JPS6312785A - Rod material - Google Patents

Rod material

Info

Publication number
JPS6312785A
JPS6312785A JP61311173A JP31117386A JPS6312785A JP S6312785 A JPS6312785 A JP S6312785A JP 61311173 A JP61311173 A JP 61311173A JP 31117386 A JP31117386 A JP 31117386A JP S6312785 A JPS6312785 A JP S6312785A
Authority
JP
Japan
Prior art keywords
twisted
bar
fiber
roving
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61311173A
Other languages
Japanese (ja)
Inventor
杉田 稔
照幸 中辻
忠志 藤崎
稔 沢出
登 石川
稲田 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Dainihon Glass Industry Co Ltd
Kyojin Rope Manufacturing Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Dainihon Glass Industry Co Ltd
Kyojin Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/881,697 external-priority patent/US4876143A/en
Application filed by Shimizu Construction Co Ltd, Dainihon Glass Industry Co Ltd, Kyojin Rope Manufacturing Co Ltd filed Critical Shimizu Construction Co Ltd
Publication of JPS6312785A publication Critical patent/JPS6312785A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、例えばM俸等の代わりに建築用材料として、
あるいは船舶や車両の骨組み材料として用いるFRP製
の棒材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention provides, for example, as a building material instead of M-salary, etc.
Or it relates to FRP rods used as frame materials for ships and vehicles.

「従来の技術」 いわゆるFRP(繊維強化プラスチック )は、比強度
が高い、耐食性に優れる、成形性がよく形状の自由度が
高い等の特徴を有し、種々の構造材料等に広く使用され
ている。例えば鉄筋用の鋼棒の代わりにFRPの棒材を
用いれば、塩分等による腐食の心配がないので建築物の
耐久性が向上し、しかも、軽量なので施工時の取り扱い
が著しく楽になることが考えられる。
"Conventional technology" So-called FRP (fiber reinforced plastic) has characteristics such as high specific strength, excellent corrosion resistance, good moldability and a high degree of freedom in shape, and is widely used in various structural materials. There is. For example, if FRP bars are used instead of steel bars for reinforcing bars, there is no need to worry about corrosion due to salt, etc., so the durability of the building will be improved, and since it is lightweight, it will be much easier to handle during construction. It will be done.

「発明が解決しようとする問題点」 ところで、従来のFRP成型品はほとんど塑性変形せず
、鋼材に比べていわゆる「粘り強さ」がないので、鋼材
の代用に使用する場合、粘り強さが要求されない用途に
使用範囲が限られていた。
``Problems to be solved by the invention'' By the way, conventional FRP molded products hardly undergo plastic deformation and do not have so-called "toughness" compared to steel materials, so when used as a substitute for steel materials, toughness is not required. The scope of use was limited.

本発明は上記の事情に鑑みてなされたもので、その目的
とするところは、鋼棒に近い応カー歪挙動を示し、鋼棒
の代用品としてコンクリート構造物の配筋等に適用でき
るFRPの棒材を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to develop FRP that exhibits stress strain behavior similar to that of steel bars and that can be applied to reinforcement in concrete structures as a substitute for steel bars. Our goal is to provide bar stock.

「問題点を解決するための手段」 かかる目的を達成するために本発明は、複数本の繊維製
線状体を一本に撚り合わせて(以下、この撚りを上撚り
と称す)合成樹脂製のマトリックスで互いに接着し、し
かも複数本の繊維製線状体のうちの一部の繊維製線状体
を撚り紐としたものである。この場合、撚り紐は複数本
の撚糸をさらに撚り合わせたものでもよく、あるいは複
数本のロービングを互いに撚り合わせたものでもよい。
"Means for Solving the Problems" In order to achieve the above object, the present invention has been developed by twisting a plurality of fiber filament bodies into one (hereinafter, this twisting is referred to as ply-twisting) to make a synthetic resin. The strands are bonded to each other with a matrix, and some of the fibrous strands are twisted into strings. In this case, the twisted string may be made by further twisting a plurality of twisted yarns, or may be made by twisting a plurality of rovings together.

また、撚り紐以外の繊維製線状体は、前記ロービングと
同種のロービングでもよく、あるいは異種のロービング
でもよい。
Further, the fiber linear body other than the twisted string may be the same type of roving as the above-mentioned roving, or may be a different type of roving.

「作用 」 上記の棒材では、撚り紐以外の繊維製線状体が弾性的性
質を示す一方、撚り紐がそれ以外の繊維製線状体の破断
後にもさらに伸び続ける優れた伸縮性を示す。従って、
棒材全体としては、弾性域での弾性率が高くかっ破断伸
びの大きな応カー歪挙動(M棒に似た挙動)を示す。し
かも、棒材の中心から離れて位置する繊維製線状体はど
上撚りの影響を受けて大きな伸縮性を示すから、撚り紐
以外の線状体は中心寄りに位置するものから順に破断す
る。つまり、これらの破断時に撚り紐が受ける衝撃荷重
が小さいから、棒材全体としての応カー歪挙動は、さら
に鋼棒に近い応カー歪挙動となる。
"Function" In the above-mentioned bar, while the fiber linear bodies other than the twisted strings exhibit elastic properties, the twisted strings exhibit excellent elasticity that continues to stretch even after the other fiber linear bodies break. . Therefore,
The bar as a whole exhibits stress strain behavior (behavior similar to M bar) with a high modulus of elasticity in the elastic region and a large elongation at break. Furthermore, since fiber filaments located far from the center of the bar exhibit great elasticity due to the influence of twisting, filament bodies other than the twisted strings break in order from those located closer to the center. . In other words, since the impact load that the strands receive at the time of these breaks is small, the stress strain behavior of the bar as a whole becomes closer to that of a steel bar.

「実施例」 以下、本発明の実施例を図面に基づいて説明する。"Example" Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の第一実施例を示している。この実施例
の棒材は二種類の繊維製線状体を各々複数本ずつ備えて
いる。すなわち、図中符号lは一方の繊維製線状体であ
るロービング、符号2は他方の繊維製線状体である撚り
紐である。これらロービングlおよび撚り紐2は、不規
則に混ぜ合わされた状態で第2図の如く一本に集合撚り
され、しかも、若干の引張応力が加えられた状態で合成
樹脂製のマトリックス3により互いに接着されている。
FIG. 1 shows a first embodiment of the invention. The bar of this embodiment includes a plurality of two types of fiber linear bodies. That is, in the figure, reference numeral 1 indicates a roving, which is one of the linear fiber bodies, and reference numeral 2 indicates a twisted string, which is the other linear fiber body. These rovings 1 and strands 2 are randomly mixed and twisted into a single strand as shown in Fig. 2, and then bonded to each other by a synthetic resin matrix 3 under a slight tensile stress. has been done.

前記ロービングlは、例えばガラス繊維、炭素繊維、ホ
ウ素繊維、アルミナセラミック繊維、酸化硅素セラミッ
ク繊維、スヂール繊維、ビニロン繊維、ナイロン繊帷、
ポリエステル繊維、アラミド繊維等のモノフィラメント
を40θ〜25θθθ本引き揃えたものである。前記種
々のモノフィラメントは各々単独で、あるいは二種以上
を適宜組み合わせて使用される。また、前記モノフィラ
メントは、マトリックス3の種類に応じてシラン処理、
ボラン処理等の表面処理を施されていることが好ましい
The roving l may be made of, for example, glass fiber, carbon fiber, boron fiber, alumina ceramic fiber, silicon oxide ceramic fiber, sudir fiber, vinylon fiber, nylon fiber,
Monofilaments such as polyester fibers and aramid fibers are arranged in an array of 40θ to 25θθθ. The various monofilaments mentioned above may be used alone or in appropriate combinations of two or more. Further, the monofilament may be treated with silane or treated with silane depending on the type of matrix 3.
It is preferable that surface treatment such as borane treatment is applied.

前記撚り紐2は、ロービング1と同種もしくは異種のロ
ービングに撚りをかけて形成した撚糸を複数本さらに撚
り合わせたものである。撚り合わせ方は同心撚り、集合
撚り、複合撚りのいずれでもよく、あるいはその他の撚
り合わせ方でもよい。
The twisted string 2 is made by further twisting together a plurality of twisted yarns formed by twisting rovings of the same type or different types as the roving 1. The twisting method may be concentric twisting, collective twisting, compound twisting, or other twisting methods.

撚り紐2を構成する撚糸としては異種の撚糸同士、例え
ばアラミド糸等の伸びにくい糸とナイロン糸等の伸びや
すい糸を撚り合わせるのが好ましい。
As for the twisted yarn constituting the twisted string 2, it is preferable to twist different types of twisted yarn together, for example, a yarn that is difficult to stretch such as an aramid yarn and a yarn that is easy to stretch such as a nylon yarn.

さらに、前記マトリックス3としては熱硬化性樹脂であ
るビニルエステル樹脂、エポキシ樹脂、不飽和ポリエス
テル樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂
、フェノール樹脂、あるいは熱可塑性樹脂であるポリア
セタール樹脂、飽和ポリエステル樹脂、ポリアミド樹脂
、ポリスチロール樹脂、ポリカーボネイト樹脂、塩化ビ
ニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ア
クリル樹脂等が棒材の用途に応じて適宜用いられる。
Furthermore, the matrix 3 may be a thermosetting resin such as a vinyl ester resin, an epoxy resin, an unsaturated polyester resin, a polyurethane resin, a diallyl phthalate resin, or a phenol resin, or a thermoplastic resin such as a polyacetal resin, a saturated polyester resin, or a polyamide resin. , polystyrene resin, polycarbonate resin, vinyl chloride resin, polyethylene resin, polypropylene resin, acrylic resin, etc. are used as appropriate depending on the use of the rod material.

上記棒材中の繊維製線状体1.2の割合は20〜8θ体
積%の範囲が好ましい。20体積%未満では充分な補強
効果かえられず、また、80体積%を越えると製造が困
難となる。さらに、繊維製線状体1.2中の撚り化20
割合は、撚り紐2の割合が少なくなるとロービングlの
破断により終局となり撚り紐2の大きな伸縮性が生かせ
なくなるので、20〜95体積%の範囲、好ましくは5
θ〜90体積%の範囲とされる。
The ratio of the fiber linear bodies 1.2 in the rod is preferably in the range of 20 to 8θ volume %. If it is less than 20% by volume, a sufficient reinforcing effect cannot be achieved, and if it exceeds 80% by volume, manufacturing becomes difficult. Furthermore, twisting 20 in the fiber linear body 1.2
The proportion should be in the range of 20 to 95% by volume, preferably 5%, because if the proportion of the twisted string 2 decreases, the roving l will eventually break and the large elasticity of the twisted string 2 will not be utilized.
The range is θ to 90% by volume.

このような構成の+eHを得るには、例えば所定本数の
ロービング1と撚り紐2とを各々同一方向に送り出し、
これら繊維製線状体1.2を未硬化液状の合成樹脂が満
たされた樹脂含浸槽に連続的に送り込んで樹脂含浸する
。次いで、樹脂含浸された各々複数のロービング1と撚
り紐2とを一本に束ねて円筒状の引き抜き金型に通し、
さらに、全体に撚りをかけた後、合成樹脂を硬化させる
To obtain +eH with such a configuration, for example, a predetermined number of rovings 1 and twisted strings 2 are sent out in the same direction,
These fiber linear bodies 1.2 are continuously fed into a resin impregnation tank filled with uncured liquid synthetic resin and impregnated with resin. Next, a plurality of resin-impregnated rovings 1 and twisted strings 2 are bundled into one and passed through a cylindrical drawing die.
Furthermore, after twisting the entire material, the synthetic resin is cured.

かくして、連続的に長尺の棒材を製造することができる
In this way, long bars can be manufactured continuously.

上記のような構成の棒材においては、ロービング1がほ
ぼ完全弾性的な性質を示す一方、撚り紐2がロービング
lの破断後にもさらに伸び続ける優れた伸縮性を示す。
In the bar having the above structure, the roving 1 exhibits almost completely elastic properties, while the twisted string 2 exhibits excellent elasticity that continues to stretch even after the roving 1 is broken.

従って、棒材全体としての応カー歪挙動は、両者の性質
が合成されて見掛は上、弾性域での弾性率が高くかつ破
断沖びの大きな挙動、すなわち鋼棒に似た応カー歪挙動
となる。
Therefore, the stress strain behavior of the bar as a whole appears to be a combination of these two properties, with a high elastic modulus in the elastic region and a large rupture distance. Becomes a behavior.

しかも、繊維製線状体1.2が一本に集合撚りされてい
るために、棒材の中心から離れて位置する繊維製線状体
はど二の集合撚り(上撚り )の影響を受けて大きな伸
縮性を示すようになる。つまり、複数本のロービング1
は中心寄りに位!するものから順次破断する傾向を示す
から、一度にまとめて破断する場合に比べて撚り紐2に
与える衝撃荷重が小さい。従って、本実施例の棒材はさ
らに鋼棒に近い挙動を示すようになる。
Moreover, since the fiber filament 1.2 is collectively twisted into a single piece, the fiber filament located away from the center of the bar is affected by the second aggregate twist (ply twist). It shows great elasticity. In other words, multiple rovings 1
is near the center! Since the strands tend to break one after the other, the impact load applied to the twisted string 2 is smaller than when the strands break all at once. Therefore, the bar of this example exhibits behavior even closer to that of a steel bar.

一方、第3図は本発明の第二実施例を示している。この
棒材は、樹脂含浸された複数本のロービングlと複数本
の撚り紐2とが一本に束ねられた後、角筒状の金型に通
されて横断面が角形(本実施例では四角形)に成形され
、さらに、樹脂が硬化する前に全体に撚りがかけられて
第4図の如く捩り棒状になされたらのである。このよう
な棒材は、面記第−実施例の棒材と同様の作用効果に加
えて、外表面に凹凸を有することから、コンクリート構
造物用の配筋とした場合にコンクリートに対する付着性
が良好である。
On the other hand, FIG. 3 shows a second embodiment of the present invention. After this bar material is bundled with a plurality of resin-impregnated rovings L and a plurality of twisted strings 2, it is passed through a rectangular cylindrical mold to have a rectangular cross section (in this example, Then, before the resin hardens, the whole piece is twisted into a twisted rod shape as shown in Figure 4. In addition to having the same effect as the bar of Example 1, such a bar has unevenness on its outer surface, so it has good adhesion to concrete when used as reinforcement for concrete structures. In good condition.

さらに、第5図は本発明の第三実施例を、第6図は本発
明の第四実施例を示している。第5図の棒材は、複数本
のロービングlを棒材の中心部に集中的に集めて互いに
撚り合わせ、その外側に撚り紐2を同心撚りした状態で
マトリックス3により接着したものである。ま1こ、第
6図の棒材は複数本の撚り紐2を中心部に集め、その外
側にロービング1を引き揃えfこ後、全体に上撚りをか
けてマトリックス3で結束したものである。ただし、第
6図の棒材の外表面は断熱層4で被覆されており、万一
の火災等の際に中のマトリックス3や繊維製線状体1,
2が熱から保護されろようになっている。この断熱層4
は、例えばアルミナセラミック、酸化硅素セラミック、
酸化ホウ素セラミック、または酸化チタンセラミック等
により形成される。
Further, FIG. 5 shows a third embodiment of the invention, and FIG. 6 shows a fourth embodiment of the invention. The bar shown in FIG. 5 is made by gathering a plurality of rovings l in the center of the bar, twisting them together, and bonding them with a matrix 3 with twisted strings 2 concentrically twisted on the outside. The bar shown in Figure 6 is made by gathering multiple twisted cords 2 in the center, aligning the rovings 1 around the outside of the cords, then ply-twisting the entire cord and binding it with a matrix 3. . However, the outer surface of the bar shown in Figure 6 is covered with a heat insulating layer 4, and in the event of a fire, the matrix 3 inside, the fiber linear body 1,
2 is designed to be protected from heat. This insulation layer 4
For example, alumina ceramic, silicon oxide ceramic,
It is formed from boron oxide ceramic, titanium oxide ceramic, or the like.

なお、上記実施例では撚り紐2を複数本の撚糸で構成し
たが、この撚糸に代えて例えばロービング1と同種らし
くは異種のロービングを使用することもできる。また、
棒材の横断面におけるロービング1と撚り紐2の配置は
、上記実施例に示しt二らの(こ限るものではない。
In the above embodiment, the twisted string 2 is made up of a plurality of twisted yarns, but instead of the twisted yarn, for example, a roving of the same kind as the roving 1 or a different type can also be used. Also,
The arrangement of the rovings 1 and the twisted strings 2 in the cross section of the bar is as shown in the above embodiment (but is not limited to this).

ちなみに、第7図は、ビニルエステル樹脂を含1受5せ
で1本にした2本のロービング(以下ロービング束と称
す)および同じくビニルエステル樹脂を含浸させた1本
の撚り紐の各々に対して引張試験を行って得られた荷重
−伸張線図の一例を示している。引張試験は、株式会社
東洋ボールドウィン製万能試験機を用い、クロスヘッド
スピード5θmm/minで、ロービングおよび撚り紐
の各々に対し5回ずつ行った。試料として使用したロー
ビングおよび撚り紐についての詳細(、よ表1に示す。
By the way, Figure 7 shows the results for each of two rovings made of vinyl ester resin and one strand (hereinafter referred to as a roving bundle) and one twisted string impregnated with vinyl ester resin. An example of a load-extension diagram obtained by conducting a tensile test is shown. The tensile test was performed five times on each of the roving and twisted string using a universal testing machine manufactured by Toyo Baldwin Co., Ltd. at a crosshead speed of 5θ mm/min. Details about the roving and strands used as samples are shown in Table 1.

*表1 上記引張試験に用いたロービング2本と撚り紐1本とを
引きそろえてビニルエステル樹脂のマトリックスで結束
したFRP棒材は、両者の荷重−伸張線を合成すること
により第7図破線で示すような荷重−伸張挙動を示すこ
とが予想される(ただし、ロービングが破断する際に撚
り紐が破断しないものと仮定した場合)。ところか、同
様のロービングを2θ本、撚り紐を!00本結東口、し
かも全体に上撚りをかけたPRP棒材は、引張試験時に
ロービングが1本または複数本ずつ徐々に破断するから
、第8図に実線で示すような荷重−伸張挙動を示すと考
えられる。これは同図に鎖線で示す鋼棒の荷重−伸張挙
動に近い挙動である。
*Table 1 The FRP bar used in the above tensile test, which was made by aligning two rovings and one twisted cord and binding them with a vinyl ester resin matrix, was obtained by combining the load-stretch lines of both, and the broken line in Figure 7 was obtained. It is expected that the load-stretch behavior will be as shown in (assuming that the twisted string does not break when the roving breaks). By the way, I made a similar roving with 2θ and twisted string! A PRP bar with 00 strands and fully twisted rovings gradually breaks one or more rovings during the tensile test, so it exhibits the load-extension behavior shown by the solid line in Figure 8. it is conceivable that. This behavior is close to the load-extension behavior of the steel bar shown by the chain line in the figure.

表2に第8図の挙動を得た鋼棒についての詳細を示す。Table 2 shows details of the steel rods that obtained the behavior shown in Figure 8.

「発明の効果」 以上説明したように本発明の棒材は、一本に撚り合わせ
1こ複数本の繊維製線状体を合成樹脂製のマトリックス
で一体に結束し、複数本の′a維調製線状体うちの一部
を撚り紐としたので、次のような浸れた効果を奏する。
``Effects of the Invention'' As explained above, the bar of the present invention is produced by binding together a plurality of fiber filaments twisted together with a synthetic resin matrix. Since a part of the prepared linear body was made into a twisted string, the following immersed effect was produced.

撚り紐以外の′a推調製線状体弾性的性質を示す一方、
撚り紐がそれ以外の繊維製線状体の破断後にもさらに伸
び続ける優れた伸縮性を示す。従って、棒材全体として
は弾性域での弾性率が高くかっ破断伸びの大きな応力〜
全挙動、すなわち鋼棒に似た応カー歪挙動を示す。しか
ら、棒材の中心から離れて位置する繊維製線状体はど上
撚りの影響を受けて大きな伸縮性を示すから、撚り紐以
外の線状体は中心寄りに位置するものから順に破断する
。つまり、これらの破断時に撚り紐が受ける衝撃荷重が
小さいから、棒材全体としての応カー歪挙動は、さらに
8棒に近い応カー歪挙動となる。
While ′a-shaped linear bodies other than twisted strings exhibit elastic properties,
The twisted string exhibits excellent elasticity and continues to stretch even after other fiber linear bodies are broken. Therefore, the bar as a whole has a high elastic modulus in the elastic range and a large stress that causes elongation at break.
The overall behavior is similar to that of a steel bar. However, since fiber filaments located far from the center of the bar exhibit great elasticity due to the influence of twisting, filament bodies other than twisted strings are broken in order from those located closer to the center. do. In other words, since the impact load that the strands receive at the time of these breaks is small, the stress strain behavior of the bar as a whole becomes closer to that of the 8 bars.

従って、本発明によれば、軽量性、耐食性、非磁性とい
うFRPとしての優れた特性を持つ新しい棒材が得られ
ることになる。この棒材は、鋼棒の代用品としてコンク
リート構造物の配筋等に適用できるだけでなく、FRP
板を含むプラスチック板あるいは石綿板等の建築用板材
の補強材として使用することもできる。また、FRP製
船舶(特にヨツト )や車両等の骨組み用材料として採
用することらできる。
Therefore, according to the present invention, a new bar material having excellent properties as FRP, such as light weight, corrosion resistance, and non-magnetic property, can be obtained. This bar material can be used not only as a substitute for steel bars for reinforcing concrete structures, but also for FRP
It can also be used as a reinforcing material for architectural board materials such as plastic boards or asbestos boards. It can also be used as a frame material for FRP ships (especially yachts) and vehicles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を示す横断面図、第2図は
第1図に示す棒材の一部を切り欠いた側面図、第3図は
本発明の第二実施例を示す横断面図、第4図は第3図に
示す棒材の一部を切り欠いた側面図、第5図は本発明の
第三実施例を示す横断面図、第6図は本発明の第四実施
例を示す横断面図、第7図は樹脂を含浸させたロービン
グ束および同じく樹脂を含浸させた撚り紐の荷重−伸張
線図、第8図は第7図のロービング束を構成するロービ
ングおよび撚り紐を多数本ずつ用いたFRP棒材の予想
される荷重−伸張線図および鋼棒の荷重−伸張線図であ
る。 ■・・・・・・ロービング、2・・・・・・撚り紐、3
・・・・・マトリックス、4・・・・・断熱層。
Fig. 1 is a cross-sectional view showing a first embodiment of the present invention, Fig. 2 is a partially cutaway side view of the bar shown in Fig. 1, and Fig. 3 is a cross-sectional view showing a second embodiment of the invention. 4 is a partially cutaway side view of the bar shown in FIG. 3, FIG. 5 is a cross sectional view showing a third embodiment of the present invention, and FIG. A cross-sectional view showing the fourth embodiment, FIG. 7 is a load-stretch diagram of a roving bundle impregnated with resin and a twisted string also impregnated with resin, and FIG. 8 shows the roving bundle of FIG. 7. They are an expected load-extension diagram of an FRP bar using a large number of rovings and twisted cords, and a load-extension diagram of a steel bar. ■・・・Roving, 2・・・Twisted cord, 3
... Matrix, 4 ... Heat insulation layer.

Claims (1)

【特許請求の範囲】 1、複数本の繊維製線状体が一本に撚り合わされた状態
で、しかも、合成樹脂製マトリックスにより互いに接着
されており、さらに、前記複数本の繊維製線状体のうち
の一部の繊維製線状体は撚り紐であることを特徴とする
棒材。 2、前記撚り紐は複数本の撚糸をさらに撚り合わせたも
のであり、一方、撚り紐以外の繊維製線状体は、複数本
のモノフィラメントを引き揃えて束状にしたロービング
であることを特徴とする特許請求の範囲第1項記載の棒
材。 3、前記撚り紐は、複数本のロービングを撚り合わせた
ものであり、一方、撚り紐以外の繊維製線状体は、前記
ロービングと同種または異種のロービングであることを
特徴とする特許請求の範囲第1項記載の棒材。
[Scope of Claims] 1. A plurality of fiber linear bodies are twisted together and are bonded to each other by a synthetic resin matrix, and the plurality of fiber linear bodies are A bar material characterized in that some of the fiber filament bodies are twisted cords. 2. The twisted string is made by further twisting a plurality of twisted yarns, and the fiber linear body other than the twisted string is a roving made by aligning a plurality of monofilaments into a bundle. A bar according to claim 1. 3. The twisted string is a plurality of rovings twisted together, and the fiber linear body other than the twisted string is a roving of the same type or a different type from the roving. Bar material described in Range 1.
JP61311173A 1986-07-03 1986-12-29 Rod material Pending JPS6312785A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US881697 1986-07-03
US06/881,697 US4876143A (en) 1985-07-05 1986-07-03 Rod material

Publications (1)

Publication Number Publication Date
JPS6312785A true JPS6312785A (en) 1988-01-20

Family

ID=25379004

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61311173A Pending JPS6312785A (en) 1986-07-03 1986-12-29 Rod material
JP61311174A Granted JPS6312786A (en) 1986-07-03 1986-12-29 Rod material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP61311174A Granted JPS6312786A (en) 1986-07-03 1986-12-29 Rod material

Country Status (1)

Country Link
JP (2) JPS6312785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117865A (en) * 2004-10-25 2006-05-11 Nitto Boseki Co Ltd Fiber-reinforced resin linear product and method for producing the same
CN108006428A (en) * 2017-11-20 2018-05-08 国网河南省电力公司安阳供电公司 A kind of composite glass fiber winding arrangement part and its bundle structure of preparation
JP2019127770A (en) * 2018-01-25 2019-08-01 中日本高速道路株式会社 Junction structure for precast concrete slab

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5416341B2 (en) 2007-03-12 2014-02-12 新日鉄住金マテリアルズ株式会社 Method for producing round fiber reinforced plastic wire
JP6553977B2 (en) * 2015-08-07 2019-07-31 日本毛織株式会社 Reinforcement braid structure and composite material using the same
JP6440854B2 (en) * 2015-09-09 2018-12-19 日本発條株式会社 Method for manufacturing elastic member wire, elastic member wire and elastic member
JP6972764B2 (en) * 2017-08-21 2021-11-24 日本電気硝子株式会社 Manufacturing method of glass fiber reinforced thermosetting resin molded body and glass fiber reinforced thermosetting resin molded body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116750A (en) * 1974-02-12 1975-09-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116750A (en) * 1974-02-12 1975-09-12

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117865A (en) * 2004-10-25 2006-05-11 Nitto Boseki Co Ltd Fiber-reinforced resin linear product and method for producing the same
CN108006428A (en) * 2017-11-20 2018-05-08 国网河南省电力公司安阳供电公司 A kind of composite glass fiber winding arrangement part and its bundle structure of preparation
JP2019127770A (en) * 2018-01-25 2019-08-01 中日本高速道路株式会社 Junction structure for precast concrete slab

Also Published As

Publication number Publication date
JPH0323676B2 (en) 1991-03-29
JPS6312786A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
US4876143A (en) Rod material
US5077113A (en) Filament-reinforced resinous structural rod
US5727357A (en) Composite reinforcement
EP0149336B1 (en) Flexible tension members
JP3820031B2 (en) Fiber reinforced plastic strands and strands and methods for their production
KR102112960B1 (en) Frp-mesh for reinforcing concrete
EP0058783A1 (en) Tubing of hybrid, fibre-reinforced synthetic resin
JPS6312785A (en) Rod material
US3848406A (en) Glass fiber roving band for fiber reinforced plastics
JPH02133632A (en) Sewing yarn for forming preform material for reinforcing resin
JP2021147791A (en) Binding tool, and binding method
GB2175364A (en) Reinforcing member having projections
JP6705958B1 (en) Fiber rod binding tool and fiber rod binding method
JPH0621492B2 (en) Structural material
JPH02216270A (en) Structural material and production thereof
JP5966390B2 (en) Continuous fiber reinforcement and method for producing continuous fiber reinforcement
JPS5921787A (en) Rubber reinforcing carbon composite cord
JPH11323749A (en) Composite wiry material
JPH06280126A (en) Conjugate fiber material and fiber-reinforced resin
JPH06330588A (en) Reinforcement for concrete
JPH0520537B2 (en)
JPH06212736A (en) Structural material made by flagile chemical fiber and manufacture thereof
JPH032225A (en) Hybrid prepreg
JP2020100122A (en) Frp pultrusion molded body, and method of manufacturing the same
JPH0768739B2 (en) Long fiber reinforced cement-based material