JPH0343551A - Lattice-shaped reinforcing material for hydraulic substance - Google Patents

Lattice-shaped reinforcing material for hydraulic substance

Info

Publication number
JPH0343551A
JPH0343551A JP18003589A JP18003589A JPH0343551A JP H0343551 A JPH0343551 A JP H0343551A JP 18003589 A JP18003589 A JP 18003589A JP 18003589 A JP18003589 A JP 18003589A JP H0343551 A JPH0343551 A JP H0343551A
Authority
JP
Japan
Prior art keywords
fiber
cord
lattice
modulus
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18003589A
Other languages
Japanese (ja)
Inventor
Yoshio Tada
多田 義雄
Masaki Okazaki
正樹 岡崎
Kenji Ohama
大浜 憲司
Sumio Hattori
服部 純雄
Sanpei Matsusake
松酒 三平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Mfg Co Ltd
Kuraray Co Ltd
Original Assignee
Arisawa Mfg Co Ltd
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Mfg Co Ltd, Kuraray Co Ltd filed Critical Arisawa Mfg Co Ltd
Priority to JP18003589A priority Critical patent/JPH0343551A/en
Publication of JPH0343551A publication Critical patent/JPH0343551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Abstract

PURPOSE:To improve the reinforcement and the execution workability by utilizing mechanical performance and toughness (Young's modulus), which are provided in fiber, and knitting the fiber to be woven in a knotless net to form a lattice state while performing impregnation work with resin. CONSTITUTION:A cord is constituted of an organic synthetic fiber filament of PVA or PA system, consisting of single fiber, or of a mixed fiber filament yarn which consists of the organic synthetic fiber filament and a filament of inorganic fiber of glass fiber, steel fiber, alumina fiber, etc. Here a single fiber denier of 0.5 to 25dr with tensile strength 9g/denier(dr) or more and Young's modulus 200g/dr or more is used further with a diameter of the cord in a range of 3 to 10mm. The fiber is knitted and woven to a knotless net of 20 to 200mm as a distance between points of intersection, impregnated with resin and hardened by performing heat treatment.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セメントモルタルやコンクリート等の水硬性
物質に対して自立性のある格子状補強材であって、土木
資材としてはトンネルや法面覆工用補強材として利用で
き、又建築資材としては板材等の補強材として利用でき
る格子状補強材に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a lattice-shaped reinforcing material that is self-supporting against hydraulic substances such as cement mortar and concrete, and is suitable for use as a civil engineering material in tunnels and slopes. The present invention relates to a lattice-shaped reinforcing material that can be used as a reinforcing material for linings, and as a reinforcing material for building materials such as boards.

〈従来技術及び発明が解決しようとする課題〉従来から
土木工事、建築工事又は建築資材には鉄筋が構造材料と
して用いられ、JISG3112や同3117に規定さ
れている。
<Prior Art and Problems to be Solved by the Invention> Reinforcing bars have traditionally been used as structural materials in civil engineering work, building construction work, or building materials, and are stipulated in JIS G3112 and JIS G3117.

鉄筋は性能面、施工面および経済面の面から種々の特長
を有し、大量に使用されている。しかし現状の設計、施
工面では大きな欠点を有するものである。その改善を要
する素材からの欠点を示せば。
Reinforcing bars have various features in terms of performance, construction, and economy, and are used in large quantities. However, there are major drawbacks in terms of current design and construction. If it shows the shortcomings from the material that require improvement.

l2重いことが挙げられる、これは鉄筋自身比重が大き
く、そのため取扱い性に劣ること、更には部材とした場
合、鉄筋は発錆防止の点から一定以上のかぶ夛厚さを必
要とするため部材自身の厚さが厚くなり1部材重量も増
大する。
This is because the reinforcing bars themselves have a high specific gravity, which makes them difficult to handle.Furthermore, when used as parts, reinforcing bars require a certain thickness of cover to prevent rusting, so they cannot be used as parts. The thickness of the material becomes thicker, and the weight of each member also increases.

26  錆が発生すること。微小クラックによる雨水、
塩水の流入や、セメント骨材中の塩分、その地対部磁界
、電界による極部電池の生成などによる鉄筋の錆の生成
による部材の劣化が起こる。
26 Rust may occur. Rainwater due to micro cracks,
Deterioration of members occurs due to the formation of rust on the reinforcing bars due to the inflow of salt water, salt in the cement aggregate, and the generation of batteries at the poles due to the magnetic field and electric field at the ground level.

3、通電性、磁性化がある。3. Has electrical conductivity and magnetization.

また施工性からの欠点を示せば。Also, if you show the drawbacks in terms of construction.

1. 面状施工事における格子状物の配筋はその組立て
に多数の手間がかかり、生産性および施工性に劣る。
1. Reinforcement of lattice-like objects in planar construction takes a lot of effort to assemble, and is inferior in productivity and workability.

2、トンネル内部や法面覆工用に展長する場合地山表面
の凹凸に沿わせるために、鉄筋状のものは沿形性が少な
いため、多大の労力を必要とし、作業性に劣る。
2. When extending for use inside tunnels or for slope lining, reinforcing bars have poor conformability in order to conform to the unevenness of the surface of the ground, requiring a great deal of labor and poor workability.

3、所定以上のかぶり厚さを要するためにその位置決め
をする必要があり、配筋組立てが必要である。
3. Since a cover thickness greater than a predetermined value is required, it is necessary to position it, and reinforcement assembly is required.

4、 配筋及び施工層の鉄筋の切断も容易でなく。4. It is not easy to cut the reinforcing bars in the reinforcement and construction layers.

特殊なカッターや溶断が必要である。Special cutters and fusing are required.

5.7iいことから、作業時の安全性に劣る。5.7i, so safety during work is inferior.

などが挙げられる。Examples include.

一部には、鉄筋以外の素材を用いた格子状物として直線
状のガラス繊機を樹脂で集束した格子状物が市販されて
いる。しかしガラス#R1gといえども重く、取扱い性
は悪い。その上セメント中での耐アルカリ性に問題を残
している。咬たガラス繊維を用いているために格子状物
は剛いためトンネル内面や法面の覆工時の補強材として
用いる時鉄筋の格子状物と同様地山の凹凸に対する沿形
性がなく、施工時の作業も困難である。更にはガラス繊
維は脆いために衝撃性に劣シ、トンネル内面や法面のモ
ルタルの吹付工法による覆工時、その骨材の衝撃力で節
体が破損し、補強材としての用をなさないという欠点も
有している。
Some lattice-like objects made of materials other than reinforcing bars are commercially available, in which straight glass fibers are bundled with resin. However, even though the glass #R1g is heavy, it is difficult to handle. Moreover, there remains a problem in alkali resistance in cement. Since the lattice-like material is made of solid glass fiber, it is rigid, so when used as a reinforcing material for lining the inner surface of tunnels and slopes, it does not conform to the unevenness of the ground like a reinforcing bar lattice-like material, so it is difficult to construct. The work at the time is also difficult. Furthermore, glass fiber is brittle and has poor impact resistance, and when lining the inner surface of a tunnel or slope with mortar spraying, the impact force of the aggregate will damage the joints, making it useless as a reinforcing material. It also has the disadvantage of

く課題を解決するための手段〉 本発明者らは、これら鉄筋やガラス繊維を使用した格子
状物の欠点を解消する技術に関し研究を行なった結果、
 5iuaの有する機械的性能と腰の強さ(ヤング率)
を生かし、それらを無結節網に編織して格子状物となし
、樹脂含浸加工することによう自立性のある補強材とし
ての耐衝撃性、耐曲げ強度を付与し、更に施工面では軽
く、施工性が優れ、吹付工事時でも損傷せず、安全に施
工できるセメントモルタルやコンクリート等の水硬化性
物質用の格子状補強材を見出した。
Means for Solving the Problems> The present inventors have conducted research on techniques to eliminate the drawbacks of grids using reinforcing bars and glass fibers.
Mechanical performance and hip strength (Young's modulus) of 5iua
Taking advantage of this, we knit them into a knotless net to form a lattice-like object, and then impregnated with resin, which gives it impact resistance and bending strength as a self-supporting reinforcing material, and is also light in terms of construction. We have discovered a grid-like reinforcing material for hydraulic materials such as cement mortar and concrete that has excellent workability and can be safely installed without damage during spraying work.

本発明は、9f/dr(drはデニールの略)以上、ヤ
ング率200P/dr以上で、 0.5〜25drの単
繊維デニールよりなるポリビニルアルコール(以下PV
Aと略)系又は全芳香族ポリエステル(以下PAと略)
系、その他ポリエステル系、ポリオレフィン系、ポリア
ミド系、アラミド系等の有機含+1& 111.維から
なるフィラメント、又はこれら有機合成繊維フィラメン
トとガラス繊維、カーボン繊維、アルミナ繊維、スチー
ル繊維等の無機繊維・などのフィラメントからなる混繊
フィラメントヤーン等より構成されたコードからなシ、
そのコードの直径が3〜10fiであり1かつ交点間距
離が20〜200鱈の無結節網および該コード内に含浸
され硬化されたバインダー樹脂よりなる水硬化性物質用
格子状補強材であって、好ましくはその交点を含むコー
ドの引張す強度が20kf/−以上、ヤング率が100
0kf/−以上である水硬性物質用格子状補強材である
The present invention uses polyvinyl alcohol (hereinafter referred to as PV
A) type or fully aromatic polyester (hereinafter abbreviated as PA)
and other organic compounds such as polyester, polyolefin, polyamide, aramid, etc. +1 & 111. A cord consisting of a filament made of fibers, or a mixed filament yarn made of these organic synthetic fiber filaments and filaments of inorganic fibers such as glass fiber, carbon fiber, alumina fiber, steel fiber, etc.
A lattice-like reinforcing material for a hydraulic material comprising a knotless net whose cords have a diameter of 3 to 10 fi and a distance between intersections of 20 to 200 fi, and a binder resin impregnated into the cords and hardened. , preferably the tensile strength of the cord including the intersection point is 20 kf/- or more, and the Young's modulus is 100
This is a lattice-like reinforcing material for hydraulic materials having a resistance of 0 kf/- or more.

本発明補強材の特長を列挙すれば、渣ず補強性の点から
、(1)高強力、高ヤング率の繊維の撚シコードに樹脂
加工しているためセメントとの接着性もよく、高い補強
効果が得られる。(2)無結節網であるため交点強度が
高く、高い補強効果が得られる。(8)格子状に編織さ
れているため2方向への補強効果が得られる。次に施工
性の点から、(1)繊維が耐衝撃性に優れるため吹き付
はコンク17−ト中の骨材による損傷、劣化が生じない
。(2)自立性と沿形性に優れるため取付時の作業性が
よい。(8)軽量であるため、運搬、取付は作業が容易
で、かつ安全に作業ができる。(4)格子状物は自立性
があり、かつ巻物として取り扱えるため運搬が容易で、
かつ収納保管スペースが小さくてよく、無端であるため
つぎ足しの繁雑さが不要である。(5)鋸りやペンチな
どの簡単な切断器具で容易に切断できる。
Listing the features of the reinforcing material of the present invention, from the point of view of reinforcing properties without residue, (1) the twisted cord of fibers with high strength and high Young's modulus is treated with resin, so it has good adhesion with cement and provides high reinforcement; Effects can be obtained. (2) Since it is a knotless network, the intersection strength is high and a high reinforcing effect can be obtained. (8) Since it is woven in a lattice pattern, a reinforcing effect in two directions can be obtained. Next, from the viewpoint of workability, (1) since the fibers have excellent impact resistance, spraying does not cause damage or deterioration due to aggregate in the concrete. (2) Workability during installation is good due to its excellent self-standing and shape-forming properties. (8) Since it is lightweight, transportation and installation are easy and safe. (4) The lattice-like object is self-supporting and can be handled as a scroll, making it easy to transport.
In addition, the storage space is small, and since it is endless, there is no need for complicated additions. (5) It can be easily cut with a simple cutting tool such as a saw or pliers.

等々沢山の施工上の利点がある。さらに経済性の点から
は大量に容易に生産することが可能で安価である。以上
のように、補強性、施工性、安全性、経済性の点で特長
を有するため、水硬性物質の補強材として好適に用いる
ことができる。
There are many construction advantages. Furthermore, from an economic point of view, it can be easily produced in large quantities and is inexpensive. As described above, since it has features in terms of reinforcing properties, workability, safety, and economic efficiency, it can be suitably used as a reinforcing material for hydraulic substances.

本発明に用いられる合成繊維は引張シ強度が9f/dr
以上、ヤング率が2oOr/dr以上であらねばならず
、引張り強度及びヤング率が9y/dr未満、200 
y / d r未満では補強材としての性能を十分発揮
することはできない。本発明に用いられる合成繊維の繊
度は0.5〜25drの範囲であシ、好オしくは1,5
〜15 drである。0,5dr未満ではコード状にし
た時の樹脂の含浸性が悪化し、好1しく々い。一方b2
5drを越えては高強度、高ヤング率の繊維が一般に得
られず、コード強力及び剛性が得られない。
The synthetic fiber used in the present invention has a tensile strength of 9 f/dr.
Above, the Young's modulus must be 2oOr/dr or more, and the tensile strength and Young's modulus must be less than 9y/dr, 200
If the ratio is less than y/d r, the reinforcing material cannot exhibit sufficient performance. The fineness of the synthetic fiber used in the present invention is in the range of 0.5 to 25 dr, preferably 1.5 dr.
~15 dr. If it is less than 0.5 dr, the impregnating property of the resin will deteriorate when it is made into a cord, which is unfavorable. On the other hand b2
If it exceeds 5 dr, fibers with high strength and high Young's modulus cannot generally be obtained, and cord strength and rigidity cannot be obtained.

本発明に用いられる合成繊維のうち、特に好ぜしいのは
PVA系繊維とPA系繊維であるが、このうち特にPV
A系合或繊維は重合度1000〜20000で、ケン化
度98モル多以上のPVAを用いたものが好渣しく、当
然のことながらその繊維の引張り強度は9y/dr以上
、ヤング率200y/lir以上が必要である。より好
さしくは引張す強度が13〜305’/dr 、 ヤン
グ率250〜1000y/drのものである。
Among the synthetic fibers used in the present invention, PVA fibers and PA fibers are particularly preferred.
A-type composite fibers are preferably those using PVA with a degree of polymerization of 1,000 to 20,000 and a degree of saponification of 98 moles or more, and naturally the tensile strength of the fibers is 9 y/dr or more and a Young's modulus of 200 y/dr. lir or higher is required. More preferably, it has a tensile strength of 13 to 305'/dr and a Young's modulus of 250 to 1000 y/dr.

オたPA系合或amは、一種以上の芳香族ヒドロキン酸
の、場合によっては芳香族ジオール及び/又は芳香族二
酸との縮合による溶融加工可能な芳香族ポリエステルで
あって、存在する各成分の少くとも一個の芳香環が重合
体主鎖に寄与しているという意味において全芳香族と称
される全芳香族ポリエステルであって、異方性溶融相を
形成しうるいわゆるサーモトロピック液晶性全芳香族ポ
リエステルからなる繊維である。これらの全芳香族ポリ
エステルのうち、ヒドロキシ安息香酸、特にp−ヒドロ
キシ安息香酸と6−ヒドロキシ−2−ナフトエ酸とのポ
リエステル、又更にこれらにp+T”−ビスフェノール
を第3成分として共重合させたポリエステルの他、p−
ヒドロキシ安息香酸、p、p’−ビフェニール、テレフ
タール酸層ヒ/又ハイソフタル酸から成るポリエステル
からなるm X(Iが特に有用であるが、それらに限定
されるものではなく、本発明の目的を阻害しない限りに
おいて、他の成分のポリマーへの導入を妨げるものでは
ない。
A PA-based compound is an aromatic polyester that can be melt-processed by condensation of one or more aromatic hydroxy acids, optionally with an aromatic diol and/or an aromatic diacid, in which each component present It is a wholly aromatic polyester, which is called wholly aromatic in the sense that at least one aromatic ring of the A fiber made of aromatic polyester. Among these wholly aromatic polyesters, polyesters of hydroxybenzoic acid, especially p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and polyesters copolymerized with p+T''-bisphenol as a third component. Besides, p-
Polyesters consisting of hydroxybenzoic acid, p, p'-biphenyl, terephthalic acid layers and/or high isophthalic acid are particularly useful, but are not limited to This does not preclude the introduction of other components into the polymer unless otherwise specified.

一般的にこれらのPA系合e、繊維は290°C空気中
で24時間熱処理を行うと、フィラメントの強度は15
F/dr以上、伸度6%以下、ヤング率400y/4r
以上のものが得られる。特に単量体としてp−ヒドロキ
シ安息香酸と6.2−ヒドロキシナフトエ酸の共重合体
を主成分としたものは、前述と同様の熱処理によって強
度は20f/llr以上、伸度4%以下、ヤング率50
0f/drという物性を有するため、本発明において好
ましい。
Generally, when these PA fibers are heat treated in air at 290°C for 24 hours, the filament strength is 15%.
F/dr or more, elongation 6% or less, Young's modulus 400y/4r
You can get more than that. In particular, monomers whose main component is a copolymer of p-hydroxybenzoic acid and 6.2-hydroxynaphthoic acid have a strength of 20 f/llr or more, an elongation of 4% or less, and a Young's rate 50
It is preferred in the present invention because it has a physical property of 0f/dr.

その他有機合成繊維として、ポリオレフィン系合成繊維
であるポリエチレン繊維やポリエチレン繊維などが、ま
たポリアミド系合成繊維としてナイロン6、ナイロン6
.6などが、ポリエステル高 系合或繊維として・重合度ポリエステル等の工業用フィ
ラメントが、さらにアラミドとしてケプラーに代表され
るバラ系の全芳香族ポリアミド等が利用できる。本発明
において1合成繊維はフィラメント状であらねばならず
、短IIL維の場合には強度の点で所期の目的が達成で
きない。
Other organic synthetic fibers include polyolefin synthetic fibers such as polyethylene fiber and polyethylene fiber, and polyamide synthetic fibers such as nylon 6 and nylon 6.
.. 6 and the like can be used as polyester-based synthetic fibers, industrial filaments such as polymerized polyester, and rose-based wholly aromatic polyamides represented by Kepler can be used as aramids. In the present invention, one synthetic fiber must be in the form of a filament, and short IIL fibers cannot achieve the desired purpose in terms of strength.

無41!繊維の代表例としては、まずガラス繊維では、
耐アルカリガラス繊維、一般的なEガラス繊維、高強度
ガラス繊維(T−ガラス)等が挙げられる。筐たカーボ
ン繊維は、ポリアクリロニトリルから得られたPAN系
やピッチ系のものが利用できる。アルミナ系繊維はS 
iOzとA−t203の混合体であるが、 A1.20
s含有率の高いものがアルくすm維であり、5iOz含
有率の高いものがシリカ繊維又はスラグ繊維であシ5本
発明ではこれらいずれも用いることができる。スチール
fI1.維は延伸細化した鋼繊維を用いることもできる
。しかしこれら無機繊維は、高強度、高ヤング率では満
足できるものの耐衝撃性の点や、耐アルカリ性、錆の問
題等があう、これら単独での使用は難しく、有機合成繊
維と混繊することにより補強性、耐衝撃性、軽量性の点
から相乗的効果を発揮する。無機繊維と有機合成繊維の
体積混合比率は用途にもよるが各々0〜50:100〜
50が好ましい。
No 41! Typical examples of fibers include glass fibers,
Examples include alkali-resistant glass fiber, general E-glass fiber, and high-strength glass fiber (T-glass). As the carbon fiber for the housing, PAN type or pitch type carbon fiber obtained from polyacrylonitrile can be used. Alumina fiber is S
It is a mixture of iOz and A-t203, but A1.20
Those with a high s content are Alxm fibers, and those with a high 5iOz content are silica fibers or slag fibers, and both of these can be used in the present invention. Steel fI1. As the fibers, drawn and thinned steel fibers can also be used. However, although these inorganic fibers are satisfactory in terms of high strength and high Young's modulus, they have problems with impact resistance, alkali resistance, rust, etc., and it is difficult to use them alone, so they can be mixed with organic synthetic fibers. It exhibits synergistic effects in terms of reinforcement, impact resistance, and lightness. The volume mixing ratio of inorganic fibers and organic synthetic fibers is 0 to 50:100, respectively, depending on the application.
50 is preferred.

本発明においてコードは、通常複数本のマルチフィラメ
ントヤーンを撚合せることにより形成されるものである
が、−本のマルチフィラメントのデニールとしては50
0〜30000が好ましい。
In the present invention, the cord is usually formed by twisting a plurality of multifilament yarns, but the denier of the multifilament yarns is 50.
0 to 30,000 is preferable.

無結節網を編織する際に、コードの直径は3〜10■の
範囲が必要である。3瓢未満では補強性の点から好捷し
くない。10mを越えては無結節網の編織がむずかしく
なる。本発明で言うコード直径は、コードを無張力下に
横たえて圧力を加えることなく直径を測定し、その平均
値を求めることによう得られる。コードの上撚シと下撚
すの撚数は、樹脂の含浸性と、交点強度、及びコード表
面の凹凸によるセメントとの付着強度の面から好適範囲
があり、上撚シ数は、30〜250回/m(回/mは1
m当りの撚り回数)が好筐しく、より好1しくは50〜
200回/mであり、下撚り数は30〜200回/mが
好1しく、よシ好渣しくは50〜150回/mである。
When knitting a knotless net, the diameter of the cord needs to be in the range of 3 to 10 square centimeters. If it is less than 3 gourds, it is not suitable from the viewpoint of reinforcing properties. If the length exceeds 10 m, it becomes difficult to weave a knotless net. The cord diameter referred to in the present invention is obtained by laying the cord under no tension, measuring the diameter without applying pressure, and calculating the average value. The number of twists for the first and second twists of the cord has a suitable range from the viewpoint of resin impregnation, intersection strength, and adhesive strength with cement due to irregularities on the cord surface, and the number of twists for the first twist is 30~ 250 times/m (times/m is 1
(number of twists per m) is preferably 50 or more, more preferably 50~
The number of first twists is preferably 30 to 200 times/m, more preferably 50 to 150 times/m.

無結節網の交点間距離としては20〜200鵡が用いら
れる。用途及び部材の部位によってコード太さが異るも
のの、上記範囲内でコード太さが細い時はその交点間距
離は小さく、太い時は大きくするのが好ましい。また細
骨材を用いる場合にはtoom以下の交点間距離が好ま
しく、粗骨材を用いる場合は200鴎以下5100”1
以上が好ましい。工場生産のコンクリート製品で側壁等
の鉄筋代替とする場合、補強材の体積含有率を高めるた
めに本発明の格子状物を複数枚使用するか、交点間距離
を小さくする方法が一般に用いられる。
The distance between the intersections of the knotless network is 20 to 200 parrots. Although the cord thickness varies depending on the application and the part of the member, it is preferable that within the above range, when the cord thickness is thin, the distance between the intersection points is small, and when it is thick, it is large. In addition, when using fine aggregate, it is preferable that the distance between the intersection points is less than
The above is preferable. When substituting reinforcing bars for side walls and the like in factory-produced concrete products, generally a method is used to increase the volume content of the reinforcing material by using a plurality of grids of the present invention or by reducing the distance between intersection points.

またトンネル内側や法面の覆工に供する場合、地山表面
の凹凸の度合いにょうその沿形性が得られる交点間距離
のものが用いられる。コードを製網して網状物とする際
の結節構造としては種々のものがあるが、本発明では交
点部強度の点で無結節網であらねばならない。
In addition, when used for lining the inside of a tunnel or a slope, the distance between the intersections that allows for the degree of unevenness of the ground surface and the contouring properties of the ground is used. There are various types of knotted structures for making cords into net-like objects, but in the present invention, the net must be knotless in terms of strength at the intersections.

次に該る無結節網を樹脂含浸して熱処理を行うに際し、
含浸用に用いる樹脂としては、不飽和ポリエステル系、
エポキシ系、ビニルエステル系、ウレタン系、アクリル
ニトリル系、メラミン−ホルマリン系、フェノール系樹
脂等が挙げられる。
Next, when impregnating the knotless net with resin and heat-treating it,
Resins used for impregnation include unsaturated polyester,
Examples include epoxy resins, vinyl ester resins, urethane resins, acrylonitrile resins, melamine-formalin resins, and phenol resins.

特にコードへの樹脂含浸性の点から低粘度のものたとえ
ば粘度が10〜100センチボイズのもの(常温・でB
型粘度計で測定)がよい。!た不飽和ポリエステル系、
エポキシ系、ビニルエステル系、ウレタン系等の樹脂は
それに硬化促進剤を添加し、80〜180℃の熱風又は
熱ロール上で熱硬化を行うことが可能であるが、アクク
ロニトリル系、メラミン−ホルマリン系、フェノール系
などは水分乾燥后更に熱硬化を行なう必要がある。
In particular, from the viewpoint of resin impregnation into the cord, low viscosity ones, such as those with a viscosity of 10 to 100 cm (at room temperature and B
(measured with a type viscometer) is better. ! unsaturated polyester,
It is possible to add a curing accelerator to epoxy-based, vinyl ester-based, urethane-based resins, and heat-cure them with hot air at 80 to 180°C or on hot rolls, but acronitrile-based, melamine-based resins Formalin-based, phenol-based, etc., require further heat curing after moisture drying.

樹、□含浸工程。′&(ヤ、6□4.1ヶ。え格イ状織
物を樹脂槽へ含浸し、絞りロールにて付着樹脂量をコン
トロールしたのち、樹脂含浸格子状織物の両耳部を把持
し、所定の張力下で熱処理を行い冷却後巻取り、又は所
定の長さに切断する。付着樹脂量はコードと樹脂の合計
体積に対して20多以上が好ましい。付着率が20φ未
満ではコードを構成する繊維間の接着性が低く、また無
結節交点部の強力も悪く自立性が得られに〈〈柔軟なも
のとなるため作業性が悪化する。より好tL<は30〜
40多である。樹脂含浸後のコードの引張り強度は20
 kg/−以上が補強性の点で好ましく、その弾性率も
900kt/mj以上が同様の理由で好ましい。
Tree, □ Impregnation process. '& (Y, 6 □ 4.1 pieces. After impregnating the A-shaped fabric into a resin tank and controlling the amount of adhering resin with a squeezing roll, grip both edges of the resin-impregnated grid fabric and press it into the specified position. Heat treatment is performed under the tension of , and after cooling, the cord is wound up or cut into a predetermined length.The amount of resin adhered is preferably 20 or more with respect to the total volume of the cord and resin.If the rate of attachment is less than 20φ, the cord is formed. The adhesion between the fibers is low, and the strength of the knotless intersections is also poor, making it difficult to obtain self-supporting properties.
There are over 40. The tensile strength of the cord after resin impregnation is 20
kg/- or more is preferable from the point of view of reinforcing properties, and the elastic modulus is also preferably 900 kt/mj or more for the same reason.

〈作用〉 本発明の水硬性物質用格子状補強材は、鉄筋やガラス*
##の補強用格子状物の代替材料として、これら格子状
物より優れた機械的性能、耐久性、施工性、安全性、加
工性、経済性を有しておシ、各種用途の平面状補強材と
して利用することができる。特に土木、建築用としては
トンネル内側や法面覆工用吹付コンクリート用補強材、
又現場打ちモルタルコンクリート用補強材として用いる
ことができる。オたコンクリート二次製品としての間仕
切す板やサイデイング材、床材、天井材等の工場生産用
補強材料としても用いることができる。
<Function> The lattice-like reinforcement material for hydraulic materials of the present invention can be used to
As an alternative material for ## reinforcing grids, it has superior mechanical performance, durability, workability, safety, workability, and economy than these grids, and can be used as a flat material for various purposes. It can be used as a reinforcing material. In particular, for civil engineering and construction, reinforcement materials for shotcrete for inside tunnels and slope lining,
It can also be used as a reinforcing material for cast-in-place mortar concrete. It can also be used as a reinforcing material for factory production of secondary concrete products such as partitioning boards, siding materials, flooring materials, ceiling materials, etc.

またり・ヤモーターカーのレール等のコンクリート構築
物に用いる場合、特に非磁性、非導電、非発錆であるた
め、有効であう%さらに非発錆の点からは海岸建築物、
構築物、海洋土木工事用途等にも利用できる。一方軽量
コンクリート等の強度の低い透水性の高いものに対する
配筋材として利用することもできる。さらに鉄筋との併
用も可能である。
When used in concrete structures such as rails for motor cars, it is particularly effective as it is non-magnetic, non-conductive, and non-rusting.
It can also be used for structures, marine civil engineering, etc. On the other hand, it can also be used as a reinforcing material for materials with low strength and high water permeability, such as lightweight concrete. Furthermore, it can also be used in combination with reinforcing bars.

以下実施例で本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1〜3 重合度1700、ケン化度99.9−r−ル%のPVA
水溶液から湿式紡糸することにより表−1に示すPVA
繊維マルチフィラメントを得た(フィラメントAと称す
)。
Examples 1 to 3 PVA with a degree of polymerization of 1700 and a degree of saponification of 99.9-r-le%
PVA shown in Table-1 by wet spinning from an aqueous solution
A fiber multifilament was obtained (referred to as filament A).

また同様に重合度4400.ケン化度99.9モル−の
PVA*溶液から湿式紡糸することにより表−1に示す
PVA繊維マルチフィラメントを得た(フィラメントB
と称す)。
Similarly, the degree of polymerization is 4400. A PVA fiber multifilament shown in Table 1 was obtained by wet spinning from a PVA* solution with a saponification degree of 99.9 mol (filament B).
).

p−ヒドロキシ安息香酸と6−ヒドロキン−2−ナフト
エ酸との共重合体からなる溶融液晶ポリマーを用い、溶
融紡糸して紡糸原糸1500dr/300fを得た。更
に290℃で24時間空気中で熱処理を行い表−工に示
す芳香族ポリエステル繊維マルチフィラメントを得た(
フィラメントCと称す)。
A molten liquid crystal polymer consisting of a copolymer of p-hydroxybenzoic acid and 6-hydroquine-2-naphthoic acid was melt-spun to obtain a spun yarn of 1500 dr/300 f. Further, heat treatment was performed in air at 290°C for 24 hours to obtain the aromatic polyester fiber multifilament shown in Table 1.
(referred to as filament C).

表  −1 上記のフイラメン)A−Cを用い表−2に示すような構
成で下撚b、上撚りをかけ、交点間距離12の角の無結
節網を編立てた。用いた総デニール及び得られたコード
の直径、及びコードの引張す強力、強度、ヤング率を表
−2に示した。更に得られた各繊維による無結節網をエ
ポキシ樹脂(油化シェルエポキシ社エピコート82B)
と硬化促進剤を添加した30センチボイズの粘度の樹脂
液を入れた槽に含浸し、マングルにて絞b1 ビンチー
ターにて耳部を把持しながら150℃5分間熱風中で熱
硬化させ、格子状物を得た。樹脂付着量は表−3に示し
た。lた得られたコード直径コードの引張す強力、強度
、ヤング率を表−3に示した。           
     J′X下余白実施例1.2.3で得た格子状
物のlj当すの平均重量は各々2272.278F、2
809と大変軽いものであった。そのため運搬も容易で
、鋸りやベンチで格子状物を容易に切断でき取扱いが大
変良好であった。
Table 1 Using the above filament A to C, the first twist b and the second twist were applied in the configuration shown in Table 2 to knit a knotless net with corners having a distance of 12 between intersections. Table 2 shows the total denier used, the diameter of the cord obtained, and the tensile strength, strength, and Young's modulus of the cord. Furthermore, the knotless network of each fiber obtained was coated with epoxy resin (Yuka Shell Epoxy Co., Ltd. Epicoat 82B).
It was impregnated in a tank containing a resin liquid with a viscosity of 30 centimeters and a curing accelerator added, and squeezed with a mangle. While holding the ears with a bottle cheater, it was heat-cured in hot air at 150°C for 5 minutes to form a lattice shape. I got something. The amount of resin deposited is shown in Table-3. Table 3 shows the tensile strength, strength, and Young's modulus of the obtained cord diameter cord.
J′
It was very light at 809. Therefore, it was easy to transport, and the grid-like objects could be easily cut with a saw or bench, making it very easy to handle.

比較のために直径4.4mの針金で12cIn角の格子
状物をつくったが、その平均重量は1700y/dとな
シ、実施例1〜3に比べ約6倍と重いものであり、金切
す鋸りで切断せねばならず、取シ扱いは悪いものであっ
た。
For comparison, a 12 cIn square lattice was made from wire with a diameter of 4.4 m, but its average weight was 1700 y/d, which was about 6 times heavier than in Examples 1 to 3. It had to be cut with a saw, and was not handled well.

実施例4〜9.比較例1〜2 セメントマトリックスに補強筋として実施例1〜3の格
子状物、比較例1〜2として補強筋を用いないもの(プ
レーン)の補強効果を調らべた。
Examples 4-9. Comparative Examples 1 and 2 The reinforcing effects of the lattice-like materials of Examples 1 to 3 as reinforcing bars in the cement matrix and those (plain) in which no reinforcing bars were used as Comparative Examples 1 and 2 were investigated.

セメントマトリックスとしてはセメントモルタル及び軽
量セメントモルタルを用いた。配筋方法は曲げ強度測定
の際、引張ジ側にくる面から厚さ10間かくで2枚の実
施例1〜3の格子状物を配置した。配筋率は表−4に示
した。セメントモルタル配合は、早強セメント(アブノ
早強セメント)100fi量部(以下全て重量部)、珪
砂(硯珪砂6.5号)300部、砂利(岡山旭川5鴎粒
径以下)、150部を計量し、オムニミキサーにてドラ
イミックス1分間実施后、水52部、減水剤(化工マイ
ティ150 ”) 2.5部添加し、2分間混合してモ
ルタルを得た。軽量セメントモルタルの配合は、早強セ
メント(アサノ早強セメント)100部、微粉パーライ
ト(宇部1型)10部、膨張材(1!気化学工業社デン
カC3Aφ20)を加え、オムニ2キサ−にて1分間ド
ライミックスし、起泡剤(ハマノ工業社製フォーミック
スC2)3部、減水剤1部を加え、オムニミキサーにて
2分間混合しモルタルを得た。
Cement mortar and lightweight cement mortar were used as the cement matrix. When measuring the bending strength, the reinforcing bars were arranged by placing two lattice-like members of Examples 1 to 3 at a thickness of 10 mm from the surface facing the tensile strength. The reinforcement ratio is shown in Table 4. The cement mortar composition includes 100 parts of early strength cement (abno early strength cement) (all parts by weight hereinafter), 300 parts of silica sand (inkstone silica sand No. 6.5), and 150 parts of gravel (Okayama Asahikawa 5 grain size or less). After weighing and dry-mixing for 1 minute using an omni mixer, 52 parts of water and 2.5 parts of a water reducing agent (Kako Mighty 150'') were added and mixed for 2 minutes to obtain a mortar.The composition of the lightweight cement mortar was as follows: Add 100 parts of early strength cement (Asano early strength cement), 10 parts of finely powdered pearlite (Ube 1 type), and an expanding agent (1!Denka C3A φ20, manufactured by Ki Kagaku Kogyo Co., Ltd.), and dry mix for 1 minute in an Omni 2 mixer. 3 parts of a foaming agent (Formix C2 manufactured by Hamano Kogyo Co., Ltd.) and 1 part of a water reducing agent were added and mixed for 2 minutes using an omnimixer to obtain a mortar.

成型は厚さ10の、長さ40crn、巾40−の型枠を
用いた。配筋しないものはその!S同一型枠を用いた。
For molding, a mold having a thickness of 10 cm, a length of 40 crm, and a width of 40 cm was used. That's what doesn't require reinforcement! The same formwork as S was used.

該るモルタルミルクを型枠へ流l〜込み成型を行い、−
夜放置硬化後脱型して、セメントモルタル配合のものは
4週間水中養生を行い、軽量セメントモルタ々配合のも
のはその1\田6%室温25℃の室温中に4週間放置養
生した。
Pour the corresponding mortar milk into the mold and mold it, -
After being left to harden overnight, the molds were removed, and those containing cement mortar were cured in water for 4 weeks, and those containing lightweight cement mortar were left to cure for 4 weeks at 1\6% room temperature at 25°C.

測定は島津製万能試験機にて曲げ強度を測定した。スパ
ン長30備とし、中央載荷方式にょb最大破壊荷重と、
そのたわみを測定した。曲げ強度(但し、Pは荷重、L
はスパン長、bは部材の巾、tは部材の厚さ)よう求め
た。それを表−4に示す。
The bending strength was measured using a Shimadzu universal testing machine. The span length is 30, and the maximum breaking load is the central loading method.
The deflection was measured. Bending strength (where P is load, L
is the span length, b is the width of the member, and t is the thickness of the member). It is shown in Table-4.

表  −4Table-4

Claims (1)

【特許請求の範囲】[Claims] 直径が3〜10mmのコードからなり交点間距離が20
〜200mmである無結節網および該コードに含浸され
硬化されたバインダー樹脂からなる格子状補強材であつ
て、該コードが引張を強度が9g/デニール以上、ヤン
グ率が200g/デニール以上で単繊維デニールが0.
5〜25デニールの合成繊維フィラメントから構成され
ている水硬性物質用格子状補強材。
It consists of cords with a diameter of 3 to 10 mm, and the distance between intersections is 20 mm.
A lattice-like reinforcing material consisting of a knotless net of ~200 mm and a binder resin impregnated into the cord and hardened, the cord has a tensile strength of 9 g/denier or more, a Young's modulus of 200 g/denier or more, and is a single fiber. Denier is 0.
A lattice reinforcement material for hydraulic materials composed of synthetic fiber filaments of 5 to 25 deniers.
JP18003589A 1989-07-11 1989-07-11 Lattice-shaped reinforcing material for hydraulic substance Pending JPH0343551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18003589A JPH0343551A (en) 1989-07-11 1989-07-11 Lattice-shaped reinforcing material for hydraulic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18003589A JPH0343551A (en) 1989-07-11 1989-07-11 Lattice-shaped reinforcing material for hydraulic substance

Publications (1)

Publication Number Publication Date
JPH0343551A true JPH0343551A (en) 1991-02-25

Family

ID=16076339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18003589A Pending JPH0343551A (en) 1989-07-11 1989-07-11 Lattice-shaped reinforcing material for hydraulic substance

Country Status (1)

Country Link
JP (1) JPH0343551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014275A1 (en) * 1999-08-25 2001-03-01 Sa Schappe Reinforcing yarn for concrete mixtures and cement mortars

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014275A1 (en) * 1999-08-25 2001-03-01 Sa Schappe Reinforcing yarn for concrete mixtures and cement mortars
FR2797868A1 (en) * 1999-08-25 2001-03-02 Schappe Sa REINFORCING WIRE FOR CONCRETE AND CEMENT MORTAR

Similar Documents

Publication Publication Date Title
JP4368796B2 (en) Inorganic matrix fabric apparatus and method
US9663879B2 (en) Method of strengthening existing structures using strengthening fabric having slitting zones
CN1294236A (en) Reinforced structured member and method for reinforcing product by utilizing same
CN108532981A (en) A kind of reinforcement means for the TRC improving leafy brick masonry wall anti-seismic performance
EP2440504B1 (en) Cementitious mortar and method for improved reinforcement of building structures
US20150167302A1 (en) Fibre-reinforced mineral building material
WO1999003796A1 (en) Reinforcing material, method of production thereof, reinforcing/repairing method using the reinforcing material, reinforcing/repairing structure, and structural element
KR101309135B1 (en) A Fiber Reinforced Concrete For Floor Slab
JPH0343551A (en) Lattice-shaped reinforcing material for hydraulic substance
JP2002028922A (en) Repairing/reinforcing material consisting of fiber reinforced resin molded object, method for manufacturing the same, and cementitious structure using repairing/reinforcing material
JP2018111631A (en) Fiber material for cement reinforcement
JP3019004B2 (en) Carbon fiber woven and concrete structures
JPH0343552A (en) Lattice-shaped reinforcing material for hydraulic substance
JP2002194855A (en) Grating-like material, method of manufacturing grating- like material and method of reinforcement
JP7219147B2 (en) cement reinforcement
JPH02258657A (en) Reinforcing material for hydraulic substance
JP2002054270A (en) Basic material for reinforcement
JP2744258B2 (en) Reinforcing material comprising wholly aromatic polyester fiber and method for producing the same
JPS6322636A (en) Fiber-reinforced cement mortar molded form
JPH05321406A (en) Thick diameter rod made of organic synthetic fiber
JP6987432B2 (en) Reinforcing fabric
JPH0533348A (en) Foam resin block laminating construction
JPS641424B2 (en)
JP6839933B2 (en) Manufacturing method of concrete structure
JP2735293B2 (en) Inorganic moldings reinforced with reticulated moldings