JP2766535B2 - Reinforcement - Google Patents

Reinforcement

Info

Publication number
JP2766535B2
JP2766535B2 JP32516289A JP32516289A JP2766535B2 JP 2766535 B2 JP2766535 B2 JP 2766535B2 JP 32516289 A JP32516289 A JP 32516289A JP 32516289 A JP32516289 A JP 32516289A JP 2766535 B2 JP2766535 B2 JP 2766535B2
Authority
JP
Japan
Prior art keywords
fiber
resin
elongation
fibers
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32516289A
Other languages
Japanese (ja)
Other versions
JPH03187454A (en
Inventor
昭雄 溝辺
憲二 西面
光郎 馬屋原
忠之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Original Assignee
KURARE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KK filed Critical KURARE KK
Priority to JP32516289A priority Critical patent/JP2766535B2/en
Publication of JPH03187454A publication Critical patent/JPH03187454A/en
Application granted granted Critical
Publication of JP2766535B2 publication Critical patent/JP2766535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、水硬性硬化体、プラスチツク製品等の引張
強度の低い構造材料内に埋設して構造材料の引張強度、
曲げ強度を強化するために用いる補強材に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention is intended to be embedded in a structural material having a low tensile strength, such as a hydraulic hardened product, a plastic product, etc.
The present invention relates to a reinforcing material used to enhance bending strength.

<従来の技術> 従来この用途には鉄筋、PC緊張材が知られているが、
発錆による強度の耐久性がないこと、又発錆による膨張
ひび割れが発生すること、比重が大きく重いこと、その
他用途によつては電気絶縁性が低く透磁率が高い等の問
題があつた。これらを解決するために発錆せず電気絶縁
性が高く透磁率が1に近く、比重の小さい有機繊維、無
機繊維を繊維集合体とし、樹脂接着によつて棒材とした
ものが考案されている。
<Prior art> Conventionally, for this use, reinforcing bars and PC tendons are known.
There are problems such as lack of durability of strength due to rust, expansion cracks due to rust, large specific gravity and heavy weight, and low electric insulation and high magnetic permeability depending on other uses. In order to solve these problems, a method has been devised in which organic fibers and inorganic fibers having high electrical insulation properties, a magnetic permeability close to 1 and low specific gravity without rusting are formed into a fiber aggregate and formed into a bar by resin bonding. I have.

<発明が解決しようとする課題> しかしながら、有機繊維であるケブラー繊維は、高強
度ではあるが耐アルカリ性が悪く耐久性に問題がある。
また無機繊維であるガラス繊維、カーボン繊維も高強度
であるが、伸度が低く棒材製造時に繊維が切断し加工性
が悪く、配筋施工が非常に困難である。それに加えガラ
ス繊維は、耐アルカリ性が低い等の問題点があり、また
カーボン繊維は高価である。また比較的特性上バランス
のとれたポリビニルアルコール繊維やアラミド類のテク
ノーラ繊維でも、低進度の熱硬化性の樹脂と組合せた場
合、その棒材では充分な効力利用率が得られない。一般
にこの種樹脂の伸度は低く、最もポピユラーな不飽和ポ
リエステル樹脂、フェノール樹脂、エポキシ樹脂で2.5
〜4.5%程度である。このように構造用補強材の必要条
件である高強度、高ヤング率、耐アルカリ性、取扱い
性、セメントマトリツクスとの接着等のすべての点で満
足できるものはないし、又高強度の繊維を使用しつつも
その性能を充分に生かしたロツドがないのが現状であ
る。そこで本発明者等は、鋭意検討の結果かかる不都合
のない構造用補強材を考察し、繊維物性を充分に生した
高性能の構造用補強材の提供を可能にしたものである。
本発明は高強度、高弾性率、高伸度の有機繊維を概ね軸
線方向に並べ繊維間を繊維に対し10〜100重量%の樹脂
にて結着させた棒状補強材に於いて、樹脂伸度が繊維伸
度に比し1.2倍以上好ましくは1.7〜7倍の範囲にある事
を特徴とする補強材を提供するものである。
<Problems to be Solved by the Invention> However, Kevlar fiber, which is an organic fiber, has high strength, but has poor alkali resistance and has a problem in durability.
Glass fibers and carbon fibers, which are inorganic fibers, also have high strength, but their elongation is low and the fibers are cut at the time of manufacturing a bar, resulting in poor workability, and it is very difficult to arrange reinforcing bars. In addition, glass fibers have problems such as low alkali resistance, and carbon fibers are expensive. Further, even when polyvinyl alcohol fibers or aramid technolas fibers are relatively well-balanced in terms of characteristics, when used in combination with a low-grade thermosetting resin, a sufficient efficiency utilization rate cannot be obtained with the rod material. Generally, the elongation of this kind of resin is low, and the most popular unsaturated polyester resin, phenol resin and epoxy resin are 2.5%.
It is about 4.5%. As described above, none of the requirements for structural reinforcing materials such as high strength, high Young's modulus, alkali resistance, handleability, adhesion to cement matrix, etc. are satisfactory, and high strength fibers are used. At present, there is no rod that makes full use of its performance. Accordingly, the present inventors have studied the structural reinforcing material without such inconvenience as a result of intensive studies, and have made it possible to provide a high-performance structural reinforcing material sufficiently utilizing fiber physical properties.
The present invention relates to a rod-shaped reinforcing material in which high-strength, high-modulus, and high-elongation organic fibers are arranged substantially in the axial direction, and the fibers are bound to each other with a resin of 10 to 100% by weight. An object of the present invention is to provide a reinforcing material having a degree in the range of 1.2 times or more, preferably 1.7 to 7 times, the fiber elongation.

<課題を解決するための手段> 本発明に用いる繊維は、引張り強度14g/dr以上、ヤン
グ率300g/dr以上、伸度が4%以上必要である。それよ
り低いものは充分な強度と加工性を兼合せ持つ棒材を得
る事は出来ず、様々なコンクリート補強の要をなさな
い。又繊維と樹脂の関係は、この棒材に於いて繊維の協
力利用率を発現するための最も大きな要因である。即ち
棒材の加工性のために必要な4%の伸度を持つ有機繊維
の強力を軸方向の引張り挙動で最大限に生かすために
は、マトリツクスである樹脂の伸度は繊維伸度の1.2倍
以上、好ましくは1.7〜7倍の範囲の樹脂伸度が必要で
あり、樹脂の伸度としては5%以上、より好ましくは4
%以上のものが用いられる。しかし一般にこの種用途に
使用されている樹脂(たとえばガラス繊維−エポキシ
系)の場合の樹脂伸度は4.5%以下で、これら低伸度の
樹脂の時は、棒材はその引張荷重のもとでは先に樹脂部
に亀裂を生じ、もしくは繊維が始まつてしまい繊維の強
度が上手に利用出来ない。繊維の中では高強力ビニロン
とテクノーラ繊維が良好である。即ち発錆・耐久性・電
磁気性特性・軽量性の面で金属性材料に起因する問題は
なく、又ケブラー(低伸度アラミド繊維)、カーボン、
ガラス繊維のように耐アルカリ性、加工性の問題がな
い。ここで結合材の種類としては、前述の繊維伸度との
関係を持つ範囲内では、用途面ではエポキシ樹脂が最も
すぐれているが、次のようなものでもよい。即ちビニル
エステル樹脂、ポリエステル樹脂等の様な熱硬化性樹
脂、又は塩化ビニル、塩化ビニリデン、ポリプロピレン
等のような熱可塑性樹脂が使用出来る。繊維に対する樹
脂量は10〜100重量%の範囲でなければならない。10%
より低くては繊維間の抱束が弱すぎ棒材として樹脂繊維
の一体性が低下し強度の利用率が低下してしまう。又10
0%より高くても樹脂により繊維の自由度が阻害され、
かつ繊維の直線性も損なわれ、その結果強力利用率が低
下してしまう。棒材の成形法については、引抜成形法が
最も適切であるが、糸条を組紐又はロープ状とした後樹
脂含浸硬化させてもよい。
<Means for Solving the Problems> The fiber used in the present invention needs to have a tensile strength of 14 g / dr or more, a Young's modulus of 300 g / dr or more, and an elongation of 4% or more. If it is lower than that, a bar having both sufficient strength and workability cannot be obtained, and various concrete reinforcements are not necessary. The relationship between the fiber and the resin is the most important factor for expressing the cooperative utilization rate of the fiber in the bar. In other words, in order to maximize the strength of the organic fiber having an elongation of 4% required for the workability of the rod by the tensile behavior in the axial direction, the elongation of the matrix resin should be 1.2% of the fiber elongation. The elongation of the resin must be at least 1.7 times, preferably 1.7 to 7 times, and the elongation of the resin is at least 5%, more preferably 4%.
% Or more is used. However, in general, the resin elongation of this type of resin (for example, glass fiber-epoxy resin) is 4.5% or less. In the case of these low elongation resins, the bar is not subjected to the tensile load. In this case, cracks occur in the resin portion first, or the fibers start to spread, and the strength of the fibers cannot be used well. Among the fibers, high-strength vinylon and technola fibers are preferred. In other words, there is no problem caused by metallic materials in terms of rusting, durability, electromagnetic properties, and lightness. Kevlar (low elongation aramid fiber), carbon,
There is no problem of alkali resistance and workability unlike glass fiber. Here, as the type of the binder, the epoxy resin is the best in terms of application within the range having the above-described relationship with the fiber elongation, but the following may be used. That is, a thermosetting resin such as a vinyl ester resin or a polyester resin, or a thermoplastic resin such as vinyl chloride, vinylidene chloride, or polypropylene can be used. The amount of resin to fiber should be in the range of 10-100% by weight. Ten%
If it is lower, the binding between the fibers is too weak, so that the integrity of the resin fibers as a rod material is reduced and the utilization rate of strength is reduced. 10
Even if it is higher than 0%, the degree of freedom of the fiber is hindered by the resin,
In addition, the linearity of the fiber is impaired, and as a result, the power utilization rate decreases. The pultruding method is the most appropriate for the method of forming the rod material, but it is also possible to form the thread into a braid or a rope and then to impregnate the resin.

<発明の効果> 以上の様にして作製した棒材は繊維の性能を十分発揮
し、耐アルカリ性良好で補強硬化の大きいだけでなく、
又棒材が軽量であり、電気絶縁性が良好で、透磁類が小
さく、錆ない、耐アルカリ性が大きく、補強効果が大き
いことから使用用途として軽量コンクリート、普通コン
クリート及び塩害のあるコンクリート部材、リニアーモ
ーターカー用架台等の補強材として非常に有効である。
<Effect of the Invention> The bar produced as described above sufficiently exhibits the performance of the fiber, and has good alkali resistance and large reinforcement hardening,
In addition, since the rod is lightweight, has good electrical insulation, small magnetic permeability, does not rust, has high alkali resistance, and has a large reinforcing effect, it is used for lightweight concrete, ordinary concrete and concrete members with salt damage, It is very effective as a reinforcement for linear motor car mounts.

次に作製した棒材の繊維の強力利用率及び補強効果に
ついて実施例で示す。
Next, examples of the strength utilization rate and the reinforcing effect of the fiber of the manufactured rod material will be described.

実施例 ヤーンデニールが1800dr/1000fのポリビニルアルコー
ル繊維を使用して単繊維総本数を241200drに集合せし
め、エポキシ樹脂(1)として油化シエルエポキシ
(株)エピコート828−70重量部、希釈剤YED205−30重
量部、および硬化剤LX−1N30重量部の混合液を含浸させ
80℃で3時間緊張下で硬化させ、直径6ミリメートルの
棒材を作製した。棒材における繊維に対する樹脂の割合
は30重量%であつた。そして、その棒材の周囲に、同一
のポリビニルコルール繊維でアーンデニールが5400dr/3
000fのもので、同一の樹脂を含浸したものを5ミリメー
トルピツチでラセン状に巻付けて異形棒とした。又同様
の手法で他の補強繊維としては、テクノーラ(帝人社製
1500dr/1000f)、ケブラー49(デユポン社製1500dr/100
0f)、ガラス繊維(日東紡社製RS110−QL16μφ)、カ
ーボン繊維(東レカーボンT−300B6000−5000 7μ
φ)をほぼ同じ総デニール数とし、他の使用樹脂として
は、 エポキシ樹脂(2)(油化シエルエポキシ社、エピコ
ート828−100重量部、硬化剤LX−1N30重量部の混合物
(硬化条件80℃3時間)、 エポキシ樹脂(3)(油化シエルエポキシ社、エピコ
ート828−100重量部、エポメートB002−50重量部の混合
液(硬化条件100℃2時間)、 ビニルエステル(1)(昭和高分子社製エポラツクRT
933−100重量部、硬化触媒パーメツクN−7.5重量部、
硬化促進剤コバルトN−0.5重量部(硬化条件80℃2時
間)、 ビニルエステル(2)(昭和高分子社製エポラツクR8
02−100重量部、硬化触媒パーメツクN−7.5重量部、硬
化促進剤コバルトN−0.5重量部(硬化条件80℃2時
間)、 をそれぞれ用い表−1の実施例1〜4、比較例1〜7と
して組合せて使用した。その結果を第1表に示す。
Example Using polyvinyl alcohol fiber having a yarn denier of 1800dr / 1000f, the total number of single fibers was collected to 241200dr, and 828-70 parts by weight of Yuka Ciel Epoxy Co., Ltd. as an epoxy resin (1), diluent YED205- Impregnated with a mixture of 30 parts by weight and 30 parts by weight of curing agent LX-1N
The material was cured under tension at 80 ° C. for 3 hours to produce a bar having a diameter of 6 mm. The ratio of resin to fiber in the rod was 30% by weight. And around the bar material, the same polyvinyl colul fiber and Arn denier is 5400dr / 3
000f, impregnated with the same resin, was spirally wound with a 5 mm pitch to form a deformed rod. In the same manner, other reinforcing fibers include Technora (manufactured by Teijin Limited).
1500dr / 1000f), Kevlar 49 (1500dr / 100 manufactured by DuPont)
0f), glass fiber (RS110-QL16μφ manufactured by Nitto Bo), carbon fiber (Toray Carbon T-300B6000-5000 7μ)
is approximately the same as the total denier, and the other resin used is a mixture of epoxy resin (2) (Yuka Kasei Epoxy Co., Ltd., Epicoat 828-100 parts by weight, curing agent LX-1N 30 parts by weight (curing condition: 80 ° C.) 3 hours), Epoxy resin (3) (Yuika Ciel Epoxy, Epicoat 828-100 parts by weight, Epomate B002-50 parts by weight (curing conditions: 100 ° C for 2 hours), vinyl ester (1) (Showa Kogyo EPOLATK RT
933-100 parts by weight, curing catalyst permek N-7.5 parts by weight,
0.5 parts by weight of a curing accelerator, cobalt N (curing conditions: 80 ° C., 2 hours), vinyl ester (2) (Epolac R8 manufactured by Showa Kogyo KK)
02-100 parts by weight, curing catalyst permek N-7.5 parts by weight, curing accelerator cobalt N-0.5 parts by weight (curing conditions: 80 ° C. for 2 hours) 7 was used in combination. Table 1 shows the results.

ここで繊維強度伸度の測定はJIS−L−1013「化学繊
維フイラメント測定法」に沿つて、島津オートグラフに
て試長10cm引張り速度2cm/分にて測定した。又樹脂伸度
の測定はJIS−K−7113プラスチツクの引張り試験法の
内1号型試験片を用い、サンプルは板からの機械加工で
作成し、2mmの厚さで島津のオートグラフを用い10mm/分
の速度で測定した。棒材の強力利用率は、島津のオート
グラフにて試長50cm引張り速度20mm/分にて強力を測定
し、先述の繊維強度測定法を用いて得た測定値×総デニ
ールの値で除した値を用いた。耐アルカリ性はPH=12.5
のセメント抽出液に80℃×2年間投入後の棒材の外観を
目視判定した。加工性は、棒材を180℃の恒温機に2時
間放置後直角に曲げR部のひび、座屈状態を目視で判定
した。
The fiber strength elongation was measured by a Shimadzu Autograph at a test length of 10 cm and a pulling speed of 2 cm / min in accordance with JIS-L-1013 “Chemical Fiber Filament Measurement Method”. In addition, resin elongation was measured using a No. 1 type test piece of the JIS-K-7113 plastic tensile test method, a sample was prepared by machining from a plate, and a thickness of 2 mm was measured using a Shimadzu autograph with a thickness of 10 mm. Measured at a rate of / min. The strength utilization rate of the bar was measured by using a Shimadzu autograph with a test length of 50 cm and a tensile speed of 20 mm / min.The strength was divided by the value obtained by using the fiber strength measurement method described above and the total denier value. Values were used. Alkali resistance is PH = 12.5
The external appearance of the rod after the addition to the cement extract at 80 ° C. for 2 years was visually judged. The workability was determined by visually observing the cracks and buckling of the R portion at a right angle after leaving the bar in a thermostat at 180 ° C. for 2 hours.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) E04C 5/00 - 5/20Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) E04C 5/00-5/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】引張強度14g/dr以上、伸度4%以上、ヤン
グ率が300g/dr以上の有機繊維を軸線方向に並べ、繊維
間を繊維に対し10〜100重量%の樹脂にて結着させた棒
状補強材に於いて、樹脂伸度が繊維伸度に比し1.2倍以
上である事を特徴とする補強材。
An organic fiber having a tensile strength of at least 14 g / dr, an elongation of at least 4%, and a Young's modulus of at least 300 g / dr is arranged in the axial direction, and the fibers are bonded with a resin of 10 to 100% by weight based on the fiber. A reinforcing material characterized by having a resin elongation of 1.2 times or more as compared with a fiber elongation in the rod-shaped reinforcing material attached.
JP32516289A 1989-12-14 1989-12-14 Reinforcement Expired - Lifetime JP2766535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32516289A JP2766535B2 (en) 1989-12-14 1989-12-14 Reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32516289A JP2766535B2 (en) 1989-12-14 1989-12-14 Reinforcement

Publications (2)

Publication Number Publication Date
JPH03187454A JPH03187454A (en) 1991-08-15
JP2766535B2 true JP2766535B2 (en) 1998-06-18

Family

ID=18173712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32516289A Expired - Lifetime JP2766535B2 (en) 1989-12-14 1989-12-14 Reinforcement

Country Status (1)

Country Link
JP (1) JP2766535B2 (en)

Also Published As

Publication number Publication date
JPH03187454A (en) 1991-08-15

Similar Documents

Publication Publication Date Title
Peijs et al. Hybrid composites based on polyethylene and carbon fibres. Part 6: Tensile and fatigue behaviour
CN102021886B (en) Mixed type fiber reinforced polymer (FRP) rib for bridge cable and manufacture method of FRP rib
EP0417612B1 (en) Filament-reinforced resinous structural rod
EP1457596A2 (en) Reinforcing structure
US6048598A (en) Composite reinforcing member
US4316925A (en) Fiber reinforced cementitious castings
US6284336B1 (en) Filled composite structure with pre-stressed tendons
Hogg Factors affecting the stress corrosion of GRP in acid environments
JP2766535B2 (en) Reinforcement
WO2019162390A1 (en) Strand in glass and/or basalt fibers for prestressed concrete
Tanaka et al. Retrofit method with carbon fiber for reinforced concrete structures
CN100548912C (en) A kind of carbon fiber and aramid fiber intermixed reinforcement resin web
JP4336432B2 (en) Production method of thermoplastic resin-coated FRP bar for shear reinforcement and thermoplastic resin-coated FRP bar for shear reinforcement
JPS6312785A (en) Rod material
JP2744258B2 (en) Reinforcing material comprising wholly aromatic polyester fiber and method for producing the same
JPS61290150A (en) Structural material
JPH02258657A (en) Reinforcing material for hydraulic substance
JPS62170644A (en) Synthetic reinforcing structural material
Pichandi Development of composite auxetic structures for civil engineering applications
JP3173119B2 (en) Method for producing fiber reinforced plastic reinforcement
Nanni et al. State of the Art Report on Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures
JPH0413140B2 (en)
JP2735164B2 (en) Reinforcement
JPH04198226A (en) Corrosion-resistant reinforced resin pipe
JPS63551A (en) Long fiber reinforced cementicious member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080403

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100403