
揮し、高い引っ張り強度を示した。
On the other hand, in the case where the reticulated woven fabric according to the present invention shown in FIGS. 2 (a), (b) and (c) is used as a reinforcing material, delamination destruction between the reticulated molded body and the matrix is performed in the same manner as in Example 1. The fiber exhibited the tensile properties sufficiently and exhibited high tensile strength without occurrence.

さらに、双撚糸の場合に限らず、3本以上のもろ撚り
糸を用いた網状成形体を補強材とした場合においても、
実施例1と同様に、網状成形体とマトリックス間で層間
剥離破壊を生ずることなく、用いた繊維の引っ張り特性
を充分に発揮し、高い引っ張り強度を示した。
Furthermore, not only in the case of the twin twisted yarn, even when the reinforcing material is a net-shaped molded body using three or more brittle yarns,
As in Example 1, the fibers used sufficiently exhibited the tensile properties and exhibited high tensile strength without causing delamination between the reticulated body and the matrix.

発明の効果 繊維の引っ張り特性を損なわない程度に撚りをかけた
糸を使用した網状織物を樹脂で固定した網状成形体を補
強材とした、本発明の繊維強化無機質成形体は、補強材
のマトリックスに対する付着力を向上させ、引っ張り特
性を充分に発揮させ、成形体の機械的物性を向上でき
る。
Effect of the Invention The reinforcing material is a net-like molded product obtained by fixing a net-like woven fabric using a yarn twisted to such an extent that the tensile properties of the fibers are not impaired with a resin, and the fiber-reinforced inorganic molded product of the present invention is a matrix of a reinforcing material. To improve the mechanical properties of the molded article.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)、(b)および(c)は、本発明に従う網
状織物の一例の平面図、断面図および網状成形体が引っ
張り応力を受けた場合の力の作用図である。 第2図(a)、(b)および(c)は、本発明に従う網
状織物の一例の平面図、断面図および網状成形体が引っ
張り応力を受けた場合の力の作用図である。 第3図(a)、(b)および(c)は、本発明の上撚糸
数の決定のための試験片の概略図、上撚糸数にともな
う、引っ張り強度、弾性率、ならびに撚糸スティックの
セメントマトリックスに対する付着強度を示す図、およ
びもろ撚り糸の断面構造例を示す図である。 第4図(a)、(b)および(c)は、従来の網状織物
の平面図、断面図および網状成形体が引っ張り応力を受
けた場合の力の作用図である。 第5図は、引っ張り試験片の概略図である。 第6図(a)及び(b)は、網状成形体で補強した繊維
強化無機質成形体の引っ張り試験の荷重〜変位曲線図で
ある。 1、1′……高剛性経糸条(第1図)、高剛性経撚糸条
(第2図)、2……低剛性緯糸条、3……高剛性緯撚糸
条(第1、2図)、高剛性緯糸条(第4図)、4……網
状成形体に作用する引っ張り応力、5……網状成形体に
引っ張り応力を作用させた場合に生ずる応力方向、6…
…双撚糸スティック、7……セメントマトリックス、8
……テフロン板、9……本発明ならびに従来の網状織物
を樹脂で固定した網状成形体、11……本発明の網状織物
で経糸を引っ張り方向としたもの、12……本発明の網状
織物で緯糸を引っ張り方向としたもの、13……従来の網
状織物で経糸を引っ張り方向としたもの、14……従来の
網状織物で緯糸を引っ張り方向としたもの。
FIGS. 1 (a), 1 (b) and 1 (c) are a plan view, a cross-sectional view and an action diagram of a force when a reticulated body is subjected to a tensile stress, of an example of a reticulated woven fabric according to the present invention. 2 (a), 2 (b) and 2 (c) are a plan view, a cross-sectional view and an action diagram of a force when a net-like molded body is subjected to a tensile stress, as an example of a net-like woven fabric according to the present invention. FIGS. 3 (a), (b) and (c) are schematic diagrams of test pieces for determining the number of twisted yarns of the present invention, tensile strength, elastic modulus, and cement of twisted sticks according to the number of twisted yarns. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the adhesive strength with respect to a matrix, and a figure which shows the cross-section example of a friable twisted yarn. FIGS. 4 (a), (b) and (c) are a plan view and a sectional view of a conventional net-like woven fabric, and an action diagram of a force when the net-like molded body receives a tensile stress. FIG. 5 is a schematic view of a tensile test piece. FIGS. 6 (a) and (b) are load-displacement curves in a tensile test of a fiber-reinforced inorganic molded article reinforced with a net-like molded article. 1, 1 '... high rigidity warp yarn (Fig. 1), high rigidity warp yarn (Fig. 2), 2 ... low rigidity weft yarn, 3 ... high rigidity weft yarn (Figs. 1 and 2) , A high-stiffness weft thread (Fig. 4), 4 ... a tensile stress acting on the reticulated body, 5 ... a stress direction generated when a tensile stress is applied to the reticulated body, 6 ...
... twin twist stick, 7 ... cement matrix, 8
...... Teflon plate, 9 ...... Reticulated molded article of the present invention and conventional reticulated woven fabric fixed with resin, 11 ...... Reticulated woven fabric of the present invention with warp pulled in direction, 12 ...... Reticulated woven fabric of the present invention 13: a conventional mesh-like woven fabric having a warp in a pulling direction, 14: a conventional mesh-like woven fabric having a weft in a pulling direction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 寛次 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (72)発明者 稲場 伸一 群馬県邑楽郡大泉町上小泉1548番地109 号 (72)発明者 神藤 恭行 群馬県邑楽郡大泉町吉田1820番地 (72)発明者 坪内 司郎 群馬県邑楽郡大泉町吉田2343番地 (72)発明者 長沼 弘規 埼玉県浦和市北浦和5丁目15番地39号 819 (56)参考文献 特開 平2−243546(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kanji Yamada 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture New Technology Research Institute No. 1 (72) Inventor Shinichi Inaba 1548 Kamikoizumi, Oizumi-cho, Okura-gun, Gunma Prefecture No. 109 (72) Inventor Yasuyuki Shinto 1820 Yoshida, Oizumi-cho, Euraku-gun, Gunma Prefecture (72) Inventor Shiro 2343, Yoshida, Oizumi-cho, Ouraku-gun, Gunma Prefecture (72) Inventor Hironori Naganuma 5-chome Kitaurawa, Urawa City, Saitama Prefecture 15 No. 39, No. 819 (56) Reference JP-A-2-243546 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】網状織物を樹脂で固定した網状成形体を補
強材として含有し、無機質硬化材料をマトリックスとす
る網状成形体で強化した無機質成形体において、網状織
物の緯糸および/または経糸に使用するもろ撚り糸の撚
り数が、上撚り数0.5〜7ターン/inchの範囲内のもので
あることを特徴とする、網状成形体で強化した無機質成
形体。
An inorganic molded article containing a reticulated molded article in which a reticulated woven fabric is fixed with a resin as a reinforcing material and reinforced with a reticulated molded article having an inorganic cured material as a matrix, used for the weft and / or warp of the reticulated woven fabric. An inorganic molded article reinforced with a net-like molded article, characterized in that the number of twists of the pliable yarn is in the range of 0.5 to 7 turns / inch.
【請求項2】網状織物を構成する糸の一部もしくは全部
が、炭素繊維、アラミド繊維、耐アルカリガラス繊維、
高強力ビニロン繊維のうち少なくとも一種からなること
を特徴とする請求項1記載の網状成形体で強化した無機
質成形体。
2. A method according to claim 2, wherein a part or all of the yarns constituting the net-like woven fabric are carbon fibers, aramid fibers, alkali-resistant glass fibers,
The inorganic molded article reinforced by the reticulated molded article according to claim 1, wherein the inorganic molded article is made of at least one of high-strength vinylon fibers.
JP16252289A 1989-06-27 1989-06-27 Inorganic moldings reinforced with reticulated moldings Expired - Fee Related JP2735293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16252289A JP2735293B2 (en) 1989-06-27 1989-06-27 Inorganic moldings reinforced with reticulated moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16252289A JP2735293B2 (en) 1989-06-27 1989-06-27 Inorganic moldings reinforced with reticulated moldings

Publications (2)

Publication Number Publication Date
JPH0328155A JPH0328155A (en) 1991-02-06
JP2735293B2 true JP2735293B2 (en) 1998-04-02

Family

ID=15756223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16252289A Expired - Fee Related JP2735293B2 (en) 1989-06-27 1989-06-27 Inorganic moldings reinforced with reticulated moldings

Country Status (1)

Country Link
JP (1) JP2735293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803857B1 (en) * 2000-01-19 2002-05-24 Jean Alphonse David FILAMENT FRAME IN COMPOSITE MATERIAL AND THERMOSETTING RESIN AND MANUFACTURING TECHNIQUE

Also Published As

Publication number Publication date
JPH0328155A (en) 1991-02-06

Similar Documents

Publication Publication Date Title
JP3286270B2 (en) Reinforcement mesh fabric and method of material reinforcement
Ianăşi Properties and applicability of some composite materials
US4810552A (en) Tension chord made of hydraulically setting masses
JP2735293B2 (en) Inorganic moldings reinforced with reticulated moldings
JP2002028922A (en) Repairing/reinforcing material consisting of fiber reinforced resin molded object, method for manufacturing the same, and cementitious structure using repairing/reinforcing material
JPH04216749A (en) Netted molded product
Jo et al. Evaluation of mechanical properties and flexural behavior of FRCM system composed of different types of textile grid and AL powder
JP3214648B2 (en) Mesh prepreg for reinforcement, mesh fiber-reinforced plastic and fiber-reinforced cementitious materials
JP2002194855A (en) Grating-like material, method of manufacturing grating- like material and method of reinforcement
JP7219147B2 (en) cement reinforcement
Ghernouti et al. Effectiveness of hybrid and partially confined concrete subjected to axial compressive loading using CFRP and GFRP composite materials
JPS63197751A (en) Carbon fiber reinforced inorganic board
JPH02243547A (en) Net-like molded product
Konczalski et al. Tensile properties of Portland cement reinforced with Kevlar fibers
JPH0566842B2 (en)
JP2829762B2 (en) Manufacturing method of reticulated molded body
JP3403988B2 (en) Repair and reinforcement of concrete structures
JP2787368B2 (en) Method for producing reticular molded body reinforced inorganic molded body
FI76544C (en) ARK SAMT FOERFARANDE FOER DESS FRAMSTAELLNING.
KR20060013620A (en) Concrete composition reinforced by fabric coated with thermoset resin and preparation method thereof
JP2002194640A (en) Reinforcing mesh fabric and method for reinforcing material
JPH084284Y2 (en) Concrete structure
JP2002069785A (en) Twisted yarn material
JPH0455139B2 (en)
Teymouri et al. Special nylon fabric as a new material for reinforcing cement composite

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees