JP6553977B2 - Reinforcement braid structure and composite material using the same - Google Patents

Reinforcement braid structure and composite material using the same Download PDF

Info

Publication number
JP6553977B2
JP6553977B2 JP2015157601A JP2015157601A JP6553977B2 JP 6553977 B2 JP6553977 B2 JP 6553977B2 JP 2015157601 A JP2015157601 A JP 2015157601A JP 2015157601 A JP2015157601 A JP 2015157601A JP 6553977 B2 JP6553977 B2 JP 6553977B2
Authority
JP
Japan
Prior art keywords
reinforcing
yarn
fiber
braided
braid structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015157601A
Other languages
Japanese (ja)
Other versions
JP2017036519A (en
Inventor
昭二 上杉
昭二 上杉
純 衣笠
純 衣笠
敏也 前田
敏也 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gosen Co Ltd
Shimizu Corp
Japan Wool Textile Co Ltd
Original Assignee
Gosen Co Ltd
Shimizu Corp
Japan Wool Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gosen Co Ltd, Shimizu Corp, Japan Wool Textile Co Ltd filed Critical Gosen Co Ltd
Priority to JP2015157601A priority Critical patent/JP6553977B2/en
Publication of JP2017036519A publication Critical patent/JP2017036519A/en
Application granted granted Critical
Publication of JP6553977B2 publication Critical patent/JP6553977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は強化用組紐構造体とくにコンクリート補強などに適した強化用組紐構造体及びこれを用いた複合材料に関する。   The present invention relates to a reinforcing braid structure, particularly to a reinforcing braid structure suitable for concrete reinforcement and the like, and a composite material using the same.

コンクリートは圧縮には強いが引張には弱いことは良く知られている。そのため鉄筋で補強することが行われている。補強材としての鉄筋は、コンクリートの中性化などで腐食すること、比重が高く単位面積あたりの重量負荷が大きいため鉄筋自体の重量を保持する必要があること、輸送や作業性で制約が大きいなどの課題があり、鉄筋代替補強材の検討がされている。代替材料としては鉄筋より引張強度が高く、比重が小さい炭素繊維やパラ系アラミドなどの高強度繊維補強材が検討されている。例えば特許文献1においては、引張強度の大きな繊維として芳香族ポリアミド繊維を組紐状とすることが開示されている。また特許文献2では炭素繊維を引きそろえた束からなる芯材の外側を芳香族ポリアミドで組紐にして結合剤で結着することが開示されている。特許文献3においては炭素繊維を組紐状にして用いることで破断伸度が向上することが開示されている(特許文献3;[0013]および図5)。特許文献4には組紐又は撚糸の内部にコブを作り、コンクリートとの付着性能を向上することが提案されている。   It is well known that concrete is strong in compression but weak in tension. Therefore, reinforcement with rebar is performed. Reinforcement as a reinforcing material is corroded by the neutralization of concrete, etc. It is necessary to maintain the weight of the reinforcing bar itself because the specific gravity is high and the weight load per unit area is large, and transportation and workability are greatly restricted There are issues such as, and rebar replacement reinforcement is being considered. As an alternative material, high-strength fiber reinforcements such as carbon fibers having higher tensile strength and lower specific gravity than rebar and para-aramids have been studied. For example, Patent Document 1 discloses braiding of an aromatic polyamide fiber as a fiber having a large tensile strength. Patent Document 2 discloses that the outer side of a core material made of a bundle of carbon fibers is braided with aromatic polyamide and bound with a binder. Patent Document 3 discloses that the elongation at break is improved by using carbon fibers in the form of braids (Patent Document 3; [0013] and FIG. 5). It is proposed in patent document 4 to make a knob in the inside of a braid or a twist, and to improve the adhesion performance with concrete.

特開昭60−119853号公報JP 60-119853 A 特開昭63−4158号公報Japanese Unexamined Patent Publication No. Sho 63-4158 特開2007−113346号公報JP 2007-113346 A 特開2013−155089号公報JP 2013-155089 A

しかし、特許文献1は例えば8本の丸打ち組紐による補強材であるが、これだけでは鉄筋に近い応力―ひずみ曲線の補強材は得られないという問題がある。特許文献2においては両者の複合すなわち、芯材に炭素繊維を用い、その外側をアラミド繊維で製紐することが開示されている。この場合初期の剛性は高くできるが、歪みが炭素繊維の破断伸度以上になると炭素繊維が破断するため、応力の大幅な低下がみられ、もとの応力レベルには回復しない。すなわち炭素繊維の破断伸度以上の領域では応力はキープできないという問題が残る。特許文献3では炭素繊維を組紐状として使用することで破断伸度が高くなることが開示されているが、これは補強した構造物がより大きな変形に耐えることを意味し、補強構造体の変形が繊維自身の変形のほか組構造の変形が加わった効果と考えられるが、伸度向上効果は十分ではなく、鉄筋レベルの破断伸度には達していない。特許文献4は組紐又は撚糸の内部にコブを作るため、同様に鉄筋に近い応力―ひずみ曲線の補強材とすることは困難である。
以上のとおり、従来技術では鉄筋に近い応力―ひずみ曲線の補強材とすることは困難であり、この改善が求められていた。
However, although Patent Document 1 is a reinforcing material using, for example, eight round braids, there is a problem that a reinforcing material having a stress-strain curve close to that of a reinforcing bar cannot be obtained by this alone. In Patent Document 2, it is disclosed that carbon fiber is used as a composite of the both, that is, a core material and the outside is made of aramid fiber. In this case, the initial rigidity can be increased, but when the strain exceeds the breaking elongation of the carbon fiber, the carbon fiber breaks, so that a significant decrease in stress is seen and the original stress level is not restored. That is, there remains a problem that the stress can not be maintained in the area above the breaking elongation of the carbon fiber. Patent Document 3 discloses that the elongation at break is increased by using carbon fibers as braids. This means that the reinforced structure can withstand a greater deformation, and the deformation of the reinforcing structure. However, this is considered to be the effect of the deformation of the fiber structure in addition to the deformation of the fiber itself, but the effect of improving the elongation is not sufficient, and the breaking elongation at the reinforcing bar level has not been reached. Since patent document 4 makes a hoop inside a braid or a twisted yarn, it is difficult to use it as a reinforcing material having a stress-strain curve close to that of a reinforcing bar.
As described above, in the prior art, it is difficult to use a reinforcing material with a stress-strain curve close to that of a reinforcing bar, and this improvement has been desired.

本発明は、前記従来の問題を解決するため、高強度で低伸度の炭素繊維などの高強度繊維を強化用構造体として伸度を高くすることにより、鉄筋に近い応力―ひずみ曲線の補強材とし、鉄筋代替のコンクリート補強に好適であり、さらに鉄筋代替のコンクリート補強以外の他の補強用途にも適用可能である強化用組紐構造体及びこれを用いた複合材料を提供する。   In order to solve the above-mentioned conventional problems, the present invention reinforces a stress-strain curve close to that of a reinforcing bar by increasing the elongation by using a high strength fiber such as a carbon fiber with high strength and low elongation as a reinforcing structure. Provided is a reinforcing braid structure which is suitable for reinforcement of concrete as a substitute for rebar, and is also applicable to other reinforcement applications other than concrete reinforcement as a substitute for rebar, and a composite material using the same.

本発明の強化用組紐構造体は、引張強度1GPa以上、破断伸度1〜8%の強化用繊維1種以上を含有する組紐構造体であって、前記組紐構造体は、芯糸の表面を組糸が被覆しており、前記組糸は糸軸方向を0度としたとき、組角度の異なる少なくとも2層の組糸で構成されていることを特徴とする。
本発明の複合材料は、前記の強化用組紐構造体と補強用マトリックス材料を含むことを特徴とする。
The reinforcing braid structure of the present invention is a braid structure containing one or more reinforcing fibers having a tensile strength of 1 GPa or more and a breaking elongation of 1 to 8%, and the braid structure has a surface of the core yarn. The braid is covered, and the braid is composed of at least two layers of braids having different braid angles when the yarn axis direction is 0 degree.
The composite material of the present invention is characterized by comprising the above-mentioned reinforcing braid structure and a reinforcing matrix material.

本発明によれば、高強度で低破断伸度の炭素繊維などの高強力繊維を使用して、強化用構造体として破断伸度を大きくすることにより、鉄筋に近い応力―ひずみ曲線の補強材とし、鉄筋代替のコンクリート補強に好適であり、さらに鉄筋代替のコンクリート補強以外の他の補強用途にも適用可能である強化用組紐構造体及びこれを用いた複合材料を提供できる。   According to the present invention, a reinforcing material with a stress-strain curve close to that of a reinforcing bar by using a high strength fiber such as carbon fiber having a high strength and a low breaking elongation and increasing the breaking elongation as a reinforcing structure Thus, it is possible to provide a reinforcing braid structure that is suitable for reinforcing concrete as a substitute for reinforcing steel and is also applicable to other reinforcing applications other than concrete reinforcing as a substitute for reinforcing steel and a composite material using the same.

図1は炭素繊維、アラミド繊維、鉄筋の応力ひずみ曲線の例である。FIG. 1 is an example of a stress strain curve of carbon fiber, aramid fiber and reinforcing bar. 図2は本発明の一実施形態の強化用繊維構造体を模式的に示す説明図である。FIG. 2 is an explanatory view schematically showing a reinforcing fiber structure according to an embodiment of the present invention. 図3は本発明の一実施形態の応力ひずみ曲線である。FIG. 3 is a stress-strain curve of one embodiment of the present invention. 図4は本発明の実施例1及び実施例2の強化用組紐構造体の応力ひずみ曲線である。FIG. 4 is a stress-strain curve of the reinforcing braid structure of Example 1 and Example 2 of the present invention. 図5は比較例1〜3の構造体の応力ひずみ曲線である。FIG. 5: is a stress strain curve of the structure of Comparative Examples 1-3.

本発明者らの検討によれば、鉄筋の力学的な特徴としては、(1)剛性が高いこと、特に低伸度領域での応力が高いこと および(2)降伏点から破断にいたるまでの応力はほぼ一定で、破断伸度は比較的大きいことがあげられる。図1に鉄筋および高強力繊維の例として炭素繊維と芳香族ポリアミド(パラ系アラミド繊維)の応力―ひずみ曲線の例を示した(出典:繊維学会誌 vol.51,No.7(1995)P299)。図1にみられるように、一般的にアラミドのような有機高分子系高強度繊維は鉄筋にくらべ引張強度は大きいが、低伸度域で剛性が低い傾向がみられる。一方炭素繊維は、引張強力は高く、剛性も鉄筋と同等以上であるが、破断伸度が低いという問題がある。すなわちそれぞれの材料では一長一短があり、鉄筋に近い応力―ひずみ曲線の補強材とするには様々な工夫が必要である。図1において、PC鋼線とは、プレストレストコンクリートに緊張力を与える緊張材のことであり、高強度鋼線またはピアノ線ともいう。本発明は前記PC鋼線に近似した応力ひずみ曲線の強化用組紐構造体を得ることができる。   According to the study of the present inventors, the mechanical characteristics of the rebar include (1) high rigidity, particularly high stress in the low elongation region, and (2) from the yield point to breakage. The stress is almost constant and the breaking elongation is relatively large. Fig. 1 shows an example of stress-strain curve of carbon fiber and aromatic polyamide (para-aramid fiber) as an example of reinforcing bar and high strength fiber (Source: Journal of the Fibers Society Vol. 51, No. 7 (1995) P299 ). As seen in FIG. 1, generally, organic polymer high-strength fibers such as aramid tend to have higher tensile strength compared to rebar, but lower rigidity in the low elongation region. Carbon fibers, on the other hand, have high tensile strength and rigidity equal to or higher than that of rebar, but have the problem of low breaking elongation. That is, each material has merits and demerits, and various measures are necessary to use it as a reinforcing material with a stress-strain curve close to that of a reinforcing bar. In FIG. 1, a PC steel wire is a tension material that gives tension to prestressed concrete, and is also called a high-strength steel wire or a piano wire. According to the present invention, it is possible to obtain a reinforcing braid structure having a stress-strain curve similar to the PC steel wire.

本発明の強化用組紐構造体は、引張強度1GPa以上、破断伸度1〜8%の強化用繊維1種以上を含有し、芯糸の表面を組糸が被覆しており、前記組糸は糸軸方向を0度としたとき、組角度の異なる少なくとも2層の組糸で構成されている。すなわち、本発明の組紐構造体に用いる強化用の繊維は、高強度で低伸度であり、より好ましくは高弾性率(高剛性)のものが選ばれる。前記強化用繊維の引張強度は好ましくは1GPa以上である。さらに好ましくは2GPa以上である。破断伸度は1〜8%である。好ましい弾性率は100〜800GPaである。   The reinforcing braid structure of the present invention contains one or more reinforcing fibers having a tensile strength of 1 GPa or more and an elongation at break of 1 to 8%, and the surface of the core yarn is coated with a braided yarn; When the yarn axis direction is 0 degree, it is composed of at least two layers of braided yarns having different assembly angles. That is, the reinforcing fibers used in the braid structure of the present invention are selected from those having high strength and low elongation, and more preferably having a high elastic modulus (high rigidity). The tensile strength of the reinforcing fiber is preferably 1 GPa or more. More preferably, it is 2 GPa or more. The breaking elongation is 1 to 8%. The preferred elastic modulus is 100 to 800 GPa.

前記を満足する繊維として具体的には、例えば炭素繊維、高強力ポリエチレン繊維、パラアラミド繊維、PBO繊維、高強力PVA繊維、ポリアリレート繊維などの有機高強度繊維のほか、無機繊維(シリカ、アルミナ、炭化珪素、バサルト繊維などの無機繊維)などが挙げられる。これらの中で弾性率が鉄筋並み以上で、強化用構造体とした場合にも鉄筋なみの弾性率が得られる炭素繊維が最も好ましく用いられる。前記繊維は必要に応じて2種以上を混用して構造体とすることができる。混用する繊維は必ずしも前記要件をすべて満たす必要はなく主成分の繊維が前記要件をみたせば使用できる。ここで主成分とは、強化用繊維の50質量%以上をいう。   Specific examples of fibers satisfying the above conditions include organic high-strength fibers such as carbon fibers, high-strength polyethylene fibers, para-aramid fibers, PBO fibers, high-strength PVA fibers, polyarylate fibers, and inorganic fibers (silica, alumina, Silicon carbide, inorganic fibers such as basalt fibers, etc. may be mentioned. Among these, carbon fiber that has an elastic modulus equal to or higher than that of a reinforcing bar and that can provide an elastic modulus similar to that of a reinforcing bar is most preferably used. The said fiber can be mixed as needed as 2 or more types, and can be used as a structure. The fibers to be mixed do not necessarily have to meet all the above requirements, and the main component fibers can be used if the above requirements are met. Here, the main component means 50% by mass or more of the reinforcing fiber.

次に本発明において、強化用繊維構造体として、鉄筋に近似した引張挙動とするために、すなわち図1に示した鉄筋の応力―ひずみ曲線に近づけるため、(a)立ち上がりの弾性率を高くし、かつ(b)降伏点の応力をほぼ一定にキープした状態で伸びることについて検討した。   Next, in the present invention, in order to make the fiber structure for reinforcement have a tensile behavior similar to that of a reinforcing bar, ie, to approximate the stress-strain curve of the reinforcing bar shown in FIG. And (b) it considered about extending in the state which kept the stress of the yield point almost constant.

まず、組紐構造体として、中心部に芯糸を有し、芯糸の外側に2層以上の組角度の異なる多層構造とする。芯糸としては、好ましくは下記のいずれかである。
(1)無撚りの引き揃え糸、
(2)50T/m(Tは撚り数)以下の甘撚り糸、
(3)構造体中最も組角の小さい組紐(好ましくは組角度10度未満)
このような構造とすることで、組紐構造体の立ち上がりの弾性率を高くすることができる。芯糸の素材としては、弾性率が高い炭素繊維が好ましく用いられる。また、芯糸の比率としては、芯糸の総繊度が組紐構造体の高強度繊維の総繊度の15〜33%が好ましい。15%未満では低伸度領域での応力が不十分であり、33%を超えると後述するように芯糸が破断したときの応力が低くなり好ましくない。
First, as a braided structure, a core yarn is provided at the central portion, and a multi-layered structure with two or more layers having different set angles is provided outside the core yarn. The core yarn is preferably any of the following.
(1) Untwisted aligned yarn,
(2) Sweet twist yarn of 50 T / m (T is the number of twists) or less
(3) The smallest braid angle in the structure (preferably, the braid angle is less than 10 degrees)
By setting it as such a structure, the elastic modulus of the standup of a braided structure can be made high. As a material of the core yarn, carbon fiber having a high elastic modulus is preferably used. Moreover, as a ratio of the core yarn, the total fineness of the core yarn is preferably 15 to 33% of the total fineness of the high-strength fibers of the braided structure. If it is less than 15%, the stress in the low elongation region is insufficient, and if it exceeds 33%, as will be described later, the stress when the core yarn breaks is undesirably low.

さらに、本発明の組紐は、好ましくはさらに次のような設計とすることで、組紐構造体の破断伸度を高くできるとともに応力−ひずみ曲線における応力の変化を小さくすることができる。このために好ましい要件としては、
(a)組紐構造体の各層組角部分を構成する組糸の破断荷重は、組角度が大きい糸の方が大であるか等しい。
(b)芯糸の破断荷重は、組角度の小さい組糸の破断荷重より小さいか等しい。
が挙げられる。
Furthermore, the braid of the present invention is preferably further designed as follows, whereby the breaking elongation of the braid structure can be increased and the change in stress in the stress-strain curve can be reduced. As a preferable requirement for this,
(A) The breaking load of the braided yarn constituting the layer assembly angle portion of the braided structure is equal to or greater than that of the yarn having a large braid angle.
(B) The breaking load of the core yarn is smaller than or equal to the breaking load of the braided yarn having a small assembly angle.
Can be mentioned.

本発明の組紐構造体において、組角度の異なる層の数はN層とする。各層を内側から順に、B1、B2・・・BNと表わし、芯部分をB0とする。各層の組角度をθ0、θ1、θ2・・・θ3とする。各層を形成する組糸の合計強力をS0、S1、S2・・・SNとすると、本発明の好ましい組糸構造は、次の表1のように表わせる。   In the braided structure of the present invention, the number of layers having different set angles is N. Each layer is described in order from the inside to B1, B2,... BN, and the core portion is B0. Let a set angle of each layer be θ0, θ1, θ2... Θ3. Assuming that the total strength of the braids forming each layer is S0, S1, S2,... SN, a preferred braid structure of the present invention can be expressed as shown in Table 1 below.

Figure 0006553977
Figure 0006553977

表1において、Nは2以上の整数である。Nの上限についてはとくに限定はないか、おもに製造コスト的な観点から4程度である。図2に、引き揃え糸からなる芯糸(2)とその外側に組角度の異なる組構造3層(3,4,5)からなる本発明の組紐構造体(1)の例を模式図で示した。本発明において、多層組構造の好ましい組角度としては、図2のように外側の組角度がより大きい(θ0<θ1<θ2<・・・<θN)構造がより好ましい。この例においては、組角度θが0度の引き揃え芯糸(2)とその外側の組角度θ1の内層組部B1(3)とその外側の組角度θ2の中間層組部B2(4)、さらに外側の組角度θ3である外層組部B3(5)の計3層の組み部で構成される。すなわち、芯部と計3層の組み部からなる中実多層組構造であり、組角度はθ0<θ1<θ2<θ3である。   In Table 1, N is an integer of 2 or more. There is no particular limitation on the upper limit of N, which is about 4 mainly from the viewpoint of manufacturing cost. Fig. 2 is a schematic view showing an example of a braided structure (1) according to the present invention, which comprises a core yarn (2) composed of aligned yarns and three layers (3, 4 and 5) of braided structures different in assembly angle outside thereof. Indicated. In the present invention, as a preferred grouping angle of the multi-layered structure, a structure having a larger outer grouping angle (θ0 <θ1 <θ2 <... <ΘN) as shown in FIG. 2 is more preferable. In this example, the aligned core yarn (2) having a set angle θ of 0 ° and the inner layer set portion B1 (3) of the set angle θ1 outside thereof and the intermediate layer set portion B2 (4) of the set angle θ2 outside thereof Further, it is composed of a total of three layers of outer layer assembly parts B3 (5) having an assembly angle θ3 outside. That is, it is a solid multilayer assembly structure including an assembly of a core and a total of three layers, and the assembly angle is θ0 <θ1 <θ2 <θ3.

前記の(a),(b)の条件は好ましくは同時に満足することが好ましい。ここで同じ組角部分を構成する糸の破断荷重力とは、各組糸の強度を合計した値であり、同じ糸の場合、(組糸一本の強度)×(組糸の使用本数)で表される。したがって、破断荷重を高くするには、同じ素材を使用する場合、各組糸の繊度を大きくするか使用本数(組の打ち数)を増やすことで可能である。   The conditions (a) and (b) are preferably satisfied at the same time. Here, the breaking load force of yarns constituting the same braided part is a value obtained by totaling the strengths of the respective braided yarns, and in the case of the same yarn, (strength of one braided yarn) × (number of yarns used) It is represented by Therefore, in order to increase the breaking load, when using the same material, it is possible to increase the fineness of each braided yarn or to increase the number of yarns used (the number of strikes of the braid).

一般に組紐を引張る場合、最初に組構造部分(組目)が伸ばされ変形するので見かけの伸度は原糸の伸度より高くなるが、この構造伸び領域では応力が小さいので、立ち上がりの見かけの弾性率(剛性)は低くなる。組構造に芯糸を入れた場合、立ち上がり部の剛性(弾性率)は高くなるが、糸自体の伸度が小さいと組角0の糸が破断したときに応力が大きく低下して所望の応力ひずみ曲線とならない。本発明においては複数の組角部分を持った多層構造とし、かつ組角の小さい方から順に糸が破断するような設計とすることで、目標に近い応力ひずみ曲線となることを見出した。   Generally, when the braid is pulled, the apparent elongation is higher than the elongation of the raw yarn because the braid structure part (composition) is first stretched and deformed, but since the stress is small in this structural elongation region, the apparent appearance of the standup is The elastic modulus (rigidity) becomes low. When the core yarn is put in the set structure, the rigidity (elastic modulus) of the rising portion becomes high, but if the elongation of the yarn itself is small, the stress is greatly reduced when the yarn with a set angle of 0 breaks and the desired stress It does not become a strain curve. In the present invention, it has been found that a stress-strain curve close to a target can be obtained by adopting a multilayer structure having a plurality of angle parts and by designing the yarn to break in order from a smaller angle.

また、組角度の小さい層の糸が切断したとき、応力の大幅低下を避けるには、次の組角度層の強力が小さい層の強力と同じかより高いことが望ましい。破断荷重が十分でない場合は、組紐全体が切断するか応力が大幅低下して、組角の小さい部分が破断した時の応力レベルには回復しない。また、組角度の順番(位置)についても特に制限されないが、芯に近い方が組角度が小さく、外側の組紐の組角度が大きい構造がより好ましい。本発明において好ましい組角度(θ)は10〜60度である。また、必要に応じ各層の製紐時にタテ糸(中央糸、柱糸)を挿入することもできる。   Further, when the yarn of the layer having a small group angle is cut, it is desirable that the strength of the next group of angle layers is equal to or higher than the strength of the layer having the small group angle. When the breaking load is not sufficient, the entire braid is cut or the stress is greatly reduced, and the stress level when the portion with a small braid is broken does not recover. The order (position) of the braiding angles is not particularly limited, but a structure closer to the core has a smaller braiding angle and a larger braiding angle of the outer braid is more preferable. A preferred pair angle (θ) in the present invention is 10 to 60 degrees. In addition, it is also possible to insert warp threads (center thread, column thread) at the time of production of each layer, if necessary.

図3は本発明の一実施形態の応力ひずみ曲線である。以下図3の応力ひずみ曲線について説明する。
(1)図3の1段目の応力ひずみ曲線6は、図2の芯糸(2)により主に発現する。
(2)図3の2段目の応力ひずみ曲線7は、図2の内層組部B1(3)により主に発現する。
(3)図3の3段目の応力ひずみ曲線8は、図2の中間層組部B2(4)により主に発現する。
(4)図3の4段目の応力ひずみ曲線9は、図2の外層組部B3(5)により主に発現する。
FIG. 3 is a stress-strain curve of one embodiment of the present invention. Hereinafter, the stress strain curve of FIG. 3 will be described.
(1) The stress distortion curve 6 of the first stage of FIG. 3 is mainly expressed by the core yarn (2) of FIG.
(2) The second stage stress-strain curve 7 of FIG. 3 is mainly expressed by the inner layer assembly portion B1 (3) of FIG.
(3) The third-stage stress-strain curve 8 of FIG. 3 is mainly expressed by the intermediate layer assembly B2 (4) of FIG.
(4) The fourth-step stress-strain curve 9 of FIG. 3 is mainly expressed by the outer layer assembly portion B3 (5) of FIG.

本発明の強化用組紐構造体は、弾性率が50〜500GPa、破断伸度が2.5〜15%であるが好ましい。好ましくは炭素繊維を含有し、破断伸度が3〜10%、引張弾性率が100GPa〜500GPaである。引張強度は好ましくは0.5GPa以上である。この範囲を満足することで鉄筋に近い応力―ひずみ曲線となり、鉄筋代替用に好適に適用できる。   The reinforcing braid structure of the present invention preferably has an elastic modulus of 50 to 500 GPa and a breaking elongation of 2.5 to 15%. Preferably, a carbon fiber is contained, the breaking elongation is 3 to 10%, and the tensile modulus is 100 GPa to 500 GPa. The tensile strength is preferably 0.5 GPa or more. Satisfying this range results in a stress-strain curve close to rebar, which can be suitably applied for rebar replacement.

本発明においては、前記組紐構造体の一部に強化用繊維以外の普通強度繊維(伸度10%〜40%、強度1GPa未満)を必要に応じ含有することができる。例えば、組紐の中心部の芯糸部分と内層組部分との層間に破断伸度10%以上の比較的伸度の高い糸を必要に応じ巻き付け被覆や製紐被覆することもできる。この糸は必ずしも高強度である必要はなく、素材に限定されず、ポリアミド、ポリエステル、ポリオレフィン糸などが使用できる。この糸により、引張時の組目が締まる際の緩衝材的な効果やマトリックス樹脂との親和性の改善が期待できる。   In the present invention, normal strength fibers other than reinforcing fibers (elongation: 10% to 40%, strength less than 1 GPa) can be contained in part of the braid structure as necessary. For example, a relatively high elongation yarn having a breaking elongation of 10% or more may be wound or coated as needed between the core yarn portion and the inner layer set portion in the center of the braid. The yarn is not necessarily high strength and is not limited to the material, and polyamide, polyester, polyolefin yarn, etc. can be used. This yarn can be expected to improve the buffer effect and the affinity with the matrix resin when the set during tension is tightened.

本発明においては、組紐構造体を構成する強化用繊維の少なくとも一部に樹脂成分、好ましくは熱可塑性樹脂が含浸及び/又は被覆されていることが、毛羽発生防止、工程通過性などから好ましく、結果的に構造体の強度利用率を高くすることができる。また、後工程の複合材との親和性を考慮した樹脂を選定できる。熱可塑性樹脂としてはとくに限定はなく、ポリアミド、ポリオレフィン、ポリエステル、ポリウレタンなど使用用途に適した樹脂を選定できる。樹脂の付与方法についても限定されず、溶融コーティング法、樹脂の溶剤溶液または樹脂の分散液を用いた樹脂加工法いずれでも可能である。   In the present invention, at least a part of the reinforcing fibers constituting the braided structure is preferably impregnated and / or coated with a resin component, preferably a thermoplastic resin, from the viewpoint of prevention of fluff generation, processability, etc. As a result, the strength utilization factor of the structure can be increased. In addition, it is possible to select a resin in consideration of the affinity with the composite material in the post-process. The thermoplastic resin is not particularly limited, and resins suitable for use such as polyamide, polyolefin, polyester, polyurethane can be selected. The method for applying the resin is not limited either, and any of the melt coating method, the solvent solution of the resin, and the resin processing method using the dispersion liquid of the resin is possible.

本発明は前記の強化用組紐構造体が使用された複合材料を含む。複合材のマトリックス材料としてはとくに限定なく、コンクリート、セメント、各種樹脂材料が挙げられる。とくに好ましくは、強化用繊維が炭素繊維であり、補強用マトリックスがコンクリートである複合材料である。   The invention comprises a composite material in which the above-mentioned reinforcing braid structure is used. The matrix material of the composite material is not particularly limited, and concrete, cement, various resin materials may be mentioned. Particularly preferred is a composite material in which the reinforcing fibers are carbon fibers and the reinforcing matrix is concrete.

以下実施例を用いて本発明を例示するが、本発明は下記の実施例に限定して解釈されるものではない。   The present invention will be illustrated using the following examples, but the present invention is not construed as being limited to the following examples.

下記の実施例、比較例の評価方法は以下のように行った。
<強伸度、引張り弾性率>
組紐構造体の引張強度、破断伸度はJISL1013に準じて測定した。引張試験時の試料保持は、島津製作所製5KNスプリットドラム式ロープつかみ具を用いた。強度は最大強度、伸度は破断伸度で示した。この保持具は構造上引張初期に、低応力で伸びがやや大きくなるが次のように補正した。引張り弾性率は応力―歪み曲線で、初期部分で最も傾きの大きい部分の傾きで表し、この傾きの直線が応力0の軸と交わる点を伸度0%とした。
<組紐構造体の外径>
ノギスを用いて測定した。
<質量>
組紐を50cm長さに切断し、質量を測定して1m長さの質量に換算した。
<組角度>
組紐を実態顕微鏡下で観察、中央の組目部分を観察(撮影)し、組糸の交差角(2×θNに相当)を測定し、その半分の角度を組角(θ)とした。
The evaluation method of the following example and comparative example was performed as follows.
<Strong elongation, tensile modulus>
The tensile strength and the breaking elongation of the braided structure were measured according to JIS L1013. The sample holding | maintenance at the time of a tension test used Shimadzu 5KN split drum type rope clamp. The strength is indicated by the maximum strength, and the elongation is indicated by the breaking elongation. This holder was corrected in the following manner at the initial stage of tension due to its low stress and a slight increase in elongation. The tensile elastic modulus is a stress-strain curve, and is represented by the slope of the largest slope in the initial part, and the point where the straight line of this slope intersects the axis of zero stress is defined as 0% elongation.
<Outer diameter of braid structure>
Measurements were made using calipers.
<Mass>
The braid was cut to a length of 50 cm, and the mass was measured and converted to a mass of 1 m length.
<Assembly angle>
The braid was observed under an actual microscope, the central stitch portion was observed (photographed), the crossing angle (corresponding to 2 × θN) of the braid was measured, and half the angle was taken as the braiding angle (θ).

下記の実施例、比較例で使用した炭素繊維は次のとおりである。
<炭素繊維>
・東レ社製、商品名“トレカ” T300−12K(炭素繊維)、繊度;800Tex、引張強度;3530MPa、引張弾性率;230GPa、比重;1.76
・東レ社製、商品名“トレカ” T300−3K(炭素繊維)、繊度;198Tex、引張強度;3530MPa、引張弾性率;230GPa、比重;1.76
なお、炭素繊維原糸は1K=66Texであり、単繊維強度は3520MPaであった。
The carbon fibers used in the following examples and comparative examples are as follows.
<Carbon fiber>
-Toray Industries, Inc., trade name "Torayca" T300-12K (carbon fiber), fineness: 800 Tex, tensile strength: 3530 MPa, tensile elastic modulus: 230 GPa, specific gravity: 1.76
-Toray Industries, Inc., trade name "Torayca" T300-3K (carbon fiber), fineness: 198 Tex, tensile strength: 3530 MPa, tensile elastic modulus: 230 GPa, specific gravity: 1.76
The carbon fiber yarn had 1 K = 66 Tex, and the single fiber strength was 3520 MPa.

(実施例1)
炭素繊維12K糸2本を引き揃え芯糸として、炭素繊維3K甘撚り糸(30T/m)を組糸として16打ち製紐した(第1層)。この際ポリエステル普通糸(繊度;1100dtex)を芯糸に巻きつけながら製紐した。さらに炭素繊維3K甘撚り糸を16本用いて同様にポリエステル普通糸(繊度;1100dtex)を巻き付けながら製紐した(第2層)。得られた製紐糸の炭素繊維は芯糸、中間層(第1層)、外層(第2層)の3層からなり、それぞれの破断荷重は、芯糸(タテ糸挿入部を含む)が24K分、第1層組糸24K分、第2層組糸48K分で、各部の破断荷重は、
芯糸=第1層組糸<第2層組糸
となっている。
表2に構成、製紐糸の物性を示した。
Example 1
The two carbon fiber 12K yarns were drawn as a core yarn, and the carbon fiber 3K sweet twisted yarn (30 T / m) was used as a braid for 16 punching (first layer). At this time, polyester ordinary yarn (fineness; 1100 dtex) was wound while being wound around a core yarn. Further, 16 carbon fiber 3K sweet-twisted yarns were used to form a string (second layer) while winding polyester ordinary yarn (fineness: 1100 dtex) in the same manner. The carbon fiber of the obtained string yarn is composed of three layers of a core yarn, an intermediate layer (first layer), and an outer layer (second layer), and each breaking load is determined by the core yarn (including the warp yarn insertion portion). The breaking load of each part is 24 K, the first layer braided yarn 24 K, and the second layer braided yarn 48 K
Core yarn = first layer braided yarn <second layer braided yarn.
Table 2 shows the constitution and physical properties of the yarn produced.

(実施例2)
実施例1の同様の構成で、第1層と第2層の組目(組角)を変えて組紐構造体を作製した。すなわち、炭素繊維12K糸2本を引き揃え芯糸として、炭素繊維3K甘撚り糸(30T/m)を組糸として16打ち製紐した(第1層)。この際ポリエステル普通糸(繊度;1100dtex)を芯に巻き付けながら製紐した。さらに炭素繊維3K甘撚り糸を16本用いて同様にポリエステル普通糸(繊度;1100dtex)を巻き付けながら製紐した(第2層)。この際製紐機のギアを変えることで、実施例1より、組角が大きくなるようにした。得られた製紐糸の炭素繊維は芯糸、中間層(第1層)、外層(第2層)の3層からなり、それぞれの破断荷重は、芯糸(タテ糸挿入部を含む)が24K分、第1層組糸24K分、第2層組糸48K分で、各部の破断荷重は、
芯糸=第1層組糸<第2層組糸
となっている。
表2に構成、製紐糸の物性を示した。
(Example 2)
In the same configuration as in Example 1, a braid structure was manufactured by changing a combination (arrangement angle) of the first layer and the second layer. That is, 16 carbonized yarns (first layer) were made using two carbon fiber 12K yarns as an aligned core yarn and carbon fiber 3K sweet twisted yarn (30 T / m) as a braid. At this time, a polyester ordinary yarn (fineness; 1100 dtex) was wound while being wound around a core. Further, 16 carbon fiber 3K sweet-twisted yarns were used to form a string (second layer) while winding polyester ordinary yarn (fineness: 1100 dtex) in the same manner. At this time, by changing the gear of the braiding machine, the assembly angle was made larger than in the first embodiment. The carbon fiber of the obtained string yarn is composed of three layers of a core yarn, an intermediate layer (first layer), and an outer layer (second layer), and each breaking load is determined by the core yarn (including the warp yarn insertion portion). The breaking load of each part is 24 K, the first layer braided yarn 24 K, and the second layer braided yarn 48 K
Core yarn = first layer braided yarn <second layer braided yarn.
Table 2 shows the constitution and physical properties of the yarn produced.

(比較例1,2,3)
比較例1として、実施例1の芯糸のみ、比較例2として芯糸のない組部のみの製紐糸、比較例3として芯糸の外側に1層のみ被覆したサンプルを作製して実施例と比較した。
各実施例、比較例について条件と結果を表2にまとめて示す。
(Comparative Examples 1, 2, 3)
As Comparative Example 1, only the core yarn of Example 1 was produced, and as Comparative Example 2, only a braided yarn having a set portion without core yarn was produced, and as Comparative Example 3, a sample in which only one layer was coated on the outer side of the core yarn was produced Compared with.
The conditions and results for each example and comparative example are summarized in Table 2.

Figure 0006553977
Figure 0006553977

表2から明らかなとおり、本発明の各実施例は比較例に比べ、破断伸度が高くなっており、弾性率も芯糸のない比較例2が、弾性率が低下しているのに比べ、実施例1,2とも原糸に近い弾性率であり、目標とする、高破断伸度と高弾性率(高剛性)が得られた。   As is clear from Table 2, each Example of the present invention has a higher breaking elongation compared to the Comparative Example, and the elastic modulus is also lower than that of Comparative Example 2 in which the core yarn is absent. In both Examples 1 and 2, the modulus of elasticity was close to that of the raw yarn, and the target high elongation at break and high modulus of elasticity (high rigidity) were obtained.

図4に本発明の実施例1〜2の強化用組紐構造体の応力ひずみ曲線を示し、図5に比較例1〜3の構造体の応力ひずみ曲線を示す。図4〜5から明らかなとおり、本発明の実施例1〜2の強化用組紐構造体は比較例1〜3に比べて伸度を大幅に大きくすることができ、鉄筋に近い応力―ひずみ曲線の補強材とすることができた。   FIG. 4 shows the stress-strain curve of the reinforcing braid structure of Examples 1-2 of the present invention, and FIG. 5 shows the stress-strain curve of the structures of Comparative Examples 1-3. As is clear from FIGS. 4 to 5, the reinforcing braided structure of Examples 1 and 2 of the present invention can significantly increase the elongation compared to Comparative Examples 1 to 3, and a stress-strain curve close to a reinforcing bar It could be used as a reinforcing material.

1 組紐構造体
2 芯糸
3 内層組部
4 中間層組部
5 外層組部
Reference Signs List 1 braid structure 2 core yarn 3 inner layer set portion 4 middle layer set portion 5 outer layer set portion

Claims (14)

引張強度1GPa以上、破断伸度1〜8%の強化用繊維1種以上を含有する組紐構造体であって、
前記組紐構造体は、芯糸の表面を組糸が被覆しており、
前記組糸は糸軸方向を0度としたとき、組角度の異なる少なくとも2層の組糸で構成されていることを特徴とする強化用組紐構造体。
A braided structure comprising one or more reinforcing fibers having a tensile strength of 1 GPa or more and a breaking elongation of 1 to 8%,
In the braided structure, a braided yarn covers the surface of the core yarn,
The braid structure for reinforcement is characterized in that the braid is composed of at least two layers of braids having different braiding angles when the yarn axis direction is 0 degree.
前記強化用繊維は、炭素繊維、高強力ポリエチレン繊維、パラアラミド繊維、PBO繊維、高強力PVA繊維、ポリアリレート繊維及び無機繊維からなる群から選ばれる少なくとも1種である請求項1に記載の強化用組紐構造体。   The reinforcing fiber according to claim 1, wherein the reinforcing fiber is at least one selected from the group consisting of carbon fiber, high strength polyethylene fiber, para-aramid fiber, PBO fiber, high strength PVA fiber, polyarylate fiber and inorganic fiber. Braid structure. 前記強化用繊維は炭素繊維を含有する請求項1又は2に記載の強化用組紐構造体。   The reinforcing braid structure according to claim 1, wherein the reinforcing fibers contain carbon fibers. 前記組紐構造体は芯糸に炭素繊維を含有し、前記芯糸の炭素繊維の総繊度が組紐構造体全体の高強度繊維の総繊度の15〜33%である請求項1〜3のいずれかに記載の強化用組紐構造体。   The said braided structure contains carbon fiber in core yarn, The total fineness of the carbon fiber of the said core yarn is 15 to 33% of the total fineness of the high strength fiber of the whole braided structure. The reinforcing braid structure described in 1. 前記芯糸は、無撚り引き揃え糸、撚り数50T/m(Tは撚り数)以下の甘撚り糸、及び組角10度以下の組糸から選ばれる少なくとも一つである請求項1〜4のいずれかに記載の強化用組紐構造体。   The core yarn is at least one selected from non-twist aligned yarns, sweet twist yarns having a twist number of 50 T / m (T is the twist number) or less, and braided yarns having a set angle of 10 degrees or less. The reinforcing braid structure according to any one of the above. 前記芯糸の破断荷重は、組糸部分各層の組糸の破断荷重以下である請求項1〜5のいずれかに記載の強化用組紐構造体   The reinforcing braid structure according to any one of claims 1 to 5, wherein the breaking load of the core yarn is equal to or less than the breaking load of the braiding yarn of each layer of the braiding portion. 前記各層の組角部分を構成する組糸の破断荷重は、組角度が大きい糸と等しいか又は組角度が大きい糸の方が大である請求項1〜6のいずれかに記載の強化用組紐構造体。   The reinforcing braid according to any one of claims 1 to 6, wherein the breaking load of the braided yarn constituting the braided portion of each layer is equal to that of a yarn having a larger braiding angle or larger in the yarn having a larger braiding angle. Structure. 前記強化用組紐構造体は、弾性率が50〜500GPa、破断伸度が2.5〜15%である請求項1〜7のいずれかに記載の強化用組紐構造体。   The reinforcing braid structure according to any one of claims 1 to 7, wherein the reinforcing braid structure has an elastic modulus of 50 to 500 GPa and a breaking elongation of 2.5 to 15%. 前記強化用組紐構造体の一部に、破断伸度10〜40%かつ引張強度1GPa未満の普通強度の繊維を含む請求項1〜8のいずれかに記載の強化用組紐構造体。   The reinforcing braid structure according to any one of claims 1 to 8, wherein a part of the reinforcing braid structure contains a fiber of ordinary strength having a breaking elongation of 10 to 40% and a tensile strength of less than 1 GPa. 前記普通強度繊維は、芯糸と内側組糸の間に巻き付けるか又は編組されている請求項9に記載の強化用組紐構造体。   10. The reinforcing braid structure according to claim 9, wherein the ordinary strength fiber is wound or braided between a core yarn and an inner braided yarn. 前記強化用組紐構造体は、樹脂成分が含浸及び/又は被覆されている請求項1〜10のいずれかに記載の強化用組紐構造体。   The reinforcing braid structure according to any one of claims 1 to 10, wherein the reinforcing braid structure is impregnated and / or coated with a resin component. 前記樹脂成分は熱可塑性樹脂である請求項11に記載の強化用組紐構造体。   The reinforcing braid structure according to claim 11, wherein the resin component is a thermoplastic resin. 請求項1〜12のいずれかに記載の強化用組紐構造体と補強用マトリックス材料を含む複合材料。   A composite material comprising the reinforcing braid structure according to any one of claims 1 to 12 and a reinforcing matrix material. 前記強化用組紐構造体が炭素繊維を含み、前記補強用マトリックスがコンクリートである請求項13に記載の複合材料。   The composite material according to claim 13, wherein the reinforcing braid structure contains carbon fibers, and the reinforcing matrix is concrete.
JP2015157601A 2015-08-07 2015-08-07 Reinforcement braid structure and composite material using the same Expired - Fee Related JP6553977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015157601A JP6553977B2 (en) 2015-08-07 2015-08-07 Reinforcement braid structure and composite material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157601A JP6553977B2 (en) 2015-08-07 2015-08-07 Reinforcement braid structure and composite material using the same

Publications (2)

Publication Number Publication Date
JP2017036519A JP2017036519A (en) 2017-02-16
JP6553977B2 true JP6553977B2 (en) 2019-07-31

Family

ID=58046938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157601A Expired - Fee Related JP6553977B2 (en) 2015-08-07 2015-08-07 Reinforcement braid structure and composite material using the same

Country Status (1)

Country Link
JP (1) JP6553977B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106918B2 (en) * 2018-03-23 2022-07-27 三菱ケミカル株式会社 Unidirectional reinforcing fiber sheets and braids
CN110359302B (en) * 2019-08-05 2024-03-19 鲁普耐特集团有限公司 Wear-resistant light mountain climbing rope and manufacturing method thereof
JP2023062721A (en) * 2021-10-22 2023-05-09 学校法人金沢工業大学 Concrete reinforcement composite material and concrete reinforcing bar

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249620B2 (en) * 1972-11-14 1977-12-19
JPH0621492B2 (en) * 1986-06-23 1994-03-23 三井建設株式会社 Structural material
JPS6312786A (en) * 1986-07-03 1988-01-20 清水建設株式会社 Rod material
JPH02216270A (en) * 1988-10-14 1990-08-29 Osaka Gas Co Ltd Structural material and production thereof
JPH11342233A (en) * 1998-03-31 1999-12-14 Mizuno Corp Carbon fiber reinforced plastic golf shaft
JP2002371139A (en) * 2001-06-14 2002-12-26 Yuichi Sugiyama Reinforcing fiber composition for frp, and frp molded article produced by using the same
JP4314785B2 (en) * 2002-06-14 2009-08-19 村田機械株式会社 Laminated structure of braid
JP2004209838A (en) * 2003-01-06 2004-07-29 Murata Mach Ltd Thick-walled pipe and method for manufacturing thick-walled pipe
JP5670230B2 (en) * 2010-12-10 2015-02-18 小松精練株式会社 String-like reinforcing fiber composite

Also Published As

Publication number Publication date
JP2017036519A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US7341076B2 (en) Woven fabric comprising leno weave bound metal
US7650742B2 (en) Cable made of high strength fiber composite material
KR101844105B1 (en) Hybrid cords having high tenacity and high elongation at break
JP6129963B2 (en) High-strength fiber composite and strand structure and multi-strand structure
US5077113A (en) Filament-reinforced resinous structural rod
JP6553977B2 (en) Reinforcement braid structure and composite material using the same
WO2014097666A1 (en) High-strength fiber wire material, and composite material containing said high-strength fiber wire material
EP1690966B1 (en) Woven fabric comprising leno weave bound metal elements
JP5758203B2 (en) String-like reinforcing fiber composite, concrete reinforcing bar and brace material
JP6084262B2 (en) Mixed fiber and method for producing the same
RU2701618C2 (en) New bielastic cord from carbon fibre as reinforcing breaker layer
US20040068972A1 (en) Conjugated yarn and fiber reinforced plastic
JP6022186B2 (en) Muscle
JP6022188B2 (en) Tensile material
JPH04363215A (en) Carbon fiber prepreg and carbon fiber reinforced resin
RU2711836C2 (en) New tire cord from bielastic aramid as reinforcement layer of breaker
JP2006225812A (en) Carbon fiber sheet
JPH0323676B2 (en)
Ruan et al. Enhancing longitudinal compressive properties of unidirectional FRP based on microbuckling compression failure mechanism
EP1964952B1 (en) Yarn for technical fabrics and method for manufacturing the same
RU2715710C2 (en) Novel bielastic aramid tire cord as carcass reinforcement
JP5101254B2 (en) Method for producing reinforcing fiber assembly
JP2006233352A (en) Knitted material and method for repairing/reinforcing structural material
JP6022187B2 (en) Tensile material
CZ2008607A3 (en) Product made of fiber composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190705

R150 Certificate of patent or registration of utility model

Ref document number: 6553977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees