JPH0328155A - Inorganic molded material reinforced with net-like molded material - Google Patents

Inorganic molded material reinforced with net-like molded material

Info

Publication number
JPH0328155A
JPH0328155A JP16252289A JP16252289A JPH0328155A JP H0328155 A JPH0328155 A JP H0328155A JP 16252289 A JP16252289 A JP 16252289A JP 16252289 A JP16252289 A JP 16252289A JP H0328155 A JPH0328155 A JP H0328155A
Authority
JP
Japan
Prior art keywords
net
fiber
fabric
inorganic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16252289A
Other languages
Japanese (ja)
Other versions
JP2735293B2 (en
Inventor
Ryusuke Hayashi
隆介 林
Yoshio Nakazawa
中沢 好夫
Kanji Yamada
寛次 山田
Shinichi Inaba
稲場 伸一
Yasuyuki Shindo
恭行 神藤
Shiro Tsubouchi
司郎 坪内
Hironori Naganuma
長沼 弘規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Nippon Steel Corp
Original Assignee
Kanebo Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Nippon Steel Corp filed Critical Kanebo Ltd
Priority to JP16252289A priority Critical patent/JP2735293B2/en
Publication of JPH0328155A publication Critical patent/JPH0328155A/en
Application granted granted Critical
Publication of JP2735293B2 publication Critical patent/JP2735293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain an inorganic molded material made to exhibit inherent tensile properties of reinforcing material by using specific net-like woven fabric fixed with resin as reinforcing material and inorganic curing material as matrix. CONSTITUTION:Following net-like woven fabric is used in an inorganic molded material reinforced with net-like molded material composed of net-like woven fabric fixed with resin as reinforcing material and inorganic curing material as matrix. Namely, twist number of plied yarn used as weft and/or warp in the net-like woven fabric is in a range of 0.5-7 turn/inch ply twist number. Highly rigid strand used in the net-like molded material necessarily has high strength and, e.g. high strength carbon fiber, aramid fiber, alkali-resistant glass fiber or high strength vinylon fiber is exemplified. The netlike woven fabric is impregnated in resin for fixing said fabric by, e.g. dipping or spraying method. Prepreg manufacturing equipment is preferably used.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、土木建築分野で用いる構造物、特に屋根,壁
、床、ビット等の板状構造物として使用する繊維強化無
機質板に係わり,補強用繊維のもつ引っ張り強度、弾性
率などの引っ張り特性を損なわずに、マトリックスとの
付着力を向上させ,補強用m雑の引っ張り特性を有効に
発現できる網状成形体を補強材とすることにより、繊維
強化無機質成形体の物性の向上を計ったものである.従
来の技術 従来、繊維強化無機質板について種々の提案がされてお
り.補強材として短繊維をランダムに配向したJl雑強
化無機質板,および連続繊維を一方向または二方向に配
向して積層した繊維強化無機質板が知られている(鹿島
建設技術研究所年報第29号、第81〜88頁、および
第30号、第57〜B8頁、特開昭59−138847
号公報). 繊維強化無機質板は、補強材である繊錐と結合材である
S機買材料間の付着強度が充分でなげれば、補強材の強
度に見合った補強効果が得られない.この問題は、高強
度の補強材、または繊維束な用いる場合に特に重要であ
る.すなわち、80kgf/關2程度の低強度の炭素繊
雑を短繊維状のモノフィラメントにして使用する場合に
は.amの表面積が1a維の断面積に比べて大きいため
に、引っ張り応力が付加された際に繊維が破断するまで
補強効果を発揮する.しかし,高強度の繊維または繊維
束を使用する場合には、繊維が抜けて補強用のw!雑の
本来の引っ張り特性に見合った補強効果が得られない. これを改善すべく、連続状の高強度繊維を交点拘束力の
強い網状織物、例えば絡み織物となし、樹脂を含浸させ
網状成形体となした後,セメントモルタル内に配置した
物が提案されている(特開昭83−111045号公報
、同83−22838号公報).シかし,織物の繊維の
引っ張り特性,すなわち引っ張り強度,弾性率等がまだ
充分に生かされていないのが現状である. 発明が解決しようとする課題 本発明は、従来の網状織物により強化した繊維強化無機
質成形体の欠点を解消し、補強材の本来の引っ張り特性
がより発揮されるようにした網状成形体で強化した無機
質成形体を提供することを目的とする. 課題を解決するための手段 本発明者らは,上記の課題を解決すべく鋭意検討した結
果、以下に述べるような特殊な網状織物を使用すること
によりそれが達威されることを見い出し,本発明を完成
した。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to fiber-reinforced inorganic plates used for structures used in the field of civil engineering and construction, particularly plate structures such as roofs, walls, floors, bits, etc. By using a reticular molded body as a reinforcing material, which can improve the adhesion force with the matrix and effectively exhibit the tensile properties of reinforcement materials without impairing the tensile properties such as the tensile strength and elastic modulus of the fibers. This is aimed at improving the physical properties of reinforced inorganic molded bodies. Conventional Technology Various proposals have been made for fiber-reinforced inorganic boards. Jl miscellaneous reinforced inorganic boards with randomly oriented short fibers as reinforcing materials and fiber reinforced inorganic boards with laminated continuous fibers oriented in one or two directions are known (Kajima Construction Technology Institute Annual Report No. 29) , pp. 81-88, and No. 30, pp. 57-B8, JP-A-59-138847
Publication No.). In a fiber-reinforced inorganic board, if the adhesion strength between the reinforcing material, the fiber cone, and the binding material, the S mechanical material, is insufficient, a reinforcing effect commensurate with the strength of the reinforcing material cannot be obtained. This problem is particularly important when using high-strength reinforcement or fiber bundles. In other words, when carbon fibers with a low strength of about 80 kgf/2 are used as short monofilaments. Since the surface area of am is larger than the cross-sectional area of 1a fibers, it exerts a reinforcing effect until the fibers break when tensile stress is applied. However, when using high-strength fibers or fiber bundles, the fibers can be pulled out and used for reinforcement! It is not possible to obtain a reinforcing effect commensurate with the original tensile properties of the material. In order to improve this, it has been proposed to make continuous high-strength fibers into a net-like fabric with a strong intersecting force, such as a tangled fabric, impregnated with resin to form a net-like molded product, and then placed in cement mortar. (Japanese Unexamined Patent Publications No. 83-111045 and 83-22838). However, the current situation is that the tensile properties of textile fibers, such as tensile strength and elastic modulus, have not yet been fully utilized. Problems to be Solved by the Invention The present invention solves the drawbacks of conventional fiber-reinforced inorganic molded bodies reinforced with reticular fabrics, and is reinforced with a reticulated molded body that allows the original tensile properties of the reinforcing material to be better exhibited. The purpose is to provide inorganic molded bodies. Means for Solving the Problems As a result of intensive study to solve the above problems, the inventors of the present invention discovered that the above problems could be achieved by using a special reticulated fabric as described below. Completed the invention.

本発明は、網状織物の交点または織物全体を樹脂で固定
した網状戊形体を補強材として含有し,無機質硬化材料
をマトリックスとするam強化無機質成形体において,
補強材となる網状成形体の網状織物の少なくとも緯糸お
よび/または経糸に使用する糸の撚り数が、上撚り数0
.5〜7ターン/inchの範囲のもろ撚り糸,を使用
した網状織物にすることにより,補強材の引っ張り特性
を生かしつつマトリックスとの付着力を向上させたこと
を特徴とする、繊維強化S機質成形体、である. なお、網状織物としては、からみ織、摸紗織などがある
が、からみ織がその代表的なものである. すなわち、本発明の繊維強化無機質成形体においては、
m維の引っ張り特性を損なわない程度に撚りをかけた糸
を,少なくとも緯糸および/または経糸に使用した網状
織物とし,樹脂で固定した網状戒形体を補強材とするこ
とにより,補強材のマトリックスに対する付着力を向上
させ、引っ張り特性を充分に発揮させることで.am強
化S機買成形体の機械的物性を向上したものである.以
下では、本発明を説明する前に、先ず従来の網状織物の
代表例である絡み織物について説明する. 従来の絡み織物の織り組織では,第4図(a)に示すよ
うに、一組の経糸1、1′が相互に絡み合っている.ま
た、緯糸3は%第4図(b)に示すように,経糸1、l
゜によって長さ方向に力を受け,屈曲(クリンプ)して
いる.従来,繊維強化無機質戊形体に使用された網状成
形体は,このような網状織物を樹脂で固定したものであ
る.この戊形体単味が負荷を受けた時、繊雑は樹脂で固
定されているので,負荷が増大したとき屈曲部分に局部
的な歪と応力集中が起こりやすく,繊維の引っ張り特性
が100%発揮されないうちに屈曲部分で破壊が起こっ
てしまう. さらに,この網状成形体をam強化無機質成形体に使用
した場合、引っ張り応力を受ける位置に配筋した網状成
形体が張力を分担するが,屈曲のある網状成形体に張力
4を加えると、張力の増加とともに第4図(C)の矢印
5の方向に力が作用し,網状戊形体とマトリックスとの
界面を壊そうとする働きが生ずる.すなわち、耐食性が
優れた、炭素繊雑、アラミドwAraなどは、鉄筋に比
べてモルタルのかぶり厚さを小さくできるという長所が
あるが,屈曲部分をもった網状成形体に対し引っ張り応
力が増大するにつれ、モルタルが剥離してしまい、網状
成形体の定着力が低下し,ひいては,m雑の引っ張り特
性を充分に発揮しないうちにm!!強化無機質成形体は
、破壊してしまう.一方、本発明における網状戊形体を
、緯糸に使用する糸の撚り数が、上撚り数0.5〜7タ
ーン/inchの範囲のもろ撚り糸、を使用した網状織
物の場合について第1図(a)、第1図(b)に示す.
さらに、経糸および緯糸に、上撚り数0.5〜7ターン
/inchの範囲のもろ撚り糸、を使用した網状織物の
場合について第2図(a),第2図(b)に示す. この場合の網状成形体の経糸は,剛性の異なる高剛性経
糸1と低剛性経糸2の二種以上の糸条からなり、緯糸に
は、高剛性緯撚糸条3から構成されている. 従来の網状織物のように無撚糸の繊雑束を用いると経糸
により挟み込まれて繊維束の断面が偏平になり、屈曲部
分を持った網状成形体となるが.撚糸のs!1束を用い
ると織成後でも繊維束の断面が偏平になることなく丸く
なり,繊維東自身に剛性を付与でき屈曲部分を低減させ
、さらに、撚糸を用いることにより繊維束に引っ張り張
力を作用させた場合、am束自身は締まる傾向にあり、
無撚糸の場合とは異なり,マトリックスとの界面を破壊
するどころか、物理的付着力を向上させた網状成形体が
得られる. 次に、撚糸の上撚り数について第3図(a)、第3図(
b)で説明する. ここでは、引っ張り強度が約280[kgf/am2]
 ,引っ張り弾性率が約20[tonf/am2]の炭
素繊維3,000本(以下3kと略す)の無撚糸を二本
用いて、双撚糸を作製後、樹脂を含浸し引っ張り試験用
スティック、および付着試験用スティックを準備した. 引っ張り試験は, JIS R 7081 r炭素繊維
試験法」に準じ測定した.また、付着試験は, JCI
−SF8  r繊維の付着試験方法」に準じ第3図(a
)に示す様な試験片(引き抜け側の埋め込み長さ=10
ms+, スティック4本)を準備し、測定を行った.
付着強度は,単位長さ当りの荷重値で示した.測定の結
果を,第3図(b)に示す.この双撚糸の場合では,引
っ張り強度(■印)、弾性率(●印)が3ターン/in
ch以上では著しい物性の低下が観察された. 一方,付着強度(▲印)については、3ターン/inc
h以上でマトリックスの剪断破壊によりスティックが引
き抜けている. すなわち、3ターン/inch以上では、マトリックス
とスティックの間の界面破壊による耐衝撃性(破・壊エ
ネルギー)が小さくなってくる.従って、上撚り例示と
して上記の炭素繊維の双撚糸の場合を例に挙げたが,使
用される繊維、繊維束数、#Jm強化saut*形体の
使用される部材、目的によって異なるが、上撚り数が0
.5〜7ターン/inchの範囲、好ましくは、1〜4
ターン/inchの範囲のものがバランスのとれたもの
である. 網状成形体に用いる高剛性糸条は高強度であることが必
要であり、例えば、高強度炭素繊維、アラミド繊維,耐
アルカリガラス繊維、高強力ビニロン#lllnなどが
挙げられる. さらに、上述の炭素繊維、アラミド繊維,耐アルカリガ
ラスmwr、高強力ビニロン繊維などのフィラメント数
、ならびに、ストランド数については、すなわち、もろ
撚り糸の断面としては,第3図(C)に示す様な断面構
造が挙げられる.しかし、断面直径の限界としては、織
機の能力、すなわち、織物のみみ部分を裁断すること、
および,糸の通るガイド部などの仕様によって決まるも
のであるが、繊維強化無機質成形体の使用される部材、
目的によって織機の仕様を変えれば良いことである. 網状織物の織り密度は一般に粗い.例えば,無機質材料
マトリックスとして骨材入りセメントを用いる場合には
、骨材の粒径(2〜25■)が網状成形体中を通過でき
ることを考慮して開口を3〜50mm好ましくは3〜3
0■程度の間隔とすることが望ましい. 網状織物を固定するための樹脂は、適当な手段、例えば
,浸積、スプレー法などによって織物に含浸される.公
知のプリプレグ製造装置を用いることが好ましい.樹脂
としては,熱硬化型の樹脂が好ましく,具体的には、エ
ボキシ樹脂、ウレタン樹脂、フェノール樹脂,ポリイミ
ド樹脂などがあげられる.マトリックスとして用いる無
機質材料の戒分にセメントが存在する場合は、アルカリ
性に対して長期間の耐久性を持つものが好ましく,さら
に、 180℃×5時間程度のオートクレープ養生を施
しても強度低下が少ないものが好ましい.含浸した樹脂
は,熱硬化処理を行うが,これは織物の形態を保持する
ために行うものであるから、少なくとも樹脂が流動しな
い、いわゆるCステージ状態とすることが必要であり、
必ずしも完全硬化は必要ではない.しかし,製品の安定
上、できるだけ硬化が進んでいる方が好ましい.本発明
でマトリックスを構成するために用いる無機質硬化材料
としては、ボルトランドセメント、高炉セメントなどの
通常のセメント類、石灰質と珪酸質よりなる珪酸カルシ
ウム系化合物、石膏(半水石膏,無水石膏など)、高炉
スラグおよびスラグ粉砕物と石膏の混合物などの水砕ス
ラグ系水硬性材料などの各種バインダーと水に、必要に
応じて天然または人工の骨材(粒径:2〜25■)およ
び混和剤、混和材を混練して得られるものが例示される
. 上述のようにして得られた網状織物を、製品である無機
質成形体の引っ張り応力のかかる位置に配筋し、マトリ
ックス材料を流し込み、硬化させてmwi強化無機質成
形体が得られる.成形体製品の目標とする強度に応じて
、使用する高剛性繊雑の種類、強度、弾性率、フィラメ
ント数、ストランド数などを決めれば良い.本発明の成
形体としては、表面近傍に網状戊形体を埋め込んだ板状
物品が特に好ましい. 本発明の繊維強化無機質成形体のように. teraの
引っ張り特性を損なわない程度に撚りをかけた糸を,少
なくとも緯糸および/または経糸に使用した網状織物と
し、樹脂で固定した網状成形体を補強材とすることによ
り、補強剤のマトリックスに対する付着力を向上させ、
引っ張り特性を充分に発揮させることで、繊維強化無機
質成形体の機械的物性が向上するのである. 実施例 実施例1 高剛性繊維として、引っ張り強度が約380 [kgf
/■2】,引っ張り弾性率が約20[tonf/iue
2]の炭素繊維8 ,000本(以下8kと略す)を二
本用いて、上撚り数が2ターン/inchのy.撚糸を
作製後、織り密度が経糸、緯糸ともに3.3木/25m
sの条件で,第1図(a)および(b)に示す組織の網
状織物を作製した.この織物に下記処方のエボキシ樹脂
を含浸させ,150℃X15分間で乾燥硬化させた.樹
脂の量は,硬化成形体重量に対して約40%であった. ビスフェノールA型エポキシ樹脂 (GY−280.チバガイギー社製)100部ジシアン
ジアミド           lO部イミダゾール型
促進剤 (キュアゾール2P4M}12、四国化威株式会社製)
2部 溶剤(メチルセロソルブ)120部 このようにして得られた網状成形体を経糸または緯糸を
2本含み、厚さ10ms+の中心位置になるようにして
、下記の配合のマトリックス材料を秤量して、混練して
得たマトリックスペーストを、型枠中に流し込んで戊形
を行い、第5図に示すような引っ張り試験片(平行部の
厚さ:100、長さ:500)を準備した.得られた、
戊形体を20℃の水中で14日間養生した. マトリックス配合: 普通ボルトランドセメン}     100重量部8号
珪砂            50重量部水     
           50重量部引っ張り試験は,載
荷速度0.5mm/win.変位計は,平行部分に20
mmのパイ型変位計を装着して行った. さらに、比較のために、第4図(a)に示すような網状
織物を上記と同様にして、引っ張り試験片を作製し引っ
張り試験を行った. 引っ張り試験で得られた荷重〜変位曲線を第6図(a)
および(b)に示す.図中の4つの曲線11.l2、l
3およびl4は、下記に対応する.1l・●・本発明の
網状織物で経糸を引っ張り方向としたもの l2・・・本発明の網状織物で緯糸を引っ張り方向とし
たもの 13・・・従来の網状織物で経糸を引っ張り方向とした
もの l4・・●従来の網状織物で緯糸を引っ張り方向とした
もの これより,本発明の網状織物を補強材とした繊維強化無
機質成形体は、経糸方向(1l)または緯糸方向(l2
)を引っ張り方向にしたいずれの場合においても従来の
網状織物を補強材とした戊形体(13,l0に比べ、網
状成形体とマトリックス間で層間剥離破壊を生ずること
なく、繊維の引っ張り特性を充分に発揮し,高い引っ張
り強度を示した.一方、第2図(a) . (b)およ
び(C)に示す本発明に従う網状織物を補強材とした場
合においても,実施例lと同様に,網状成形体とマトリ
ックス間で層間剥離破壊を生ずることなく、繊維の引っ
張り特性を充分に発揮し、高い引っ張り強度を示した. さらに、双撚糸の場合に限らず、3本以上のもろ撚り糸
を用いた網状戊形体を補強材とした場合においても、実
施例lと同様に、網状成形体とマトリックス間で層間剥
離破壊を生ずることなく、用いた繊雑の引っ張り特性を
充分に発揮し、高い引っ張り強度を示した. 発明の効果 繊維の引っ張り特性を損なわない程度に撚りをかけた糸
を使用した網状織物を樹脂で固定した網状成形体を補強
材とした、本発明の繊雑強化無機質成形体は、補強材の
マトリックスに対する付着力を向上させ、引っ張り特性
を充分に発揮させ、成形体の機械的物性を向上できる.
The present invention provides an am-reinforced inorganic molded article which contains as a reinforcing material a net-like hollow body in which the intersection points of the net-like fabric or the entire fabric are fixed with resin, and has an inorganic hardened material as a matrix.
The number of twists of the threads used for at least the weft and/or warp of the reticulated fabric of the reticulated molded body serving as a reinforcing material is 0.
.. Fiber-reinforced S structure characterized by improved adhesion to the matrix while taking advantage of the tensile properties of the reinforcing material by making it into a net-like fabric using 5-7 turns/inch of loosely twisted yarn. It is a molded body. Note that net-like fabrics include karami-ori and musa-ori, with karami-ori being the most representative. That is, in the fiber-reinforced inorganic molded article of the present invention,
By using threads twisted to the extent that the tensile properties of the m-fibers are not impaired as at least the weft and/or warp threads, and using the mesh-like fibers fixed with resin as the reinforcing material, it is possible to By improving adhesion and fully demonstrating tensile properties. The mechanical properties of the am-reinforced S machine-purchased molded product have been improved. In the following, before explaining the present invention, a tangled fabric, which is a typical example of a conventional reticulated fabric, will be explained first. In the weaving structure of conventional entwined fabrics, a pair of warp threads 1 and 1' are intertwined with each other, as shown in Figure 4(a). In addition, the weft 3 is % warp 1, l as shown in Figure 4 (b).
It receives force in the length direction due to ゜ and bends (crimps). The reticulated moldings conventionally used for fiber-reinforced inorganic hollow bodies are made by fixing such reticulated fabrics with resin. When this hollow body is subjected to a load, the fibers are fixed with resin, so when the load increases, local strain and stress concentration tend to occur at the bent part, and the tensile properties of the fibers are fully exploited. Breakage occurs at the bent part before the bending occurs. Furthermore, when this reticulated molded body is used in an am-reinforced inorganic molded body, the tension is shared by the reticulated molded body arranged at the position that receives tensile stress, but when a tension of 4 is applied to the bent reticulated molded body, As the value increases, a force acts in the direction of arrow 5 in Fig. 4(C), creating a force that attempts to break the interface between the reticular rod and the matrix. In other words, materials such as carbon fiber and aramid wAra, which have excellent corrosion resistance, have the advantage that mortar cover thickness can be reduced compared to reinforcing bars, but as tensile stress increases for mesh-like molded bodies with bent parts, , the mortar peels off, the fixing force of the net-like molded body decreases, and as a result, m! ! Reinforced inorganic molded bodies will break. On the other hand, FIG. ), as shown in Figure 1(b).
Further, FIGS. 2(a) and 2(b) show the case of a net-like fabric in which the warp and the weft are made of loosely twisted yarn with the number of twists ranging from 0.5 to 7 turns/inch. The warp of the net-like molded body in this case is composed of two or more types of yarns having different stiffnesses, high-rigidity warp 1 and low-rigidity warp 2, and the weft is composed of high-rigidity weft-twisted yarn 3. When untwisted filigree bundles are used in conventional net-like fabrics, they are sandwiched between the warp yarns, resulting in a flat cross-section of the fiber bundles, resulting in a net-like molded body with bent portions. Twisted thread s! If one bundle is used, the cross section of the fiber bundle will not be flat even after weaving, but will be round, giving rigidity to the fiber itself and reducing bent parts.Furthermore, by using twisted yarn, tension will be applied to the fiber bundle. If it is, the am bundle itself tends to tighten,
Unlike the case of non-twisted yarns, instead of destroying the interface with the matrix, a net-like molded body with improved physical adhesion can be obtained. Next, regarding the number of twists of twisted yarn, Figure 3 (a) and Figure 3 (
This will be explained in b). Here, the tensile strength is approximately 280 [kgf/am2]
, Two untwisted yarns of 3,000 carbon fibers (hereinafter abbreviated as 3k) with a tensile modulus of about 20 [tonf/am2] were used to prepare twin-twisted yarns, which were then impregnated with resin and used as sticks for tensile testing. We prepared sticks for adhesion testing. The tensile test was carried out in accordance with JIS R 7081r Carbon Fiber Test Method. In addition, the adhesion test is conducted by JCI
Figure 3 (a
) as shown in the test piece (embedded length on the pull-out side = 10
ms+, 4 sticks) was prepared and measurements were taken.
Adhesion strength was expressed as a load value per unit length. The measurement results are shown in Figure 3(b). In the case of this double-twisted yarn, the tensile strength (■ mark) and elastic modulus (● mark) are 3 turns/in.
A significant decrease in physical properties was observed above ch. On the other hand, the adhesion strength (▲ mark) is 3 turns/inc.
Above h, the stick is pulled out due to shear failure of the matrix. That is, at 3 turns/inch or more, the impact resistance (fracture/fracture energy) due to interface fracture between the matrix and the stick becomes small. Therefore, as an example of ply-twisting, the case of the carbon fiber double-twisted yarn mentioned above was taken as an example, but ply-twisting may vary depending on the fibers used, the number of fiber bundles, the member used for the #Jm reinforced saut* shape, and the purpose. number is 0
.. Range of 5-7 turns/inch, preferably 1-4
Those in the turn/inch range are well-balanced. The high-rigidity yarn used in the net-like molded body must have high strength, and examples thereof include high-strength carbon fiber, aramid fiber, alkali-resistant glass fiber, and high-strength vinylon #lllln. Furthermore, regarding the number of filaments and the number of strands of the above-mentioned carbon fiber, aramid fiber, alkali-resistant glass MWR, high-strength vinylon fiber, etc., in other words, the cross section of the moly twisted yarn is as shown in Figure 3 (C). One example is the cross-sectional structure. However, the limit of the cross-sectional diameter is the ability of the loom to cut the fabric,
And, although it is determined by the specifications such as the guide part through which the thread passes, members in which the fiber-reinforced inorganic molded body is used,
It is a good idea to change the specifications of the loom depending on the purpose. The weaving density of reticulated fabrics is generally coarse. For example, when cement containing aggregate is used as the inorganic material matrix, the openings should be 3 to 50 mm, preferably 3 to 3 mm, considering that the aggregate particle size (2 to 25 cm) can pass through the reticulated molded body.
It is desirable to set the interval to about 0■. The resin for fixing the reticulated fabric is impregnated into the fabric by any suitable means, such as dipping or spraying. It is preferable to use a known prepreg manufacturing device. As the resin, thermosetting resins are preferred, and specific examples include epoxy resins, urethane resins, phenol resins, and polyimide resins. If cement is included in the inorganic materials used as the matrix, it is preferable that it has long-term durability against alkalinity, and that it will not lose strength even after autoclave curing at 180℃ for about 5 hours. Less is preferable. The impregnated resin is subjected to thermosetting treatment, but since this is done to maintain the form of the fabric, it is necessary to at least put it in a so-called C stage state where the resin does not flow.
Complete curing is not necessarily necessary. However, for the stability of the product, it is preferable that the curing progresses as much as possible. The inorganic hardening materials used to form the matrix in the present invention include ordinary cements such as Boltland cement and blast furnace cement, calcium silicate compounds made of calcareous and silicic acids, and gypsum (gypsum hemihydrate, anhydrite, etc.). , various binders such as granulated slag-based hydraulic materials such as blast furnace slag and a mixture of crushed slag and gypsum, and water, as well as natural or artificial aggregate (particle size: 2 to 25 cm) and admixtures, as necessary. Examples include those obtained by kneading admixtures. The net-like fabric obtained as described above is reinforced at the positions where tensile stress is applied to the inorganic molded product, and a matrix material is poured in and cured to obtain an mwi-reinforced inorganic molded product. Depending on the target strength of the molded product, the type, strength, elastic modulus, number of filaments, number of strands, etc. of the high-rigidity fiber to be used can be determined. As the molded article of the present invention, a plate-like article in which a reticular rod is embedded near the surface is particularly preferable. Like the fiber-reinforced inorganic molded article of the present invention. By using threads twisted to the extent that they do not impair the tensile properties of Tera as at least the weft and/or warp threads, and using the mesh molded body fixed with resin as the reinforcing material, the attachment of the reinforcing agent to the matrix is improved. Improve your wearing strength,
By fully demonstrating the tensile properties, the mechanical properties of fiber-reinforced inorganic molded bodies are improved. Examples Example 1 As a high-rigidity fiber, the tensile strength is approximately 380 [kgf
/■2], the tensile modulus is approximately 20 [tonf/iue
2] using two 8,000 carbon fibers (hereinafter abbreviated as 8k), the number of ply twists is 2 turns/inch. After making the twisted yarn, the weave density is 3.3 wood/25m for both warp and weft.
A reticulated fabric having the structure shown in Figs. 1(a) and (b) was prepared under the conditions of s. This fabric was impregnated with an epoxy resin of the following formulation and dried and cured at 150°C for 15 minutes. The amount of resin was approximately 40% of the weight of the cured molding. Bisphenol A type epoxy resin (GY-280, manufactured by Ciba Geigy) 100 parts dicyandiamide 10 parts Imidazole type accelerator (Curezol 2P4M}12, manufactured by Shikoku Kaei Co., Ltd.)
2 parts Solvent (Methyl Cellosolve) 120 parts The thus obtained net-like molded body was made to contain two warp or weft yarns and centered at a thickness of 10 ms+, and a matrix material having the following composition was weighed. The matrix paste obtained by kneading was poured into a mold and shaped to prepare a tensile test piece (parallel part thickness: 100 mm, length: 500 mm) as shown in Figure 5. obtained,
The rods were cured in water at 20°C for 14 days. Matrix composition: Ordinary Boltland cement} 100 parts by weight No. 8 silica sand 50 parts by weight Water
The 50 weight part tensile test was carried out at a loading speed of 0.5 mm/win. The displacement meter is placed at 20 mm on the parallel part.
A mm pi-shaped displacement gauge was attached. Furthermore, for comparison, a tensile test piece was prepared using a net-like fabric as shown in FIG. 4(a) in the same manner as described above, and a tensile test was conducted. Figure 6(a) shows the load-displacement curve obtained in the tensile test.
and (b). Four curves in the figure 11. l2, l
3 and l4 correspond to the following. 1l・●・A net-like fabric of the present invention with the warp in the pulling direction l2... A net-like fabric of the present invention with the weft in the pulling direction 13... A conventional net-like fabric with the warp in the pulling direction 14...●Conventional net-like fabric with the weft in the tension direction From this, the fiber-reinforced inorganic molded article using the net-like fabric of the present invention as a reinforcing material can be stretched in the warp direction (1l) or the weft direction (l2
) in the tensile direction, compared to the conventional hollow-shaped body (13,10) using a net-like fabric as a reinforcing material, there is no delamination failure between the net-like fabric and the matrix, and the tensile properties of the fibers are sufficiently maintained. On the other hand, when the reticulated fabric according to the present invention shown in Figs. 2(a), (b) and (C) was used as a reinforcing material, as in Example 1, The tensile properties of the fibers were fully exhibited without causing delamination failure between the net-like molded body and the matrix, and high tensile strength was exhibited.Furthermore, not only double-twisted yarns but also three or more moly-twisted yarns were used. Even when the reticulated rod shaped body was used as a reinforcing material, as in Example 1, the tensile properties of the used filament were fully exhibited without causing delamination failure between the reticulated molded body and the matrix, and high tensile strength was achieved. Effects of the Invention The fiber-reinforced inorganic molded article of the present invention uses as a reinforcing material a net-like molded article made by fixing a net-like woven fabric with a resin using threads twisted to an extent that does not impair the tensile properties of the fibers. can improve the adhesion of the reinforcing material to the matrix, fully exhibit its tensile properties, and improve the mechanical properties of the molded product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) . (b)および(c)は、本発明に従
う網状織物の一例の平面図,断面図および網状成形体が
引っ張り応力を受けた場合の力の作用図である. 第2図(a) . (b)および(C)は,本発明に従
う網状織物の一例の平面図,断面図および網状成形体が
引っ張り応力を受けた場合の力の作用図である. 第3図Ca) . (b)および(C)は、本発明の上
撚糸数の決定のための試験片の概略図、上撚糸数にとも
なう、引っ張り強度、弾性率、ならびに撚糸スティック
のセメントマトリックスに対する付着強度を示す図、お
よびもろ撚り糸の断面構造例を示す図である. 第4図(a) . (b)および(C)は、従来の網状
織物の平面図、断面図および網状戊形体が引っ張り応力
を受けた場合の力の作用図である.第5図は、引っ張り
試験片の概略図である.第6図(a)及び(b)は,網
状戒形体で補強した繊維強化無機質成形体の引っ張り試
験の荷重〜変位曲線図である. 1、l゜●・・高剛性経糸条(第1図)、高剛性経撚糸
条(第2図)、2●●◆低剛性緯糸条、3・・・高剛性
緯撚糸条(第1、2図)、高剛性緯糸条(第4図)、4
・・●網状成形体に作用する引っ張り応力、5●●●網
状成形体に引っ張り応力を作用させた場合に生ずる応力
方向、6・・●双撚糸スティック、7●●●セメントマ
トリックス、8●●●テフロン板、9●・・本発明なら
びに従来の網状織物を樹脂で固定した網状成形体、11
●・●本発明の網状織物で経糸を引っ張り方向としたも
の、12●●●木発明の網状織物で緯糸を引っ張り方向
としたもの,13・・・従来の網状織物で経糸を引っ張
り方向としたもの、l4●・●従来の網状織物で緯糸を
引っ張り方向としたもの.
Figure 1(a). (b) and (c) are a plan view and a sectional view of an example of a reticulated fabric according to the present invention, and a force action diagram when the reticulated molded body is subjected to tensile stress. Figure 2(a). (b) and (C) are a plan view and a cross-sectional view of an example of the reticulated fabric according to the present invention, and a force action diagram when the reticulated molded body is subjected to tensile stress. Figure 3 Ca). (b) and (C) are schematic diagrams of test pieces for determining the number of ply-twisted yarns of the present invention; diagrams showing the tensile strength, elastic modulus, and adhesive strength of the twisted yarn stick to the cement matrix as a function of the number of ply-twisted yarns; FIG. Figure 4(a). (b) and (C) are a plan view and a cross-sectional view of a conventional reticulated fabric, and a force action diagram when the reticulated rod body is subjected to tensile stress. Figure 5 is a schematic diagram of a tensile test piece. Figures 6(a) and (b) are load-displacement curve diagrams of a tensile test of a fiber-reinforced inorganic molded body reinforced with a reticular shaped body. 1, l゜●...High rigidity warp yarn (Fig. 1), high rigidity warp twisted yarn (Fig. 2), 2●●◆Low rigidity weft yarn, 3... High rigidity weft twisted yarn (1st, Figure 2), high rigidity weft yarn (Figure 4), 4
...●Tensile stress acting on the net-like molded body, 5●●●Stress direction that occurs when tensile stress is applied to the net-like molded body, 6...●Twin-twisted yarn stick, 7●●●Cement matrix, 8●● ●Teflon plate, 9●... Reticulated molded body made of the present invention and conventional reticulated fabric fixed with resin, 11
●・●Network fabric of the present invention with the warp in the tension direction, 12●●●Network fabric of the wood invention with the weft in the tension direction, 13...Conventional net fabric with the warp in the tension direction 14●・●Conventional net-like fabric with the weft in the direction of tension.

Claims (2)

【特許請求の範囲】[Claims] (1)網状織物を樹脂で固定した網状成形体を補強材と
して含有し、無機質硬化材料をマトリックスとする網状
成形体で強化した無機質成形体において、網状織物の緯
糸および/または経糸に使用するもろ撚り糸の撚り数が
、上撚り数0.5〜7ターン/inchの範囲内のもの
であることを特徴とする、網状成形体で強化した無機質
成形体。
(1) In an inorganic molded article that contains as a reinforcing material a net-like molded article in which a net-like fabric is fixed with a resin, and is reinforced with a net-like molded article that has an inorganic hardened material as a matrix, the material used for the weft and/or warp of the net-like fabric is An inorganic molded body reinforced with a reticular molded body, characterized in that the number of twists of the twisted yarn is within the range of 0.5 to 7 turns/inch.
(2)網状織物を構成する糸の一部もしくは全部が、炭
素繊維、アラミド繊維、耐アルカリガラス繊維、高強力
ビニロン繊維のうち少なくとも一種からなることを特徴
とする請求項1記載の網状成形体で強化した無機質成形
体。
(2) The net-like molded article according to claim 1, wherein a part or all of the threads constituting the net-like fabric are made of at least one of carbon fiber, aramid fiber, alkali-resistant glass fiber, and high-strength vinylon fiber. An inorganic molded body reinforced with
JP16252289A 1989-06-27 1989-06-27 Inorganic moldings reinforced with reticulated moldings Expired - Fee Related JP2735293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16252289A JP2735293B2 (en) 1989-06-27 1989-06-27 Inorganic moldings reinforced with reticulated moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16252289A JP2735293B2 (en) 1989-06-27 1989-06-27 Inorganic moldings reinforced with reticulated moldings

Publications (2)

Publication Number Publication Date
JPH0328155A true JPH0328155A (en) 1991-02-06
JP2735293B2 JP2735293B2 (en) 1998-04-02

Family

ID=15756223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16252289A Expired - Fee Related JP2735293B2 (en) 1989-06-27 1989-06-27 Inorganic moldings reinforced with reticulated moldings

Country Status (1)

Country Link
JP (1) JP2735293B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803857A1 (en) * 2000-01-19 2001-07-20 Jean Alphonse David Construction component for vehicles, woodwork in buildings, poles for aerials, telecommunications, wind turbines, etc., has cable formed from twisted fiber reinforced resin elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803857A1 (en) * 2000-01-19 2001-07-20 Jean Alphonse David Construction component for vehicles, woodwork in buildings, poles for aerials, telecommunications, wind turbines, etc., has cable formed from twisted fiber reinforced resin elements
WO2001053066A1 (en) * 2000-01-19 2001-07-26 Jean Alphonse David Filament frame made of composite material and thermosetting resin and method for making same

Also Published As

Publication number Publication date
JP2735293B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
Cevallos et al. Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites
KR20010049602A (en) Mesh fabric for reinforcement and material reinforcement method
GB1582945A (en) Manufacture of articles made from a water hardenable mass and a reinforcing element
ATE274021T1 (en) TEXTILE AND COMPOSITE MATERIAL WITH IMPROVED RESISTANCE TO CORE COMPRESSION FOR FIBER REINFORCED COMPOSITE MATERIALS
WO2004011736A2 (en) Inorganic matrix-fabric system and method
Ianăşi Properties and applicability of some composite materials
JPH0328155A (en) Inorganic molded material reinforced with net-like molded material
Halvaei Fibers and textiles reinforced cementitious composites
Jo et al. Evaluation of mechanical properties and flexural behavior of FRCM system composed of different types of textile grid and AL powder
JPH04216749A (en) Netted molded product
Orozco et al. Energy release in fiber-reinforced plastic reinforced concrete beams
JPS63197751A (en) Carbon fiber reinforced inorganic board
Kanag et al. Strength properties of coated E-glass fibres in concrete
JPH02243547A (en) Net-like molded product
JPH0566842B2 (en)
JP2829762B2 (en) Manufacturing method of reticulated molded body
Konczalski et al. Tensile properties of Portland cement reinforced with Kevlar fibers
Salimian et al. Investigations on the Reinforcement of Mechanical Properties of Gypsum Composites Containing E-glass Woven Fabrics
Sundari et al. Performance analysis and experimental investigation on mechanical properties of RCC beam with fibre wrapping
JPH084284Y2 (en) Concrete structure
JP2995826B2 (en) Three-dimensional reinforcing material
Barman et al. Textile structures in concrete reinforcement
FI76544C (en) ARK SAMT FOERFARANDE FOER DESS FRAMSTAELLNING.
JPH0455139B2 (en)
JP2787368B2 (en) Method for producing reticular molded body reinforced inorganic molded body

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees