JPH022567A - Resist pattern forming method - Google Patents

Resist pattern forming method

Info

Publication number
JPH022567A
JPH022567A JP63146552A JP14655288A JPH022567A JP H022567 A JPH022567 A JP H022567A JP 63146552 A JP63146552 A JP 63146552A JP 14655288 A JP14655288 A JP 14655288A JP H022567 A JPH022567 A JP H022567A
Authority
JP
Japan
Prior art keywords
resist
layer
intermediate layer
siloxane
polyorganosylarylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63146552A
Other languages
Japanese (ja)
Inventor
Akira Oikawa
及川 朗
Shunichi Fukuyama
俊一 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63146552A priority Critical patent/JPH022567A/en
Publication of JPH022567A publication Critical patent/JPH022567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating

Abstract

PURPOSE:To form fine resist patterns which are hardly deteriorated with age by using polyorganosyl arylenesiloxane as the intermediate layer of a resist having a three-layered structure. CONSTITUTION:The polyorganosyl arylenesiloxane is used as the intermediate layer of the resist having the three-layered structure. The polyorganosyl arylenesiloxane referred to here has the structure in which the arylene group shown by R2 constitutes the main chain by the arrangement -Si-O-Si-R2- or makes crosslinking by the arrangement of R2 between Si arranged in two rows in -Si-O-Si-O- and X directions, as shown by examples of Fig. (A) and (B). The resist patterns which are not deteriorated with age and have high resolution are formed in this way.

Description

【発明の詳細な説明】 〔1既要〕 三層構造レジストを構成する中間層に関し、段差のある
被処理基板上に安定で且つ高解像度のレジストパターン
を形成することを目的とし、三層構造レジストの中間層
としてポリオルガノシルアリーレンシロキサンを用いて
レジストバ〔産業上の利用分野〕 本発明はジルアリーレンシロ;トサン樹脂を中間層とす
る三層構造レジストパターンの形成方法に関する。
[Detailed Description of the Invention] [1 Already Required] Regarding the intermediate layer constituting the three-layer resist, the purpose of forming a stable and high-resolution resist pattern on a processed substrate with steps is to create a three-layer resist. TECHNICAL FIELD The present invention relates to a method for forming a three-layer resist pattern using a polyorganosylarylene siloxane as an intermediate layer of the resist.[Industrial Application Field] The present invention relates to a method for forming a three-layer resist pattern using a polyorganosylarylene siloxane as an intermediate layer.

〔従来の技術〕[Conventional technology]

半導体集積回路の形成には薄膜形成技術と写真蝕刻技術
(フォトリソグラフィ或いは電子線リソグラフィ)が多
用されており、これらの技術の進歩によって半導体ji
1位素子は益々微細化され、LSIやVLSIのような
大容量素子が実用化されている。
Thin film formation technology and photo-etching technology (photolithography or electron beam lithography) are often used to form semiconductor integrated circuits, and advances in these technologies have made it possible to
The number one element is becoming increasingly finer, and large-capacity elements such as LSI and VLSI are being put into practical use.

すなわち、配線パターンについて言えば、被処理基板上
に形成した配線形成材料からなる薄膜の上にレジストを
被覆し、これに選択的に紫外FrfA露光を施した後に
現像してレジストパターンを作り、これにウェットエツ
チング或いはドライエツチングを行って微細配線パター
ンを形成する方法、或いは電子線の径を極微細に絞り、
レジスト上を走査し、現像を行ってレジストパターンを
作す、エツチングにより微細な配線パターンを形成する
方法が使用されている。
That is, regarding the wiring pattern, a resist is coated on a thin film made of a wiring forming material formed on a substrate to be processed, and this is selectively exposed to ultraviolet FrfA and then developed to create a resist pattern. A method of forming a fine wiring pattern by performing wet etching or dry etching, or by narrowing the diameter of the electron beam to an ultra-fine size.
A method is used in which a resist pattern is created by scanning and developing a resist, and a fine wiring pattern is formed by etching.

ところが、LSI、VLSIのような半導体素子製造プ
ロセスにおいては基板表面に1〜2μmの段差を生ずる
ことが多く、か\る場合に従来の単層レジストを適用す
ると微細パターンを高精度で形成することは不可能にな
る。
However, in the manufacturing process of semiconductor devices such as LSI and VLSI, steps of 1 to 2 μm often occur on the substrate surface, and in such cases, applying a conventional single-layer resist makes it difficult to form fine patterns with high precision. becomes impossible.

すなわち、微細パターンの形成においては、紫外線露光
の場合、光の散乱や反射、定在波の形容によるパターン
の変形や歪みが無視できなくなる。
That is, in the formation of fine patterns, in the case of ultraviolet light exposure, deformation and distortion of the pattern due to scattering and reflection of light and the appearance of standing waves cannot be ignored.

また、電子線の場合はレジスト膜に入射した電子線の拡
がりによりパターンが変形する。
Furthermore, in the case of an electron beam, the pattern is deformed due to the spread of the electron beam incident on the resist film.

このような問題は露光するレジスト層を21月膜化する
ことにより回避することができる。
Such problems can be avoided by forming the exposed resist layer into a thin film.

そこで、まず下層レジストを用いて平坦化し、この上に
耐酸素ドライエツチング性の優れた上層レジストを薄く
形成してドライエツチングして微細パターンを形成する
二層構造レジスト、或いは下層レジストを用いて平坦化
し、この上に耐酸素ドライエツチング性の優れた中間層
を形成し、更にその上に上層レジストを)1vり形成し
てドライエツチングし、微細パターンを形成する三層構
造レジストが用いられている。
Therefore, a two-layer resist is used, in which a lower resist is used to planarize the resist, and a thin upper resist with excellent oxygen dry etching resistance is formed on top of the resist, and a fine pattern is formed by dry etching, or a lower resist is used to flatten the resist. A three-layer structure resist is used in which a fine pattern is formed by forming an intermediate layer with excellent oxygen dry etching resistance, and then forming an upper layer resist on top of this and dry etching it. .

すなわち、三層構造レジストにおいては二層構造レジス
トの上層レジストの必要特性を中間層と上層とに機能分
離した構成をとっており、そのため上層レジストは必ず
しも耐酸素プラズマ性は必要はなく、従来のレジストを
使用することができる。
In other words, the three-layer resist has a configuration in which the required characteristics of the upper resist of the two-layer resist are functionally separated into the middle layer and the upper layer, and therefore the upper resist does not necessarily need to have oxygen plasma resistance, which is different from the conventional one. Resist can be used.

か\る三層構造レジストの中間層として従来は化学気相
成長法(略称CVO法)で形成する二酸化硅素(5iO
z) I模やスピンコードにより膜形成が可能なスピン
オングラス(略称5OG)膜が用いられていた。
Conventionally, silicon dioxide (5iO
z) A spin-on glass (abbreviated as 5OG) film, which can be formed by I-type or spin code, was used.

然し、CVD法は工程が煩雑であり、またSOCを構成
するシリコーン樹脂は反応性の高い官能基を多量に含む
ために経時変化が起こり易いと云う欠点がある。
However, the CVD method has the disadvantage that the process is complicated, and the silicone resin constituting the SOC is likely to change over time because it contains a large amount of highly reactive functional groups.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

三層構造レジストの中間層として5i02膜やsoG膜
が用いられている。
A 5i02 film or a soG film is used as an intermediate layer of a three-layer resist.

しかし、先に記したようにスピンコード法が使用できな
かったり、スピンコード法が使用できるSOC膜につい
ては経時変化が起こり易いと云う問題がある。
However, as mentioned above, there is a problem in that the spin code method cannot be used, or the SOC film for which the spin code method can be used is susceptible to deterioration over time.

そこで、スピンコードが可能であると共に安定であり、
且つ耐酸素プラズマ性に優れた材料を実用化することが
課題である。
Therefore, spin codes are possible and stable;
The challenge is to put into practical use a material with excellent oxygen plasma resistance.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記の課題は三Im JM造レジストの中間層としてポ
リオルガノシルアリーレンシロキサンを用いることによ
り解決することができる。
The above problems can be solved by using polyorganosylarylene siloxane as the intermediate layer of the 3Im JM resist.

〔作用〕[Effect]

本発明は三層構造レジストの中間層としてポリオルガノ
シルアリーレンシロキサンを用いるものである。
The present invention uses polyorganosylarylene siloxane as the intermediate layer of a three-layer resist.

こ\で、ポリオルガノシルアリーレンシロキサンは第1
図(八)および(B)に−例を示すようにI?、で示す
アリーレン基が一3i−0−5i−112−と配列して
主鎖を構成したり、−5i−0−St−0−とX方向に
二層に配列するSiの間にR2が配列して架橋をする構
造をしている。
Here, polyorganosylarylene siloxane is the first
In figures (8) and (B) - as shown in the example I? , the arylene group shown as 13i-0-5i-112- forms a main chain, or the R2 is arranged between -5i-0-St-0- and Si arranged in two layers in the X direction. It has a structure in which it is arranged and crosslinked.

こ\で、第1図(A)で示す構造のポリオルガノシルア
リーレンシロキサンについては公知であるが、同図(r
3)で示すポリオルガノシルアリーレンシロキサンは公
知ではない。
Here, the polyorganosylarylene siloxane having the structure shown in FIG. 1(A) is known, but the structure shown in FIG.
The polyorganosylarylene siloxane shown in 3) is not known.

発明者等は簡単な方法で効率よく製造することができ、
加熱した際に酸化劣化が起こりにく\、また硬化時に脱
水量が少ないことから架橋密度の低い柔軟な膜を形成で
き、そのため半導体素子を製造する際の眉間絶縁nりに
適する材料として同図(1’3)に示す構造式のポリオ
ルガノシルアリーレンシロキサンについて出願申請を行
っている。
The inventors can efficiently manufacture the product using a simple method,
It is less susceptible to oxidative deterioration when heated, and because it dehydrates less during curing, it can form a flexible film with low crosslink density, making it a suitable material for glabellar insulation when manufacturing semiconductor devices. An application has been filed for polyorganosylarylene siloxane with the structural formula shown in (1'3).

(件名「有機ケイ素重合体およびその製法ならびにそれ
を使用した半導体装置」昭和63年2月27日付は出願
) なお、第1図(A)および(B)で構造式を示すポリオ
ルガノシルアリーレンシロキサンを構成するアリーレン
基は二価の芳香族基であれば何れでもよいが、p−フエ
ニーレン基または m−フエニーレン基のようにFQ車
な構造のものが便宜である。
(Subject: "Organosilicon polymer, method for producing the same, and semiconductor device using the same" filed on February 27, 1988) Polyorganosylarylene siloxane whose structural formula is shown in Figures 1 (A) and (B) The arylene group constituting may be any divalent aromatic group, but it is convenient to have an FQ structure such as p-phenylene group or m-phenylene group.

また、ポリオルガノジルアリーレンジロー構造j1″L
位の分子鎮中でのアリーレン基の含有比率としては、2
5重足置以上含まれていることが望ましい。
In addition, polyorganosyl ary range low structure j1″L
The content ratio of arylene groups in the molecular chain at position is 2
It is desirable to include at least 5 footrests.

次に、ポリオルガノシルアリーレンシロキサンは275
nmの付近を中心として芳香族環に起因する吸収帯をも
っており、弗化クリプトン(KrF)を用いるエキシマ
レーザを光源として上層を露光してレジストパターンを
形成する場合には、この発振波長が284.5nmであ
るためにレーリ′光を吸収し、反射防止膜として働くこ
とから、パターンの変形を緩和することができる。
Next, polyorganosylarylene siloxane is 275
It has an absorption band caused by the aromatic ring centered around 284 nm, and when a resist pattern is formed by exposing the upper layer using an excimer laser using krypton fluoride (KrF) as a light source, the oscillation wavelength is 284 nm. Since it is 5 nm thick, it absorbs Rayleigh' light and acts as an antireflection film, which can alleviate pattern deformation.

〔実施例〕〔Example〕

ポリオルガノシルアリーレンシロキサン(第1図B対応
)の合成例: 300ccの四つ目フラスコにメチルイソブチルケトン
100cc,メチルセロソルブアセテート50ccおよ
び水30ccを入れ、触媒としてトリエチルアミン15
ccを加え、攪拌しながら一65℃に冷却した。
Synthesis example of polyorganosylarylene siloxane (corresponding to Figure 1 B): Put 100 cc of methyl isobutyl ketone, 50 cc of methyl cellosolve acetate and 30 cc of water into a 300 cc fourth flask, and add 15 ml of triethylamine as a catalyst.
cc was added, and the mixture was cooled to -65°C while stirring.

別に1.4−ビス(メチルジクロロシリル)ベンゼンl
Ogをテトラヒドロフラン50ccに溶解し、フラスコ
中に30分かけて滴下した。
Separately 1,4-bis(methyldichlorosilyl)benzene l
Og was dissolved in 50 cc of tetrahydrofuran and added dropwise into the flask over 30 minutes.

滴下した後、系を1.0°C/分の昇温速度で75℃に
加温し、2時間に互って撹拌を継続した。
After the addition, the system was heated to 75° C. at a heating rate of 1.0° C./min and stirring was continued for 2 hours.

冷却した後、系を500ccの分液漏斗に移し、水とメ
チルイソブチルケトンを各100ccづつ加えて攪拌し
、静置した後、下層の水層を除いた。
After cooling, the system was transferred to a 500 cc separatory funnel, 100 cc each of water and methyl isobutyl ketone were added, stirred, allowed to stand, and the lower aqueous layer was removed.

次に・有機層をフラスコに戻し、加熱攪拌し、共沸によ
って残存した水を完全に取り除いた。
Next, the organic layer was returned to the flask, heated and stirred, and residual water was completely removed by azeotropy.

次に溶媒をエチルセルソルブアセテートに置換し、12
0℃で1.0時間に互って攪拌した後、反応溶液を多量
の水に投入してポリマを析出させ、濾過回収して6.1
gのポリジメチル−p−シルフェニレンジシロキサンの
白色粉末を得た。
Next, the solvent was replaced with ethyl cellosolve acetate, and 12
After stirring at 0°C for 1.0 hour, the reaction solution was poured into a large amount of water to precipitate the polymer, and the polymer was collected by filtration.
A white powder of polydimethyl-p-silphenylene disiloxane (g) was obtained.

そしてcpcにより重量平均分子量を測定した結果、7
.5 XIO’であった。
Then, as a result of measuring the weight average molecular weight by CPC, it was found to be 7
.. It was 5 XIO'.

実施例: 上記の方法で得たポリジメチル−p−シルフェニレンジ
シロキサン1gをメチルイソブチルケトン15mjl!
に溶解して中間層溶液を調整した。
Example: 1 g of polydimethyl-p-silphenylene disiloxane obtained by the above method was mixed with 15 mjl of methyl isobutyl ketone!
An intermediate layer solution was prepared by dissolving the mixture in

先−J’、Siウェハ上にシソプレー社製の「マイクロ
ポジット1350レジスト」を膜JWが2μmになるよ
うに塗布してウェハの段差を平坦化した後、2。
Pre-J', after applying "Microposit 1350 resist" manufactured by Shisopra Co., Ltd. so that the film JW becomes 2 μm on the Si wafer to flatten the steps on the wafer, 2.

OoCで1時間の加熱を行い、硬化させて下層レジスト
を形成した。
Heating was performed at OoC for 1 hour to cure and form a lower resist.

その上に先に調整したレジスト溶液を膜厚が0。On top of that, the resist solution prepared earlier was applied to a film thickness of 0.

2μmとなるように塗布した後、200 ’cで1時間
加熱し硬化させて中間層を作った。
After coating to a thickness of 2 μm, the intermediate layer was prepared by heating at 200°C for 1 hour to cure.

次に、上層レジストとして富士通研究新製のポジ副電子
線レジスl−CMI?を膜厚が0.2μmとなるように
塗布し、溶剤を乾燥させた後、電子線露光と現像を行っ
た。
Next, as an upper layer resist, Fujitsu Research New Co., Ltd.'s positive sub-electron beam resist l-CMI? was applied to a film thickness of 0.2 μm, and after drying the solvent, electron beam exposure and development were performed.

次に、上層レジストをマスクとして、六弗化炭素(C3
Fg)ガスにより中間層をエツチングし、上層パターン
を中間層に転写した。
Next, using the upper resist as a mask, carbon hexafluoride (C3
Fg) The intermediate layer was etched with gas, and the upper layer pattern was transferred to the intermediate layer.

更に、この中間層をマスクとしてo2ガスにより下層レ
ジストのエツチングを行い、中間層パターンを下層に転
写した。
Furthermore, the lower resist layer was etched using O2 gas using this intermediate layer as a mask, and the intermediate layer pattern was transferred to the lower layer.

その結果、このようにして形成したレジストパターンは
0.2μmのラインアンドスペースを解像することがで
きた。
As a result, the resist pattern thus formed was able to resolve lines and spaces of 0.2 μm.

なお、この実施例においてはポリジメチル−p−シルフ
ェニレンジシロキサンの使用例について記したが、ポリ
ジメチル−m−シルフェニレンジシロキサンを用いる場
合も全(同様であり、また第1図(A)で示すポリオル
ガノジルアリーレンシロ・Fサンを用いる場合も同様で
ある。
In this example, an example of using polydimethyl-p-sylphenylene disiloxane was described, but the same applies to all cases where polydimethyl-m-sylphenylene disiloxane is used (see FIG. 1(A)). The same applies to the case of using the polyorganosyl arylene salt F-san shown in the following.

〔発明の効果〕〔Effect of the invention〕

第1図(Δ)および(B)で示すポリオルガノシルアリ
ーレンシロキサンを中間層として三層構造からなるレジ
ストパターンを形成すれば、経時変化がなく、また高解
像度のレジストパターンを形成することができる。
By forming a resist pattern with a three-layer structure using the polyorganosylarylene siloxane shown in FIG. 1 (Δ) and (B) as an intermediate layer, it is possible to form a resist pattern that does not change over time and has a high resolution. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、  (B)はポリオルガルシンシロキサ
ンの構造式である。 シルア 〔ビ、−3是OV2 (f’?2)V2ルイaL ビ+tiH,C四3.C2H5,7L−C3HzスーC
5H7,0HOCA3,0C2Hs、0−7L−C3t
h、 o−,1−Cat−17ピ2(= アラ−し゛ノ
ブら ル(310−50000の正数 lズリオルがノシルアシーレ゛7シロキリンの刀も肛或
゛茅  1   の
FIGS. 1(A) and 1(B) are the structural formulas of polyorgancine siloxane. Silua [bi, -3 is OV2 (f'?2) V2 Rui aL bi+tiH, C43. C2H5,7L-C3Hz SueC
5H7,0HOCA3,0C2Hs, 0-7L-C3t
h, o-, 1-Cat-17 Pi 2 (= Arashi knobral (positive number 310-50000)

Claims (2)

【特許請求の範囲】[Claims] (1)三層構造レジストの中間層としてポリオルガノシ
ルアリーレンシロキサンを用いることを特徴とするレジ
ストパターンの形成方法。
(1) A method for forming a resist pattern, characterized in that polyorganosylarylene siloxane is used as an intermediate layer of a three-layer resist.
(2)前記のポリオルガノシルアリーレンシロキサンを
構成するアリーレン基がパラフェニレン基またはメタフ
ェニレン基であることを特徴とするレジストパターンの
形成方法。
(2) A method for forming a resist pattern, wherein the arylene group constituting the polyorganosylarylene siloxane is a paraphenylene group or a metaphenylene group.
JP63146552A 1988-06-14 1988-06-14 Resist pattern forming method Pending JPH022567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63146552A JPH022567A (en) 1988-06-14 1988-06-14 Resist pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63146552A JPH022567A (en) 1988-06-14 1988-06-14 Resist pattern forming method

Publications (1)

Publication Number Publication Date
JPH022567A true JPH022567A (en) 1990-01-08

Family

ID=15410242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63146552A Pending JPH022567A (en) 1988-06-14 1988-06-14 Resist pattern forming method

Country Status (1)

Country Link
JP (1) JPH022567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126036A (en) * 1989-10-11 1991-05-29 Oki Electric Ind Co Ltd Intermediate layer forming material for three-layer resist method
US6743885B2 (en) 2001-07-31 2004-06-01 Sumitomo Chemical Company, Limited Resin composition for intermediate layer of three-layer resist
JP2011032475A (en) * 2009-07-31 2011-02-17 Cheil Industries Inc Aromatic ring-containing polymer for resist underlayer, resist underlayer composition containing the same, and method for patterning device by using the composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126036A (en) * 1989-10-11 1991-05-29 Oki Electric Ind Co Ltd Intermediate layer forming material for three-layer resist method
US6743885B2 (en) 2001-07-31 2004-06-01 Sumitomo Chemical Company, Limited Resin composition for intermediate layer of three-layer resist
JP2011032475A (en) * 2009-07-31 2011-02-17 Cheil Industries Inc Aromatic ring-containing polymer for resist underlayer, resist underlayer composition containing the same, and method for patterning device by using the composition

Similar Documents

Publication Publication Date Title
JP2009527021A (en) Anti-reflective coating material
JPH04366958A (en) Radiation sensitive resin composition
JPWO2005101125A1 (en) Heat-resistant photosensitive resin composition, pattern manufacturing method using the composition, and electronic component
JPH022567A (en) Resist pattern forming method
JPS5893240A (en) Semiconductor device and preparation thereof
JPS62215944A (en) Heat resistant photosensitive resin composition and formation of insulating layer
JP4288962B2 (en) Heat-resistant photosensitive resin composition, pattern manufacturing method using the composition, and electronic component
JPS5843449A (en) Photosensitive polymer composition
JPS6315847A (en) Photosensitive polyimide composition
JPH0232356A (en) Production of semiconductor device
JP2000347404A (en) Photosensitive polymer composition and electronic parts using the same and its manufacture
JPH04181254A (en) Polysilphenylenesiloxane, its production, resist material, and semiconductor device
JP4433543B2 (en) Positive photosensitive polybenzoxazole precursor composition, pattern manufacturing method, and electronic component using the same
KR100757108B1 (en) Polymer for hardmask and hardmask composition containing thereof
JP2623780B2 (en) Organosilicon polymer resist composition
JP2752786B2 (en) Color filter surface protective film
JPS62276543A (en) Pattern forming method
JPH07211142A (en) Dielectric layer definable by light containing poly(aromatic diacetylene)
JP2628597B2 (en) Silicone compound
JPH04184444A (en) Production of photosensitive heat resistant resin composition and semiconductor device
JPS63118739A (en) Process for forming resist pattern
JPH02103546A (en) Electron beam resist composition
JPS6296942A (en) Production of heat resistant resin pattern
JPS60135934A (en) Photosensitive polymer composition
JPH0525277A (en) Resist composition and production of organosilicon polymer